首页 / 专利库 / 燃料种类 / 能源 / 燃料 / 固体燃料 / 石油焦 / 一种利用石墨烯制备超高功率石墨电极的方法

一种利用石墨烯制备超高功率石墨电极的方法

阅读:154发布:2020-05-11

专利汇可以提供一种利用石墨烯制备超高功率石墨电极的方法专利检索,专利查询,专利分析的服务。并且本 发明 涉及 电极 制备技术领域,更具体而言,涉及一种利用 石墨 烯制备超高功率石墨电极的方法,以针状 石油焦 为 骨料 ;以 石墨烯 粉、超高功率石墨粉、 炭黑 、 碳 纤维 等粉末材料组成,同时经过 溶剂 分散、高温 热压 成型 ,再经过最高3200度高温提纯处理,使转化为微晶型人造石墨。以增强高功率石墨电极的理化性能。本发明原料选择合理,制备工艺科学等,用所述的方法和材料生产出各理化性能优质的超高功率石墨电极。有利于提高产品合格率,充分利用石墨烯、炭黑、 碳纤维 等材料的特性,且中温 煤 沥青 在 石墨化 工序容易石墨化,其最终产品的理化指才能充分得到满足。,下面是一种利用石墨烯制备超高功率石墨电极的方法专利的具体信息内容。

1.一种利用石墨烯制备超高功率石墨电极的方法,其特征在于,包括以下步骤:
S1、将骨料与粉料混合后置于球磨机中进行碾磨,碾磨温度140-160℃,时间为6-24小时,速度为300-600r/min;
S2、混捏:将粘接剂分两次加入到S1中混合料中进行混捏得到糊料,湿混的温度为150-
170℃;
S3、成型:将S2中混捏的糊料冷却至120-130℃时倒入成型机中,通过压将糊料从成型机的出口出进行挤压成型,挤压成型的捣固压力为8MPa,预压压力20MPa,预压时间4min,挤压压力5-7.5MPa,挤压速度长度为1800mm、150S,挤压成型机的出口温度110-120℃,挤压机的成型段温度155-160℃,挤出机的变型区温度120-130℃,挤压机的料室温度120-130℃,挤压机的柱塞头温度140-150℃,成型后的生坯的体积密度≥1.78g/cm3;
S4、一次焙烧为:将S3中成型后生坯装入焙烧炉中进行焙烧得到第一次坯体;
S5、浸渍,将S4中第一次坯体预热后浸渍,对浸渍罐进行抽真空后加压至1.5Mpa,以
1.35Mpa保压50-60分钟、浸渍;
S6、二次焙烧:将S5中浸渍后坯体焙烧,时间为600-650小时,温度为800-900℃;
S7、石墨化:将S6中焙烧后坯体石墨化时间为450-500小时,温度为2800-3000℃;
S8、将S7中石墨化后坯体通电,在隔绝空气的条件下加热至700-850℃,电流强度为
15A,维持8-10小时,制得石墨电极。
2.根据权利要求1所述的一种利用石墨烯制备超高功率石墨电极的方法,其特征在于:
所述骨料包括针状石油焦;所述粉料包括石墨烯粉、超高功率石墨粉、炭黑纤维;所述粘结剂采用中温沥青;所述浸渍剂采用浸渍沥青。
3.根据权利要求2所述的一种利用石墨烯制备超高功率石墨电极的方法,其特征在于:
针状石油焦的真密度≥2.13g/cm3,灰分≤0.20%,挥发分≤0.25%,硫含量≤0.30%;
所述石墨烯粉的粒度为3-6μm,纯度99.9%,拉伸模量≤1.01TPa,极限强度≤116Gpa;所述超高功率石墨粉的粒度为5-10μm、体积密度≥1.80g/cm3,电阻率≤8μΩm,抗折强度≥
30Mpa,抗压强度≥60Mpa;所述炭黑的纯度99%,粒径为6-12μm;所述碳纤维的粒度为7-14μm、抗拉强度≥7.0Gpa、密度为2.10g/cm3、电阻率≤35μΩcm;
所述中温煤沥青的软化点为90-105℃,结焦值为≥51%,灰分≤0.3%;
所述浸渍沥青的软化点为90-110℃,结焦值为≥52%,喹啉不溶物≤0.25%。
4.根据权利要求2所述的一种利用石墨烯制备超高功率石墨电极的方法,其特征在于:
所述石墨烯粉、超高功率石墨粉、炭黑、碳纤维的重量比为20:35:25:20。
5.根据权利要求1所述的一种利用石墨烯制备超高功率石墨电极的方法,其特征在于:
所述骨料与粉料的重量比为65:35-60:40;
所述S1中混合料和粘结剂中温煤沥青的重量比为70:30-75:25。
6.根据权利要求1所述的一种利用石墨烯制备超高功率石墨电极的方法,其特征在于:
所述针状石油焦的粒径范围与含量为:
粒径60-40μm        25wt%;
粒径40-20μm        20wt%;
粒径20-10μm        30wt%;
粒径10-1.0μm       15wt%;
粒径1.0-0.5μm      10wt%。
7.根据权利要求1所述的一种利用石墨烯制备超高功率石墨电极的方法,其特征在于:
S2第一次加入的中温煤沥青的重量为总的中温煤沥青的75-85%,第一次湿混的时间为20-
25分钟,第二次加入的中温煤沥青的重量为总的中温沥青的15-25%,第二次湿混的时间为
20-25分钟。
8.根据权利要求1所述的一种利用石墨烯制备超高功率石墨电极的方法,其特征在于,所述S4升温程序:在常温-150℃时,升温速率为2±1℃/h;在150-350℃时,升温速率为2±1℃/h;在350-550℃时,升温速率为2.5±1℃/h;在550-750℃时,升温速率为4±1℃/h;在
750-950℃时,升温速率为5±1℃/h;在950-1150℃时,升温速率为2±1℃/h;在1150-1250℃时,升温速率为2±1℃/h;在1250℃时,保温24h。
9.根据权利要求1所述的一种利用石墨烯制备超高功率石墨电极的方法,其特征在于:
所述S5浸渍前对浸渍剂进行脱除份和杂质处理,将浸渍沥青加热到220-320℃,优选加热到220-260℃,保温1-2.5小时,再将浸渍沥青回温到180-200℃。
10.根据权利要求1所述的一种利用石墨烯制备超高功率石墨电极的方法,其特征在于:所述S5浸渍时第一次坯体的预热温度为360-380℃,增重率13-14%。

说明书全文

一种利用石墨烯制备超高功率石墨电极的方法

技术领域

[0001] 本发明涉及电极制备技术领域,更具体而言,涉及一种利用石墨烯制备超高功率石墨电极的方法。

背景技术

[0002] 石墨电极,是在电弧炉中以电弧形式释放电能炉料进行加热熔化的导体,根据其质量指标高低,可分为普通功率、高功率和超高功率。
[0003] 以石油焦沥青焦为颗粒料,沥青为黏结剂,经过混捏、成型、焙烧石墨化机械加工而制成的一种耐高温的石墨质导电材料。石墨电极是电炉炼的重要高温导电材料,通过石墨电极向电炉输入电能,利用电极端部和炉料之间引发电弧产生的高温为热源,使炉料熔化进行炼钢,其他一些电冶炼电解设备也常使用石墨电极为导电材料。
[0004] 2000年全世界消耗石墨电极100万t左右,中国2000年消耗石墨电极25万t左右。利用石墨电极优良的物理化学性能,在其他工业部中也有广泛的用途,以生产石墨电极为主要品种的炭素制品工业已经成为当代原材料工业的重要组成部门。
[0005] 衡量石墨电极质量的主要指标有电阻率、体积密度、机械强度、线膨胀系数、弹性模量等,石墨电极在使用中的抗化性与抗热震性都与以上几项指标有关,产品机械加工的精确度和连接的可靠性也是重要检测项目。

发明内容

[0006] 为了克服现有技术中所存在的不足,本发明提供一种利用石墨烯制备超高功率石墨电极的方法。
[0007] 为了解决上述技术问题,本发明所采用的技术方案为:一种利用石墨烯制备超高功率石墨电极的方法,包括以下步骤:
S1、将骨料与粉料混合后置于球磨机中进行碾磨,碾磨温度140-160℃,时间为6-24小时,速度为300-600r/min;
S2、混捏:将粘接剂分两次加入到S1中混合料中进行混捏得到糊料,湿混的温度为150-
170℃;
S3、成型:将S2中混捏的糊料冷却至120-130℃时倒入成型机中,通过压将糊料从成型机的出口出进行挤压成型,挤压成型的捣固压力为8MPa,预压压力20MPa,预压时间4min,挤压压力5-7.5MPa,挤压速度长度为1800mm、150S,挤压成型机的出口温度110-120℃,挤压机的成型段温度155-160℃,挤出机的变型区温度120-130℃,挤压机的料室温度120-130℃,挤压机的柱塞头温度140-150℃,成型后的生坯的体积密度≥1.78g/cm3;
S4、一次焙烧为:将S3中成型后生坯装入焙烧炉中进行焙烧得到第一次坯体;
S5、浸渍,将S4中第一次坯体预热后浸渍,对浸渍罐进行抽真空后加压至1.5Mpa,以
1.35Mpa保压50-60分钟、浸渍;
S6、二次焙烧:将S5中浸渍后坯体焙烧,时间为600-650小时,温度为800-900℃;
S7、石墨化:将S6中焙烧后坯体石墨化时间为450-500小时,温度为2800-3000℃;
S8、将S7中石墨化后坯体通电,在隔绝空气的条件下加热至700-850℃,电流强度为
15A,维持8-10小时,制得石墨电极。
[0008] 进一步地,所述骨料包括针状石油焦;所述粉料包括石墨烯粉、超高功率石墨粉、炭黑纤维;所述粘结剂采用中温煤沥青;所述浸渍剂采用浸渍沥青。
[0009] 进一步地,针状石油焦的真密度≥2.13g/cm3,灰分≤0.20%,挥发分≤0.25%,硫含量≤0.30%;所述石墨烯粉的粒度为3-6μm,纯度99.9%,拉伸模量≤1.01TPa,极限强度≤116Gpa;所述超高功率石墨粉的粒度为5-10μm、体积密度≥1.80g/cm3,电阻率≤8μΩm,抗折强度≥
30Mpa,抗压强度≥60Mpa;所述炭黑的纯度99%,粒径为6-12μm;所述碳纤维的粒度为7-14μm、抗拉强度≥7.0Gpa、密度为2.10g/cm3、电阻率≤35μΩcm;
所述中温煤沥青的软化点为90-105℃,结焦值为≥51%,灰分≤0.3%;
所述浸渍沥青的软化点为90-110℃,结焦值为≥52%,喹啉不溶物≤0.25%。
[0010] 进一步地,所述石墨烯粉、超高功率石墨粉、炭黑、碳纤维的重量比为20:35:25:20。
[0011] 进一步地,所述骨料与粉料的重量比为65:35-60:40;所述S1中混合料和粘结剂中温煤沥青的重量比为70:30-75:25,优选为72-70:28-30。
[0012] 进一步地,所述针状石油焦的粒径范围与含量为:粒径60-40μm        25wt%;
粒径40-20μm        20wt%;
粒径20-10μm        30wt%;
粒径10-1.0μm       15wt%;
粒径1.0-0.5μm      10wt%。
[0013] 进一步地,S2第一次加入的中温煤沥青的重量为总的中温煤沥青的75-85%,第一次湿混的时间为20-25分钟,第二次加入的中温煤沥青的重量为总的中温沥青的15-25%,第二次湿混的时间为20-25分钟。
[0014] 进一步地,所述S4升温程序:在常温-150℃时,升温速率为2±1℃/h;在150-350℃时,升温速率为2±1℃/h;在350-550℃时,升温速率为2.5±1℃/h;在550-750℃时,升温速率为4±1℃/h;在750-950℃时,升温速率为5±1℃/h;在950-1150℃时,升温速率为2±1℃/h;在1150-1250℃时,升温速率为2±1℃/h;在1250℃时,保温24h。
[0015] 进一步地,所述S5浸渍前对浸渍剂进行脱除份和杂质处理,将浸渍沥青加热到220-320℃,优选加热到220-260℃,保温1-2.5小时,再将浸渍沥青回温到180-200℃。
[0016] 进一步地,所述S5浸渍时浸渍时第一次坯体的预热温度为360-380℃,增重率13-14%。
[0017] 与现有技术相比,本发明所具有的有益效果为:本发明提供了一种利用石墨烯制备超高功率石墨电极的方法,以针状石油焦为骨料;
以石墨烯粉、超高功率石墨粉、炭黑、碳纤维等粉末材料组成,同时经过溶剂分散、高温热压成型,再经过最高3200度高温提纯处理,使转化为微晶型人造石墨。以增强高功率石墨电极的理化性能。本发明原料选择合理,制备工艺科学等,用所述的方法和材料生产出各理化性能优质的超高功率石墨电极。有利于提高产品合格率,充分利用石墨烯、炭黑、碳纤维等材料的特性,且中温煤沥青在石墨化工序容易石墨化,其最终产品的理化指才能充分得到满足。所制备的超高功率石墨电极的其体积密度≥1.75g/cm3,电阻率≤5.5μΩm,弹性模量为
7.0-9.5GPa,抗折强度为7-13MPa,热膨胀系数为0.2-0.6(10-6/℃),灰分≤0.30%,热导率为
210-290/W·(m·℃)-1。

具体实施方式

[0018] 下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0019] 一种利用石墨烯制备超高功率石墨电极的方法,包括以下步骤:S1、将骨料与粉料混合后置于球磨机中进行碾磨,碾磨温度140-160℃,时间为6-24小时,速度为300-600r/min;所述骨料包括针状石油焦;所述粉料包括石墨烯粉、超高功率石墨粉、炭黑、碳纤维;所述石墨烯粉、超高功率石墨粉、炭黑、碳纤维的重量比为20:35:25:
20;所述骨料与粉料的重量比为65:35-60:40;
S2、混捏:将粘接剂分两次加入到S1中混合料中进行混捏得到糊料,湿混的温度为150-
170℃;所述粘结剂采用中温煤沥青;混合料和粘结剂中温煤沥青的重量比为70:30-75:25,优选为72-70:28-30;第一次加入的中温煤沥青的重量为总的中温煤沥青的75-85%,第一次湿混的时间为20-25分钟,第二次加入的中温煤沥青的重量为总的中温沥青的15-25%,第二次湿混的时间为20-25分钟;
其中,所述针状石油焦的粒径范围与含量为:
粒径60-40μm        25wt%;
粒径40-20μm        20wt%;
粒径20-10μm        30wt%;
粒径10-1.0μm       15wt%;
粒径1.0-0.5μm      10wt%;
S3、成型:将S2中混捏的糊料冷却至120-130℃时倒入成型机中,通过压力将糊料从成型机的出口出进行挤压成型,挤压成型的捣固压力为8MPa,预压压力20MPa,预压时间4min,挤压压力5-7.5MPa,挤压速度长度为1800mm、150S,挤压成型机的出口温度110-120℃,挤压机的成型段温度155-160℃,挤出机的变型区温度120-130℃,挤压机的料室温度120-130℃,挤压机的柱塞头温度140-150℃,成型后的生坯的体积密度≥1.78g/cm3;
S4、一次焙烧为:将S3中成型后生坯装入焙烧炉中进行焙烧得到第一次坯体;升温程序为:在常温-150℃时,升温速率为2±1℃/h;在150-350℃时,升温速率为2±1℃/h;在350-
550℃时,升温速率为2.5±1℃/h;在550-750℃时,升温速率为4±1℃/h;在750-950℃时,升温速率为5±1℃/h;在950-1150℃时,升温速率为2±1℃/h;在1150-1250℃时,升温速率为2±1℃/h;在1250℃时,保温24h
S5、浸渍,将S4中第一次坯体预热后浸渍,预热温度为360-380℃,对浸渍罐进行抽真空后加压至1.5Mpa,以1.35Mpa保压50-60分钟、浸渍;浸渍时浸渍剂采用浸渍沥青;浸渍前对浸渍剂进行脱除水份和杂质处理,将浸渍沥青加热到220-320℃,优选加热到220-260℃,保温1-2.5小时,再将浸渍沥青回温到180-200℃;浸渍后第一次坯体的增重率13-14%;
S6、二次焙烧:将S5中浸渍后坯体焙烧,时间为600-650小时,温度为800-900℃;
S7、石墨化:将S6中焙烧后坯体石墨化时间为450-500小时,温度为2800-3000℃;
S8、将S7中石墨化后坯体通电,在隔绝空气的条件下加热至700-850℃,电流强度为
15A,维持8-10小时,制得石墨电极。
[0020] 在本实施例中,针状石油焦的真密度≥2.13g/cm3,灰分≤0.20%,挥发分≤0.25%,硫含量≤0.30%;所述石墨烯粉的粒度为3-6μm,纯度99.9%,拉伸模量≤1.01TPa,极限强度≤116Gpa;所述超高功率石墨粉的粒度为5-10μm、体积密度≥1.80g/cm3,电阻率≤8μΩm,抗折强度≥30Mpa,抗压强度≥60Mpa;所述炭黑的纯度99%,粒径为6-12μm;所述碳纤维的粒度为7-14μm、抗拉强度≥7.0Gpa、密度为2.10g/cm3、电阻率≤35μΩcm;所述中温煤沥青的软化点为90-105℃,结焦值为≥51%,灰分≤0.3%;所述浸渍沥青的软化点为90-110℃,结焦值为≥52%,喹啉不溶物≤0.25%。
[0021] 石墨制品的制备工艺中,配方对石墨制品的性能参数影响较大,特别是对体积密度、气孔率和热膨胀系数的影响。一般来说,采用较细颗粒配方成型得到产品的体积密度大、气孔率较小、抗折抗压强优雅高,本发明在选料时选取高各向同性、高密度、高强度、低孔隙率、小孔隙的针状石油焦,又在配料时,采用超细磨粉、小颗粒配方,骨料的最大料径小于0.5μm。在此粒径范围内,颗粒粒径的分布直接影响颗粒的堆积方式,颗粒堆积越紧密,石墨制品的体积密度越大、气孔率越小,另外,在此粒径范围内,如保持粒度不变,平均粒度增加一倍,热膨胀率下降约7%。
[0022] 不同粒径的骨料颗粒堆积较为紧密,石墨品的体积密度、气孔率、机械强度和热膨胀系数可达到一个非常好的平衡,所制备石墨制品的体积密度大、气孔率小、热膨胀系数小。
[0023] 挤压成型方式,因此以粘结剂中温沥青的用量有严格配比要求,粘结剂的用量和骨料的表面积有直接关系,骨料的粒径越小,表面积越大,粘结剂用量则越多,但粘结剂用量过多,成型时不易振实,因而产品的体积密度较小,且脱模后产品容易形变。本发明粘结剂与骨料配比为70:75-30:25%,骨料和粘结剂在混捏后,得到的糊料基本上不呈团,倒在晾料台上大多数呈散粒状,或少许较小的小团块,成型后得到体积密度较高的成型品。骨料的颗粒越小,表面积越大,湿混的时候越难混合均匀,湿混用的时间就越长,耗能也随之增多。本发明在湿混的过程中,将粘结剂分两次加入到干混后的骨料中进行混捏,第一次加入占总粘结剂质量的70-80%的粘结剂与骨料粘结,由于加入的量少,混合物的黏性比较低,在同等条件的搅拌力作用下,可在短时间内混捏均匀,第一次湿混后,使原料颗粒粒径比较均匀的变大,使其比表面积变小,再将剩余的粘结剂加入,可在短时间内将骨料和粘结剂均匀混合。分两次加入粘结剂中温沥青,既可以减少湿混的时间,降低能耗,又可以使糊料混捏均匀,得到塑性很好的糊料,有利于提高成型后生坯的成品率和物理性能。
[0024] 焙烧的目的是将粘结剂沥青炭化,在骨料颗粒间形成焦炭网格,将不同粒度的骨料牢固地粘结成一个整体。小颗粒配方在制备碳材料时,在后续热处理过程中出现裂纹的机率会大,成品率可能偏低,本发明通过优化及改进焙烧时的升温曲线、加热持续时间等因素,提高了粘结剂的结焦率,克服了小颗粒带来的出现裂纹、成品率低的问题,以保证产品综合指标的成品率。
[0025] 浸渍沥青的特性对浸渍效果有重要的影响,主要表现在沥青粘度、喹啉不溶物含量、结焦值上。结焦值越高,焙烧后产品的体积密度和机械强度越大,而结焦值随软化点上升而增加,因此采用软化点较高的煤沥青作为粘结剂,有利于提高制品材料的体积密度和机械强度,但浸渍沥青软化点越高,相对粘度就越大,难于渗透到浸渍品的孔隙中去青粘度既受本身性质影响,又与加热温度高低成反比。为提高浸渍效果,本发明一是选用软化点为83-86℃、结焦值为≥48%的沥青,二是对浸渍沥青进行加热,以降低浸渍沥青的粘度。一般来说,在超过200℃后,沥青中的轻质组分开始挥发,200-400℃是浸渍沥青中的轻质组分的挥发阶段,并且随着温度的升高,浸渍沥青中挥发的轻质组分的分子量逐渐增大,挥发的气体进入浸渍品的气气内,妨碍了沥青的渗透,所以现有技术中,将浸渍沥青加热到160-180℃后开始浸渍,浸渍沥青加热的温度不会超过200℃,但是,由于需浸渍的碳质品的预热温度一般都在300-400℃之间,所以在浸渍的过程中,仍然有轻质组分从浸渍的碳质品内的浸渍沥青中挥发出来,不仅妨碍了浸渍沥青的渗透,还在浸渍品中形成了许多气体的小孔,本发明在浸渍之前,先将浸渍沥青加热到220-320℃,优选加热到220-260℃,使得浸渍沥青中的部分轻质组分挥发出去,特别是使部分易挥发的小分子挥发出去,之后再将浸渍沥青降温到180-200℃再进行浸渍,这时,浸渍沥青仍具有比较低的粘度,比较容易渗透进浸渍品中,本发明浸渍时浸渍品的预热温度360-380℃,在浸渍时,由于浸渍沥青中部分轻质组分已经挥发出去,不仅提高了浸渍沥青的结焦值,还加快了浸渍沥青的渗透,并且减少了浸油品内的气孔率,浸渍的交果好,有利于提高制品的理化指标。在浸渍时,先对面浸渍的碳质品先抽真空,抽真空的目的是排出需浸渍的碳质品开品孔隙内的气体,以利于浸渍沥青的渗透,加入浸渍沥青后,在压力的作用下,浸清沥青比较容易渗透到需浸渍的碳质品的孔隙中去,从而保证增重率;煤沥青中的喹啉不溶物是一种微小的颗粒,浸渍时喹啉不溶物在多孔材料表面形一层薄膜,阻碍浸渍剂对多孔材料的渗透,因此,本发明选用喹啉不溶物≤
0.25%的浸渍沥青。对浸渍沥青进行脱除水份和杂质处理。
[0026] 上面仅对本发明的较佳实施例作了详细说明,但是本发明并不限于上述实施例,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化,各种变化均应包含在本发明的保护范围之内。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈