首页 / 专利库 / 激光与光电 / 量子阱 / 半导体发光器件及其制造方法、以及晶片及其制造方法

半导体发光器件及其制造方法、以及晶片及其制造方法

阅读:2发布:2021-07-11

专利汇可以提供半导体发光器件及其制造方法、以及晶片及其制造方法专利检索,专利查询,专利分析的服务。并且本 发明 涉及 半导体 发光器件、晶片、用于制造半导体发光器件的方法和用于制造晶片的方法。根据一个 实施例 ,一种半导体发光器件包括第一层、第二层以及发光部。第一层包含n型GaN和n型AlGaN中的至少一种。第二层包含p型AlGaN。发光部具有单 量子阱 结构。单量子阱结构包括第一势垒层、第二势垒层以及阱层。第一势垒层被设置在第一层与第二层之间并包含Alx1Ga1-x1-y1Iny1N(0<x1,0≤y1,x1+y1<1)。第二势垒层被设置在第一势垒层与第二层之间并包含Alx2Ga1-x2-y2Iny2N(0<x2,0≤y2,x2+y2<1)。阱层被设置在第一势垒层与第二势垒层之间,包含Alx0Ga1-x0-y0Iny0N(0≤x0,0<y0,x0+y0<1,y1<y0,y2<y0)并被配置为发射近紫外光。,下面是半导体发光器件及其制造方法、以及晶片及其制造方法专利的具体信息内容。

1.一种半导体发光器件,包括:
第一层,其包含n型GaN和n型AlGaN中的至少一种;
第二层,其包含p型AlGaN;以及
发光部,其具有单量子阱结构,
所述单量子阱结构包括:
第一势垒层,其被设置在所述第一层与所述第二层之间并包含Alx1Ga1-x1-y1Iny1N(0<x1,0≤y1,x1+y1<1);
第二势垒层,其被设置在所述第一势垒层与所述第二层之间并包含Alx2Ga1-x2-y2Iny2N(0<x2,0≤y2,x2+y2<1);以及
阱层,其 被设 置 在所 述 第一 势 垒层 与 所述 第 二势 垒 层之 间,包含Alx0Ga1-x0-y0Iny0N(0≤x0,0<y0,x0+y0<1,y1<y0,y2<y0),并被配置为发射近紫外光。
2.根据权利要求1的器件,其中所述阱层具有不小于4.5纳米且不大于9纳米的厚度。
3.根据权利要求1的器件,其中所述阱层具有不小于5纳米且不大于7纳米的厚度。
4.根据权利要求1的器件,还包括:
第一叠层结构体,其被设置在所述第一层与所述发光部之间,
所述第一叠层结构体包括:
包含AlGaInN的多个第三层,所述多个第三层中的每一个具有的厚度小于所述第一势垒层的厚度且小于所述第二势垒层的厚度;以及
与所述多个第三层交替地层叠并包含GaInN的多个第四层,所述多个第四层中的每一个具有的厚度小于所述阱层的厚度。
5.根据权利要求4的器件,其中所述多个第四层的总厚度与所述阱层的厚度之和不小于25纳米且不大于45纳米。
6.根据权利要求1的器件,还包括:
第二叠层结构体,其被设置在所述第一层与所述发光部之间,
所述第二叠层结构体包括:
包含GaN的多个第五层,所述多个第五层中的每一个具有的厚度小于所述第一势垒层的厚度且小于所述第二势垒层的厚度;以及
与所述多个第五层交替地层叠并包含GaInN的多个第六层,所述多个第六层中的每一个具有的厚度小于所述阱层的厚度。
7.根据权利要求4的器件,还包括:
第二叠层结构体,其被设置在所述第一层与所述第一叠层结构体之间,
所述第二叠层结构体包括:
包含GaN的多个第五层,所述多个第五层中的每一个具有的厚度小于所述第一势垒层的厚度且小于所述第二势垒层的厚度;以及
与所述多个第五层交替地层叠并包含GaInN的多个第六层,所述多个第六层中的每一个具有的厚度小于所述阱层的厚度。
8.根据权利要求7的器件,其中,
所述第一势垒层具有的Si浓度高于所述第一叠层结构体中的Si浓度;
所述第二叠层结构体具有的Si浓度低于所述第一叠层结构体中的Si浓度;并且所述第二层具有的Si浓度低于所述第二叠层结构体中的Si浓度。
9.根据权利要求1的器件,还包括:
衬底,所述衬底的主表面为蓝宝石层的c面;
单晶缓冲层,其被设置在所述衬底与所述第一层之间,所述单晶缓冲层包含Alx3Ga1-x3N(0.8≤x3≤1);以及
GaN层,其被设置在所述单晶缓冲层与所述第一层之间。
10.根据权利要求1的器件,其中,
所述第一层被设置在所述发光部与形成在由蓝宝石构成的衬底上的GaN层之间;并且所述衬底被去除。
11.一种晶片,包括:
第一层,其包含n型GaN和n型AlGaN中的至少一种;
第二层,其包含p型AlGaN;以及
发光部,其具有单量子阱结构,
所述单量子阱结构包括:
第一势垒层,其被设置在所述第一层与所述第二层之间并包含Alx1Ga1-x1-y1Iny1N(0<x1,0≤y1,x1+y1<1);
第二势垒层,其被设置在所述第一势垒层与所述第二层之间并包含Alx2Ga1-x2-y2Iny2N(0<x2,0≤y2,x2+y2<1);以及
阱层,其 被设 置 在所 述 第一 势 垒层 与 所述 第 二势 垒 层之 间,包含Alx0Ga1-x0-y0Iny0N(0≤x0,0<y0,x0+y0<1,y1<y0,y2<y0),并被配置为发射近紫外光。
12.根据权利要求11的晶片,其中所述阱层具有不小于4.5纳米且不大于9纳米的厚度。
13.根据权利要求11的晶片,其中所述阱层具有不小于5纳米且不大于7纳米的厚度。
14.根据权利要求11的晶片,还包括:
第一叠层结构体,其被设置在所述第一层与所述发光部之间,
所述第一叠层结构体包括:
包含AlGaInN的多个第三层,所述多个第三层中的每一个具有的厚度小于所述第一势垒层的厚度且小于所述第二势垒层的厚度;以及
与所述多个第三层交替地层叠并包含GaInN的多个第四层,所述多个第四层中的每一个具有的厚度小于所述阱层的厚度。
15.根据权利要求14的晶片,其中所述多个第四层的总厚度与所述阱层的厚度之和不小于25纳米且不大于45纳米。
16.根据权利要求11的晶片,还包括:
第二叠层结构体,其被设置在所述第一层与所述发光部之间,
所述第二叠层结构体包括:
包含GaN的多个第五层,所述多个第五层中的每一个具有的厚度小于所述第一势垒层的厚度且小于所述第二势垒层的厚度;以及
与所述多个第五层交替地层叠并包含GaInN的多个第六层,所述多个第六层中的每一个具有的厚度小于所述阱层的厚度。
17.根据权利要求14的晶片,还包括:
第二叠层结构体,其被设置在所述第一层与所述第一叠层结构体之间,
所述第二叠层结构体包括:
包含GaN的多个第五层,所述多个第五层中的每一个具有的厚度小于所述第一势垒层的厚度且小于所述第二势垒层的厚度;以及
与所述多个第五层交替地层叠并包含GaInN的多个第六层,所述多个第六层中的每一个具有的厚度小于所述阱层的厚度。
18.一种制造半导体发光器件的方法,包括以下步骤:
在衬底上形成单晶缓冲层,所述衬底的主表面为蓝宝石层的c面,所述单晶缓冲层包含Alx3Ga1-x3N(0.8≤x3≤1);
在所述单晶缓冲层上形成GaN层;
在所述GaN层上形成n型半导体层,所述n型半导体层包括第一层,所述第一层包含n型GaN和n型AlGaN中的至少一种;
在所述n型半导体层上形成第一势垒层,所述第一势垒层包含Alx1Ga1-x1-y1Iny1N(0<x1,0≤y1,x1+y1<1);
在所述第一势垒层上形成阱层,所述阱层包含Alx0Ga1-x0-y0Iny0N(0≤x0,0<y0,x0+y0<1,y1<y0,y2<y0)并被配置为发射近紫外光;
在所述阱层上形成第二势垒层,所述第二势垒层包含Alx2Ga1-x2-y2Iny2N(0<x2,0≤y2,x2+y2<1);
在所述第二势垒层上形成p型半导体层,所述p型半导体层包括第二层,所述第二层包含p型AlGaN;以及
在形成所述p型半导体层之后,去除所述衬底。
19.一种制造半导体发光器件的方法,包括以下步骤:
通过金属有机化学气相沉积在由蓝宝石构成的衬底上形成AlN层;
通过金属有机化学气相沉积在所述AlN层上形成GaN层;
通过金属有机化学气相沉积在所述GaN层上形成n型半导体层,所述n型半导体层包括第一层,所述第一层包含n型GaN和n型AlGaN中的至少一种;
通过金属有机化学气相沉积在所述n型半导体层上形成第一势垒层,所述第一势垒层包含Alx1Ga1-x1-y1Iny1N(0<x1,0≤y1,x1+y1<1);
通过金属有机化学气相沉积在所述第一势垒层上形成阱层,所述阱层包含Alx0Ga1-x0-y0Iny0N(0≤x0,0<y0,x0+y0<1,y1<y0,y2<y0)并被配置为发射近紫外光;
通过金属有机化学气相沉积在所述阱层上形成第二势垒层,所述第二势垒层包含Alx2Ga1-x2-y2Iny2N(0<x2,0≤y2,x2+y2<1);以及
通过金属有机化学气相沉积在所述第二势垒层上形成p型半导体层,所述p型半导体层包括第二层,所述第二层包含p型AlGaN。
20.一种用于制造晶片的方法,包括以下步骤:
通过金属有机化学气相沉积在由蓝宝石构成的衬底上形成AlN层;
通过金属有机化学气相沉积在所述AlN层上形成GaN层;
通过金属有机化学气相沉积在所述GaN层上形成n型半导体层,所述n型半导体层包括第一层,所述第一层包含n型GaN和n型AlGaN中的至少一种;
通过金属有机化学气相沉积在所述n型半导体层上形成第一势垒层,所述第一势垒层包含Alx1Ga1-x1-y1Iny1N(0<x1,0≤y1,x1+y1<1);
通过金属有机化学气相沉积在所述第一势垒层上形成阱层,所述阱层包含Alx0Ga1-x0-y0Iny0N(0≤x0,0<y0,x0+y0<1,y1<y0,y2<y0)并被配置为发射近紫外光;
通过金属有机化学气相沉积在所述阱层上形成第二势垒层,所述第二势垒层包含Alx2Ga1-x2-y2Iny2N(0<x2,0≤y2,x2+y2<1);以及
通过金属有机化学气相沉积在所述第二势垒层上形成p型半导体层,所述p型半导体层包括第二层,所述第二层包含p型AlGaN。

说明书全文

半导体发光器件及其制造方法、以及晶片及其制造方法

[0001] 相关申请的交叉引用
[0002] 本申请基于在2010年3月17日提交的在先的日本专利申请2010-061683并要求其优先权;并将其全部内容通过引用并入到这里。

技术领域

[0003] 这里说明的实施例一般而言涉及半导体发光器件、晶片、用于制造半导体发光器件的方法以及用于制造晶片的方法。

背景技术

[0004] 氮化物半导体被用于诸如半导体发光器件和HEMT(高电子迁移率晶体管)器件的各种半导体器件。然而,由与GaN晶体的晶格失配导致的高密度穿通位错(threading dislocation)限制了这样的氮化物半导体器件的特性。
[0005] 例如,一种基于氮化物半导体的半导体发光器件为近紫外光LED(发光二极管)器件(例如,发射波长为例如400nm或更短)。希望将近紫外光LED作为用于白光LED等等的磷光体(phosphor)激励光源。然而,近紫外光LED却具有效率低的问题。
[0006] 已经提出了各种提议来提高基于氮化物半导体的近紫外光LED的效率。例如,日本专利2713094提出了一种用于控制包括在半导体发光器件中的各种层的条件的配置。然而,在提高近紫外光LED的效率方面仍然存在改善的空间。发明内容
[0007] 总体而言,根据一个实施例,一种半导体发光器件包括第一层、第二层以及发光部。所述第一层包含n型GaN和n型AlGaN中的至少一种。所述第二层包含p型AlGaN。所述发光部具有单量子阱结构。所述单量子阱结构包括第一势垒层、第二势垒层以及阱层。
所述第一势垒层被设置在所述第一层与所述第二层之间并包含Alx1Ga1-x1-y1Iny1N(0<x1,
0≤y1,x1+y1<1)。所述第二势垒层被设置在所述第一势垒层与所述第二层之间并包含Alx2Ga1-x2-y2Iny2N(0<x2,0≤y2,x2+y2<1)。所述阱层被设置在所述第一势垒层与所述第二势垒层之间,包含Alx0Ga1-x0-y0Iny0N(0≤x0,0<y0,x0+y0<1,y1<y0,y2<y0),并被配置为发射近紫外光。
[0008] 根据另一实施例,一种晶片包括第一层、第二层以及发光部。所述第一层包含n型GaN和n型AlGaN中的至少一种。所述第二层包含p型AlGaN。所述发光部具有单量子阱结构。所述单量子阱结构包括第一势垒层、第二势垒层以及阱层。所述第一势垒层被设置在所述第一层与所述第二层之间并包含Alx1Ga1-x1-y1Iny1N(0<x1,0≤y1,x1+y1<1)。所述第二势垒层被设置在所述第一势垒层与所述第二层之间并包含Alx2Ga1-x2-y2Iny2N(0<x2,0≤y2,x2+y2<1)。所述阱层被设置在所述第一势垒层与所述第二势垒层之间,包含Alx0Ga1-x0-y0Iny0N(0≤x0,0<y0,x0+y0<1,y1<y0,y2<y0),并被配置为发射近紫外光。
[0009] 根据又一实施例,公开了一种制造半导体发光器件的方法。所述方法可以在衬底上形成单晶缓冲层,所述衬底的主表面为蓝宝石层的c面。所述单晶缓冲层包含Alx3Ga1-x3N(0.8≤x3≤1)。所述方法可以在所述单晶缓冲层上形成GaN层并在所述GaN层上形成n型半导体层。所述n型半导体层包括第一层。所述第一层包含n型GaN和n型AlGaN中的至少一种。所述方法可以在所述n型半导体层上形成第一势垒层。所述第一势垒层包含Alx1Ga1-x1-y1Iny1N(0<x1,0≤y1,x1+y1<1)。所述方法可以在所述第一势垒层上形成阱层。所述阱层包含Alx0Ga1-x0-y0Iny0N(0≤x0,0<y0,x0+y0<1,y1<y0,y2<y0)并被配置为发射近紫外光。所述方法可以在所述阱层上形成第二势垒层。所述第二势垒层包含Alx2Ga1-x2-y2Iny2N(0<x2,0≤y2,x2+y2<1)。所述方法可以在所述第二势垒层上形成p型半导体层。所述p型半导体层包括第二层。所述第二层包含p型AlGaN。此外,所述方法可以在形成所述p型半导体层之后去除所述衬底。
[0010] 根据再一实施例,公开了一种制造半导体发光器件的方法。所述方法可以通过金属有机化学气相沉积在由蓝宝石构成的衬底上形成AlN层,通过金属有机化学气相沉积在所述AlN层上形成GaN层,并通过金属有机化学气相沉积在所述GaN层上形成n型半导体层。所述n型半导体层包括第一层。所述第一层包含n型GaN和n型AlGaN中的至少一种。所述方法可以通过金属有机化学气相沉积在所述n型半导体层上形成第一势垒层。所述第一势垒层包含Alx1Ga1-x1-y1Iny1N(0<x1,0≤y1,x1+y1<1)。所述方法可以通过金属有机化学气相沉积在所述第一势垒层上形成阱层。所述阱层包含Alx0Ga1-x0-y0Iny0N(0≤x0,0<y0,x0+y0<1,y1<y0,y2<y0)并被配置为发射近紫外光。所述方法可以通过金属有机化学气相沉积在所述阱层上形成第二势垒层。所述第二势垒层包含Alx2Ga1-x2-y2Iny2N(0<x2,0≤y2,x2+y2<1)。此外,所述方法可以通过金属有机化学气相沉积在所述第二势垒层上形成p型半导体层。所述p型半导体层包括第二层。所述第二层包含p型AlGaN。
[0011] 根据又一实施例,公开了一种制造晶片的方法。所述方法可以通过金属有机化学气相沉积在由蓝宝石构成的衬底上形成AlN层,通过金属有机化学气相沉积在所述AlN层上形成GaN层,并通过金属有机化学气相沉积在所述GaN层上形成n型半导体层。所述n型半导体层包括第一层。所述第一层包含n型GaN和n型AlGaN中的至少一种。所述方法可以通过金属有机化学气相沉积在所述n型半导体层上形成第一势垒层。所述第一势垒层包含Alx1Ga1-x1-y1Iny1N(0<x1,0≤y1,x1+y1<1)。所述方法可以通过金属有机化学气相沉积在所述第一势垒层上形成阱层。所述阱层包含Alx0Ga1-x0-y0Iny0N(0≤x0,0<y0,x0+y0<1,y1<y0,y2<y0)并被配置为发射近紫外光。所述方法可以通过金属有机化学气相沉积在所述阱层上形成第二势垒层。所述第二势垒层包含Alx2Ga1-x2-y2Iny2N(0<x2,0≤y2,x2+y2<1)。此外,所述方法可以通过金属有机化学气相沉积在所述第二势垒层上形成p型半导体层。所述p型半导体层包括第二层。所述第二层包含p型AlGaN。附图说明
[0012] 图1为示例了根据第一实施例的半导体发光器件的配置的示意性截面图;
[0013] 图2为示例了根据第二实施例的半导体发光器件的配置的示意性截面图;
[0014] 图3为示例了根据第二实施例的另一半导体发光器件的配置的示意性截面图;
[0015] 图4为示例了根据第三实施例的半导体发光器件的配置的示意性截面图;
[0016] 图5为示例了根据第四实施例的半导体发光器件的配置的示意性截面图;
[0017] 图6为示例了根据第五实施例的半导体发光器件的配置的示意性截面图;
[0018] 图7为示例了根据第六实施例的晶片的配置的示意性截面图;
[0019] 图8为示例了根据第六实施例的另一晶片的配置的示意性截面图;
[0020] 图9为示例了根据第七实施例的用于制造半导体发光器件的方法的流程图;以及[0021] 图10为示例了根据第八实施例的用于制造半导体发光器件的方法的流程图。

具体实施方式

[0022] 现在将参考附图详细说明本发明的实施例。
[0023] 附图是示意性或概念性的。例如,每一部分的厚度与宽度之间的关系以及各部分间的尺寸比率不必与现实情况相同。此外,依赖于各附图,相同的部分可以以不同的尺寸或比率示出。
[0024] 在本申请的说明书和附图中,与参考先前的附图而在之前描述的要素相似的要素用相似的参考标号来标记,并且在适当时略去了对其的详细说明。
[0025] 图1为示例了根据本发明的第一实施例的半导体发光器件的配置的示意性截面图。
[0026] 如图1所示,根据该实施例的半导体发光器件10包括包含n型GaN和n型AlGaN中的至少一种的第一层131、包含p型AlGaN的第二层151、以及在第一层131与第二层151之间设置的发光部140。
[0027] 第一层131、发光部140以及第二层151沿Z轴方向层叠。第一层131包含例如Si。第二层151包含例如Mg。
[0028] 发光部140具有由第一势垒层141、第二势垒层142以及阱层143构成的单量子阱(SQW)结构。第一势垒层141被设置在第一层131与第二层151之间。第二势垒层142被设置在第一势垒层141与第二层151之间。阱层143被设置在第一势垒层141与第二势垒层142之间。
[0029] 第一势垒层141、阱层143以及第二势垒层142沿Z轴方向层叠。
[0030] 第一势垒层141包含Alx1Ga1-x1-y1Iny1N(0<x1,0≤y1,x1+y1<1)。
[0031] 第二势垒层142包含Alx2Ga1-x2-y2Iny2N(0<x2,0≤y2,x2+y2<1)。这里,x2可以等于或不同于x1。此外,y2可以等于或不同于y1。特别地,x2<x1是更优选的。
[0032] 阱层143包含Alx0Ga1-x0-y0Iny0N(0≤x0,0<y0,x0+y0<1,y1<y0,y2<y0)。也就是,阱层143包含Ga1-y0Iny0N(0<y0≤1,y1<y0,y2<y0)。
[0033] 阱层143具有不小于4.5纳米(nm)且不大于9nm的厚度(沿Z轴方向的长度)。
[0034] 阱层143发射近紫外光。阱层143的发射光的峰值波长为例如不小于380nm且不大于400nm。也就是,发光部140的发射光的峰值波长为例如不小于380nm且不大于400nm。也就是,根据该实施例的半导体发光器件10发射近紫外光。
[0035] 通过上述配置,根据该实施例的半导体发光器件10可以高效率地发射近紫外光。
[0036] 在该实例中,第一层131示例性地为包含Si的n型限制层。第二层151示例性地为由包含Mg的p型AlGaN构成的p型限制层。
[0037] 例如,在如图1所示的半导体发光器件10中,由AlN构成的第一缓冲层121被设置在具有由例如蓝宝石c面构成的表面的衬底110上,并在第一缓冲层121上设置由未掺杂的GaN构成的第二缓冲层122(晶格弛豫层)。具体地,第一缓冲层121包括形成在衬底110上的高浓度第一AlN缓冲层121a和形成在第一AlN缓冲层121a上的高纯度第二AlN缓冲层121b。在第一AlN缓冲层121a中的碳浓度大于在第二AlN缓冲层121b中的碳浓度。
[0038] 在第二缓冲层122上,层叠由Si掺杂的n型GaN构成的n型接触层130、Si掺杂的n型限制层(第一层131)、发光部140、由Mg掺杂的p型AlGaN构成的p型限制层(第二层151)、以及由Mg掺杂的p型GaN构成的p型接触层150。
[0039] 此外,在p型接触层150上,设置由例如Ni构成的p侧电极160。在n型接触层130上,设置由例如Al/Au的层叠膜构成的n侧电极170。
[0040] 第一势垒层141可以包含例如Si掺杂的n型AlGaInN。第二势垒层142可以包含AlGaInN。第二势垒层142可以用Si掺杂或不用Si掺杂,或者可以部分地用Si掺杂。
[0041] 在根据该实施例的半导体发光器件10中,阱层143的带隙小于第一势垒层141和第二势垒层142的带隙。抑制了包括在半导体发光器件10中的其他半导体层对从阱层143发射的光的吸收,因此可以高效率地将光提取到外部。由此,可以实现用于高效率地发射近紫外线光的半导体发光器件。
[0042] 在下面,将描述上述层的示例性配置。然而,该实施例却并不受此限制。可以进行各种修改
[0043] 第一缓冲层121的厚度可以为例如约2微米(μm)。第一AlN缓冲层121a的厚度例如不小于3nm且不大于20nm。第二AlN缓冲层121b的厚度为例如约2μm。
[0044] 第二缓冲层122(晶格弛豫层)的厚度可以为例如2μm。
[0045] n型接触层130的Si浓度可以为例如不小于5×1018cm-3且不大于2×1019cm-3。n型接触层130的厚度可以为例如约6μm。
[0046] n型限制层(第一层131)包含例如Si掺杂的n型GaN。n型限制层中的Si浓度18 -3
可以为例如约2×10 cm 。n型限制层的厚度可以为例如0.5μm。
[0047] p型限制层(第二层151)包含例如Mg掺杂的p型Al0.25Ga0.75N。p型限制层的厚度可以为例如约24nm。在p型限制层中,在第二势垒层142侧上的Mg浓度可以为例如约19 -3
3×10 cm ,并且在与第二势垒层142相对的侧上(在p侧电极160侧上)的Mg浓度可以
19 -3
为例如1×10 cm 。
[0048] 在p型接触层150中,在p型限制层侧上的Mg浓度可以为例如约1×1019cm-3,并且在与n型限制层相对的侧上(在该实例中,在p侧电极160侧上)的Mg浓度可以为例如19 -3 19 -3
不低于5×10 cm 且不高于9×10 cm 。
[0049] 阱层143可以包含例如GaInN。阱层143的厚度不小于4.5nm且不大于9nm。阱层143可以包含例如Ga0.93In0.07N。阱层143的厚度可以为例如约6nm。从发光部140(阱层143)发射的光为近紫外光。
[0050] 第一势垒层141可以包含例如Si掺杂的n型Al0.065Ga0.93In0.005N。在第一势垒层19 -3 19 -3
141中的Si浓度可以为例如不低于1×10 cm 且不高于2×10 cm 。第一势垒层141的厚度可以为例如约13.5nm。
[0051] 第二势垒层142可以包含例如Al0.065Ga0.93In0.005N。第二势垒层142的厚度可以为例如约6nm。
[0052] 根据该实施例的半导体发光器件10提供了高效率地发射近紫外光的半导体发光器件。
[0053] 基于下面描述的实验结果和考虑,发明人构建了能够高效率地发射近紫外光的半导体发光器件的配置。
[0054] 许多基于氮化物半导体的半导体发光器件采用多量子阱(MQW)结构。MQW结构具有在其中交替地层叠多个势垒层和多个阱层的配置。
[0055] 例如,在基于氮化物半导体的发射蓝光的半导体发光器件中同样采用MQW结构。在发射蓝光的半导体发光器件中,在阱层中的In组成比(composition ratio)被设定为不低于0.15且不高于0.25。如果具有这样的高In组成比的阱层被形成为厚的,则晶体质量易于劣化。因此,在发射蓝光的半导体发光器件中,阱层的厚度通常被设定为不小于2nm且不大于3nm。然而,如果阱层的厚度是薄的,则在阱层中限制载流子效果会降低。出于该原因,发射蓝光的半导体发光器件采用在其中层叠有多个阱层的MQW结构。
[0056] 另一方面,基于这样的蓝光半导体发光器件的配置,已经开发出了近紫外光半导体发光器件。也就是,对基于MQW的近紫外光半导体发光器件进行了大量研究。
[0057] 发明人进行了各种研究以提高具有MQW结构的近紫外光半导体发光器件的效率。发明人在这些研究中所进行的实验中,减薄了MQW结构中的势垒层和阱层的对的一部分的厚度。也就是,减薄MQW结构中的阱层的一部分的厚度以提供不显著发光的部分,并研究了该情况下的发光效率
[0058] 具体地,在n型半导体层上形成晶体应变弛豫层。在晶体应变弛豫层中,交替地层叠具有2.5nm厚度的GaN层和具有1nm厚度的GaInN层。在晶体应变弛豫层上形成具有MQW结构的发光部140。进一步在发光部140上形成p型半导体层。由此形成半导体发光器件。评估了该半导体发光器件的光发射特性。这里,发光部140的MQW结构中的阱层的数目为例如八个。然后,减小在MQW结构中的势垒层(例如,5nm厚)和阱层(例如,3.5nm厚)的对的一部分的厚度。更具体而言,将与势垒层对应的部分的厚度设定为2.5nm,并将与阱层对应的部分的厚度设定为1nm。然后,在改变具有减小的厚度的势垒层和阱层的对的数目的同时,测量发光效率。
[0059] 该实验的结果表明,在减小势垒层和阱层的对的一部分的厚度的情况下的发光效率有时与在没有减小厚度的情况下的发光效率是可比较的。在进行实验之前,已经预计如果减少MQW结构中的势垒层和阱层的对的数目则发光效率会降低。然而,在实验的实际结果中,在势垒层和阱层的对的数目小的情况下,发光效率也是高的。
[0060] 通过分析该结果的原因,发现发生了以下现象。
[0061] 如果势垒层和阱层的对的数目大,可以提高限制载流子的效果,因此发光效率会提高。此外,还发现,如果势垒层和阱层的对的数目大,则势垒层和阱层的一部分会作为用于提高晶体质量的缓冲层并提高效率。
[0062] 另一方面,还发现,如果势垒层和阱层的对的数目大,则多个阱层会具有不均匀的特性并导致发光效率降低。例如,在设置了多个阱层的情况下,p型半导体层附近的阱层与n型半导体层附近的阱层的载流子注入效率是不同的。由此,发光效率在多个阱层之间变化。
[0063] 此外,结果表明在一个阱层中发射的光会被另一个阱层吸收并导致效率降低。
[0064] 由此,发明人注意到,即使减少MQW结构中的势垒层和阱层的对的数目,也可以实现高发光效率。通过分析该结果的原因,发明人发现了以下现象。也就是,多个阱层具有不均匀的特性,并且一个阱层中所发射的光在另一个阱层中被吸收。此外,发明人发现,该现象显著限制了MQW结构的效率提高。
[0065] 另一方面,为了实现MQW结构中的多个阱层的特性的均匀性,还进行了各种测试。然而,在实践中,与现有情况相比,难以显著提高多个阱层的特性的均匀性。
[0066] 通过调查妨碍MQW结构的效率提高的原因,发明人推断,在一些情况下,不包括多个阱层的结构最终是更有利的。发明人实际制造了包括单个阱层的近紫外光半导体发光器件并评估了其特性。结果,实现了比MQW结构高的发光效率。
[0067] 因此,基于实验结果和上述对其的分析,对于多个阱层中的不均匀性和光吸收的现象获得了新发现。基于这些发现构建了该实施例的配置。
[0068] 更具体而言,根据该实施例的半导体发光器件10包括包含n型GaN和n型AlGaN中的至少一种的第一层131、包含p型AlGaN的第二层151、以及被设置在第一层131与第二层151之间并具有单阱结构的发光部140。
[0069] 因此,不存在由于多个阱层的不均匀性和从一个阱层发射的光被另一阱层吸收而导致的效率降低。由此,获得了以高效率发射近紫外光的半导体发光器件。
[0070] 在该实施例中,设置单个阱层143。因此,不存在在多个阱层情况下引起的载流子注入效率的不均匀性。
[0071] 在该实施例中,阱层143的带隙小于其他层(例如,第一势垒层141、第二势垒层142、包含GaN的层以及包含AlGaN的层)的带隙。也就是,在该实施例中,存在具有小带隙的单个层(阱层143),而其他层的带隙较大。因此,抑制了其他层对从阱层143发射的光的吸收。由此,发射光被有效地提取到外部。
[0072] 另一方面,在包括多个阱层143的多量子阱结构的情况下,例如,即使多个阱层143具有小于其他层的带隙,但所述多个阱层143具有基本上相同的带隙。因此,在一个阱层143中发射的光会在另一阱层143中被吸收。这降低了效率。
[0073] 这里,如上所述,在发射蓝光(发射的峰值波长为例如不小于450nm且不大于480nm)的半导体发光器件中,阱层中的In组成比是高的。因此,如果形成了具有4.5nm或更大的厚度的阱层,则GaN层与阱层之间的晶格失配会导致发生过量的应变。这降低了晶体质量,并降低了光发射强度。另一方面,如果阱层的厚度小于4.5nm,则阱层中的载流子限制变弱。由此,在SQW结构中不能形成具有高发光效率的阱层。结果,采用MQW结构。
[0074] 比较而言,在根据该实施例的半导体发光器件10中,为了发射近紫外光,阱层143的厚度被设定为不小于4.5nm且不大于9nm。这比蓝光发射的情况更厚。因此,即使在SQW结构中,阱层143中的限制载流子的效果也足够高。此外,因为阱层是单个的,因此不存在多个阱层中的载流子的不均匀性。该单个阱层143可以基于具有最优特性的规格。结果,可以使阱层143中的发光效率最大化。此外,阱层不再遭受发生在多个阱层中的吸收现象。因此,同样可以提高光提取效率。
[0075] 由此,根据该实施例的半导体发光器件10可以实现高效率地发射近紫外光的半导体发光器件。
[0076] 在该实施例中,阱层143包含例如Ga0.93In0.07N。阱层143的厚度不小于4.5nm且不大于9nm。
[0077] 根据发明人的调查,如果阱层143的厚度小于4.5nm,光发射强度显著地低。如果阱层143的厚度大于9nm,光发射谱被加宽并且光发生强度显著减小。通过将阱层143的厚度设定为不小于4.5nm且不大于9nm,可获得了高发射效率和良好的光谱特性。
[0078] 在阱层143的厚度小于4.5nm的情况下,认为载流子从阱层143到势垒层(例如,第一势垒层141和第二势垒层142中的至少一个)的扩展增加,并导致效率降低。如果阱层143的厚度超过9nm,GaN层(例如,第二缓冲层122、n型接触层130、Si掺杂的n型限制层等等)与阱层143之间的晶格失配增大。由此,可以推断,过量的应变被施加到晶体并降低了晶体质量。
[0079] 特别地,在阱层143的厚度不小于5nm且不大于7nm的情况下,光发射强度几乎恒定,并且光谱中的变化小。当阱层143的厚度为5nm或更大时,光发射强度几乎恒定。因此,可以推断载流子一般存在于阱层143中。当阱层143的厚度为7nm或更小时,谱加宽几乎不发生。因此,可以推断,即使晶体的形状、组成等等包括波动,在整个区域(例如,阱层143的整个区域)中也几乎不发生由应变导致的结晶性降低。
[0080] 在该实施例中,可以实现上述配置,这是因为阱层143包含GaInN以使从发光部140(阱层143)发射的光为近紫外光,即,发射光为具有例如不小于380nm且不大于400nm的峰值波长的近紫外光。
[0081] 在根据该实施例的半导体发光器件和晶片中,形成厚GaN层。因此,具有比GaN的吸收边波长更高的能量的光被强吸收。对于380nm或更长的发射波长,在根据该实施例的半导体发光器件和晶片中设置具有小带隙的单个量子阱层。这使得可以享有实现具有发光效率的半导体发光器件和晶片的效果。
[0082] 此外,对于400nm或更短波长的光,不需要增大阱层143的GaInN中的In组成比,并且可以增厚阱层143。因此,即使在单个阱层中,也可以有效地注入电流。由此,在器件中不存在光吸收,从而实现了高效率。此外,在电流的实际值下,向发光层(阱层143)中的电流注入效率的降低是小的。因此,可以实现具有高效率和高光输出功率的半导体发光器件。
[0083] 基于对根据该实施例的半导体发光器件10的结构的进一步调查,除了上述解决了多个阱层中的载流子不均匀性和再吸收的问题的效果之外,还发现了因晶体质量而提高了发光效率的附加效果。也就是,在该实施例中,因为阱层是单个的,可以使其他层最优化以使阱层的晶体质量最大化。
[0084] 根据发明人的实验,获得了以下发现。在蓝宝石衬底上设置基于氮化物半导体(例如,GaN)的半导体发光器件的情况下,由于蓝宝石衬底与GaN之间的晶格失配,在GaN晶体(例如,GaN缓冲层)中会产生晶体缺陷。通过在GaN层上层叠高应变层来降低这样的缺陷的影响。此外,如果在高应变层上形成包括由GaInN构成的多个阱层的MQW结构,则因为阱层的晶格常数与GaN层的晶格常数不同,发生应变。因此,通过多个阱层减小了晶体缺陷的影响。也就是,通过层叠多个阱层,随着层叠的阱层的数目增多,并可以生长受到晶体缺陷的较小影响的高质量晶体。然而,如果晶格失配层的总数目是大的,则应变的量过大地增加,从而晶体质量再次降低。
[0085] 根据发明人的实验,还获得了以下发现。在使用Ga(Al)InN作为发光层的晶片(半导体发光器件)中,对晶体质量的敏感性随发射波长显著变化。具体地,在大于400nm波长的长波长侧,即使晶体质量降低,发光效率的变化也是小的。然而,在400nm或更短的短波长侧,发光效率随发射波长减小而急剧降低。更具体而言,在400nm或更短的短波长处,每一个谱的短波长侧降低,仿佛其不能超过某一种包络线。因此,随着发射波长变短,发光效率降低。然而,在高质量晶体中,即使发射波长为400nm或更短的短波长,发光效率的降低也是有限的。在该情况下,如果波长(峰值波长)为短波长,则整个谱移动到短波长侧而没有显著的变化。因此,特别地,通过实现高质量晶体的生长,可以特别地在400nm或更短的波长的近紫外光波长范围中实现高效率的光发射。
[0086] 基于这些实验结果,发明人推断,仅仅单个阱层可以被形成为具有良好的晶体质量。此外,发明人推断,通过使包括在半导体发光器件中的每一个层最优化以使单个阱层的晶体质量最大化,则可以使发光效率最大化。此外,发明人推断,该方法即使在发射具有400nm或更短的波长的近紫外光的半导体发光器件中也能实现高效率的光发射。
[0087] 也就是,在该实施例中,可以使全体条件最优化以使单个阱层143的晶体质量最大化。然后,最优化包括在半导体发光器件中的每一个半导体层的条件,以便载流子可以在最优的条件下注入到单个阱层143中。
[0088] 由此,通过使用具有均匀的且最优的特性的单个阱层,可以比使用多个阱层的情况下更有效地进行光发射和光提取。也就是,因为发光部140包括单个阱层143,可以将半导体发光器件设计并制造为使得单个阱层143的特性最优化。由此,可以使发光部140的特性最优化。如上所述,根据该实施例的半导体发光器件10可以提供高效率地发射近紫外光的半导体发光器件。
[0089] 下面将说明根据该实施例的制造半导体发光器件10的示例性方法。
[0090] 首先,通过金属有机化学气相沉积,在具有由蓝宝石c面构成的表面的衬底110上形成具有约2μm厚度的用于构成第一缓冲层121的AlN膜。具体地,形成具有不小于3nm18 -3
且不大于20nm的厚度的高碳浓度第一AlN缓冲层121a(具有例如不低于3×10 cm 且不
20 -3
高于5×10 cm 的碳浓度)。此外,在第一AlN缓冲层121a上形成具有2μm厚度的高纯
16 -3 18 -3
度第二AlN缓冲层121b(具有不低于1×10 cm 且不高于3×10 cm 的碳浓度)。随后,在第二AlN缓冲层121b上形成具有2μm厚度的未掺杂的GaN膜作为第二缓冲层122(晶
19 -3 19 -3
格弛豫层)。随后,形成6μm厚度的具有不低于1×10 cm 且不高于2×10 cm 的Si浓
18 -3
度的Si掺杂的n型GaN膜作为n型接触层130。此外,形成0.5μm厚度的具有2×10 cm的Si浓度的Si掺杂的n型GaN层作为n型限制层(第一层131)。进一步在第一层131
19 -3 19 -3
上,形成13.5nm厚度的具有不低于0.5×10 cm 且不高于2×10 cm 的Si浓度的Si掺杂的n型Al0.065Ga0.93In0.005N膜作为第一势垒层141。此外,形成6nm厚度的GaInN膜作为阱层143。此外,形成6nm厚度的Al0.065Ga0.93In0.005N膜作为第二势垒层142。进一步在第二势垒层142上,形成具有24nm厚度的Mg掺杂的p型Al0.25Ga0.75N膜(Mg浓度在第二势垒
19 -3 19 -3
层142侧上为1.8×10 cm ,在与第二势垒层142相对的侧上为1×10 cm )作为p型限制层(第二层151)。此外,形成Mg掺杂的p型GaN膜(Mg浓度在第二层151侧上的浓度为
19 -3 19 -3 19 -3
1×10 cm ,在与第二层151相对的侧上为不低于5×10 cm 且不高于9×10 cm )作为p型接触层150。由此,依次层叠上述层。
[0091] 然后,通过例如以下示例的方法为包括这些半导体层的半导体层叠层体(stacked body)设置电极。
[0092] 如图1所示,在半导体层叠层体的部分区域中,通过使用掩模的干法蚀刻去除p型半导体层和发光部140直到将n型接触层暴露到表面。然后,通过使用热CVD(化学气相沉积)装置,在包括n型半导体层的暴露的表面的半导体层叠层体上整个地形成400nm厚度的SiO2膜(未示出)。
[0093] 然后,形成p侧电极160。更具体而言,首先在半导体层叠层体上形成用于抗蚀剂剥离(lift-off)的构图的抗蚀剂。通过氟化铵处理去除在p型接触层150上的SiO2膜。在通过去除SiO2膜而暴露的该区域上,通过例如真空蒸发装置形成200nm膜厚度的Ag反射导电膜作为p侧电极160,然后在350℃下在氮气氛中烧结1分钟。
[0094] 然后,形成n侧电极170。更具体而言,首先在半导体层叠层体上形成用于抗蚀剂剥离的构图的抗蚀剂。通过氟化铵处理去除在暴露的n型接触层130上的SiO2膜。在通过去除SiO2膜而暴露的该区域上,例如,形成具有500nm膜厚度的由Ti膜/Pt膜/Au膜构成的层叠膜作为n侧电极170。
[0095] 替代地,n侧电极170可以包含高反射合金(例如,包含约1%的Pd)。在该情况下,为了改善欧姆接触,将n型接触层130形成为两层结构。生长约0.3μm厚度的具有19 -3 19 -3
不低于1.5×10 cm 且不高于3×10 cm 的Si浓度的高浓度层作为电极形成部分。这可以抑制由Si离析(segregation)导致的可靠性降低。
[0096] 接下来,研磨衬底110的后表面(在与第一缓冲层121相对的侧上的表面)。通过例如解理或蓝宝石刀刃切割(blade cutting)来切割衬底110和半导体层叠层体。由此,制成单独化的LED元件,即,根据该实施例的半导体发光器件10,其宽度为400μm且其厚度为100μm。
[0097] 根据该实施例的半导体发光器件10包括这样的半导体层,其包括n型半导体层、p型半导体层以及被设置在n型半导体层与p型半导体层之间的发光部140。虽然对这些半导体层的材料没有特别的限制,但可以使用基于氮化镓的化合物半导体,例如,Alα1Ga1-α1-β1Inβ1N(α1≥0,β1≥0,α1+β1≤1)。也就是,该实施例中的半导体层可以包含氮化物半导体。
[0098] 虽然对形成这些半导体层的方法没有特别的限制,但可以使用诸如金属有机化学气相沉积和分子束外延的技术。
[0099] 虽然没有具体的限制,但可以使用诸如蓝宝石、SiC、GaN、GaAs和Si的衬底作为衬底110。衬底110可以最终被去除。
[0100] 通过利用低缺陷晶体,根据该实施例的半导体发光器件10实现了在近紫外光范围内的高效率光发射。通过提高发光部140自身的效率并抑制电子从发光部140的溢流(overflow)来实现高效率光发射。为此,半导体发光器件10基于具有高Al组成比和大膜厚度的p型限制层(第二层151)的便利的使用的配置。
[0101] 下面,将说明该配置。
[0102] 首先,将说明在第一势垒层141和第二势垒层142中的Si浓度分布与施加到阱层143的压电场之间的关系。
[0103] 压电场被施加到阱层143。因此,在阱层143与第二势垒层142之间的界面处,正电荷从阱层143渗入(penetrate into)第二势垒层142。另一方面,在阱层143与第一势垒层141之间的界面处,负电荷从阱层143渗入第一势垒层141。
[0104] 阱层143的p型限制层(第二层151)侧包含许多电子。因此,从第二势垒层142向阱层143的电子供给可以是低的。由此,在与该界面接触的势垒层(第二势垒层142)中,Si浓度可以是低的。也就是,可以不用Si故意地掺杂第二势垒层142。
[0105] 另一方面,阱层143的n型限制层(第一层131)侧不包含许多电子。因此,希望有效地将电子从第一势垒层141侧供给到阱层143。由此,在与该界面接触的第一势垒层141中,Si浓度优选地被设定到高平。也就是,用Si高掺杂第一势垒层141。具体地,在
19 -3 19 -3
第一势垒层141中的Si浓度优选不低于0.5×10 cm 且不高于2×10 cm 。此外将Si浓
19 -3 19 -3
度设定为不低于1.0×10 cm 且不高于1.2×10 cm 使得能够供给高浓度电子而不会劣
19 -3 19 -3
化晶体。在不低于1.2×10 cm 且不高于1.5×10 cm 的Si浓度范围中,会发生发射谱的加宽,推测这与晶体劣化有关。然而,可以增加电子供给,因此光发射强度是高的。
[0106] 具有低Si浓度的第二势垒层142位于阱层143的p型限制层(第二层151)侧。具有高Si浓度的第一势垒层141位于阱层143的n型限制层(第一层131)侧。换言之,在发光部140中,从p型限制层(第二层151)侧到n型限制层(第一层131)侧,Si浓度提高。
[0107] 如上所述,通过使Si浓度在第一势垒层141中与在第二势垒层142中之间变化,可以提高发光效率。
[0108] 此外,可以减小发射频的半宽。
[0109] 下面,将说明Si浓度与发射谱的之间的关系。
[0110] 在第一势垒层141与阱层143接触的界面处,大量电子从高掺杂的Si流到阱层143中,并且大量的带电荷的Si保留在第一势垒层141侧。在该界面处的电子浓度和Si浓度分布用于抵消压电场。结果,压电场被减弱。如果压电场被减弱,由压电场弯曲的发光部
140的能带被展平。因此,改善了发光效率。此外,窄化了发射谱的半宽。
[0111] 这里,在发光部140包括多个阱层的情况下,在多个阱层之间插入掺杂有n型杂质的势垒层。这倾向于引起在多个阱层中不同地发生压电效应的问题。然而,在该实施例中,因为发光部140包括单个阱层143,因此不会发生该问题。由此,第二势垒层142具有低浓度的n型杂质或未用n型杂质故意掺杂。另一方面,第一势垒层用n型杂质高掺杂。
[0112] 也就是,在设置多个阱层的情况下,为在多个阱层中实现均匀载流子浓度分布施加了限制。然而,在该实施例中,消除了该限制,因此杂质浓度的设计具有更高的适应性和宽容性(allowance)。也就是,第二势垒层142仅仅需要被n型掺杂剂低浓度地掺杂或不用n型掺杂剂故意掺杂。第一势垒层141仅仅需要被n型掺杂剂高浓度地掺杂。通过这样的简单设计,可以获得良好的载流子分布。
[0113] 如上所述,在根据该实施例的半导体发光器件10中,通过控制在发光部140中的杂质浓度并由此控制发光部140中的压电场而提高了发光效率。因此,该实施例可以提供高效率地发射近紫外光的半导体发光器件。
[0114] 接下来,将说明通过控制Si浓度而改善可靠性并降低驱动电压的效果。
[0115] 在根据该实施例的半导体发光器件10中,使得第二势垒层142中的Si浓度低于在第一势垒层141中的Si浓度。由此,可以改善可靠性,并可以降低半导体发光器件10的驱动电压。
[0116] 通过降低第二势垒层142中的Si浓度,从阱层143向p型限制层(第二层151)的电子溢流被降低。因此,改善了半导体发光器件的可靠性。
[0117] 此外,通过降低第二势垒层142中的Si浓度,降低了第二势垒层142的能量势垒高度。这使得空穴难以进入第二势垒层142且对于半导体发光器件10中的电压降低是有效的。
[0118] 因此,可以降低p型限制层(第二层151)中的Al组成比,由此改善器件的可靠19 -3
性。例如,如果第二势垒层142中的Si浓度为约1×10 cm ,则p型限制层(第二层151)中的Al组成比需要为25%或更高。然而,如果第二势垒层142没有用Si掺杂,则p型限制层(第二层151)中的Al组成比可以减小至20%。
[0119] 如上所述,在根据该实施例的半导体发光器件10中,通过降低第二势垒层142中的Si浓度来提高发光效率。因此,该实施例可以提供具有高效率、高可靠性和低驱动电压的发射近紫外光的半导体发光器件。
[0120] 这里,第二势垒层142中的Si浓度可以是均匀的,或例如,Si浓度可以沿厚度方向变化。例如,第二势垒层142可以包括具有高Si浓度的第一部分和具有低Si浓度的第二部分。在该情况下,Si浓度分布可以阶梯状变化或连续变化,只要第二势垒层142中的Si浓度低于第一势垒层141的Si浓度。
[0121] 下面将详细说明根据该实施例的半导体发光器件10的每一层。
[0122] 高碳浓度第一AlN缓冲层121a用于减轻与衬底110的晶体类型差异,并特别地降低螺位错。此外,高纯度第二AlN缓冲层121b用于以原子级平坦化表面。这减少了将在其上生长的未掺杂的GaN缓冲层(第二缓冲层122)中的晶体缺陷。为此,高纯度第二AlN缓冲层121b的膜厚度优选大于1μm。此外,为了防止由应变导致的翘曲,高纯度第二AlN缓冲层121b的厚度优选为4μm或更小。
[0123] 这里,如上所述,第一缓冲层121可以包含AlN。然而,该实施例不局限于此。例如,第一缓冲层121可以包含Alα2Ga1-α2N(0.8≤a2≤1)。在该情况下,可以通过调整Al组成比来补偿晶片翘曲。
[0124] 通过在第一缓冲层121上的三维岛生长来形成第二缓冲层122(晶格弛豫层),第二缓冲层122由此用于缺陷减少和应变弛豫。为了平坦化生长表面,第二缓冲层122(晶格弛豫层)的平均厚度优选为0.6μm或更大。从生产率和减小翘曲的度,第二缓冲层122(晶格弛豫层)的厚度优选不小于0.8μm且不大于2μm。
[0125] 通过采用这些缓冲层,与通过低温生长形成的常规缓冲层相比可以将位错密度降低到1/10或更小。这使得能够以由于异常生长而难以采用的高生长温度以及V族原材料与III族原材料的高比率而进行晶体生长。由此,抑制了点缺陷的产生。这使得能够高浓度掺杂具有高Al组成比的AlGaN层和势垒层(第一势垒层141和第二势垒层142)。
[0126] 如上所述,第一势垒层141包含例如Si掺杂的四元混合晶体AlGaInN(Al组成比不低于6%且不高于10%,In组成比不低于0.3%且不高于1.0%)。第二势垒层142包含例如四元混合晶体AlGaInN(Al组成比不低于6%且不高于10%,In组成比不低于0.3%且不高于1.0%),并可选地掺杂有Si。阱层143包含例如In0.05Ga0.95N(In组成比可以在不低于4%且不高于10%的范围内适宜地变化)。
[0127] 发光部140的发射波长不小于380nm且不大于400nm。
[0128] GaN的吸收边为约365nm。因此,发射波长被设定为380nm或更长,在该波长下GaN的吸收不高。为了抑制GaN层中的吸收并提高发光效率,发射波长优选不小于380nm且不大于400nm。
[0129] 在发射波长为400nm或更短的情况下,构成阱层143的GaInN层的In组成比可以被减小,并且阱层143的厚度可以被设定为4.5nm或更大。
[0130] 更具体而言,发射波长不小于390nm且不大于400nm。在该情况下,阱层143的厚度可以被设定为5.5nm或更大。这提高了发光效率并抑制了与光输出功率的提高有关的效率降低和与操作温度的升高有关的效率降低。
[0131] 为了形成有效地引起具有不小于380nm且不大于400nm的发射波长的紫外光发生的深电势,第一势垒层141和第二势垒层142中的Al组成比被设定为6%或更高。
[0132] 第二势垒层142的厚度被设定为3nm或更大。这是因为,小于3nm的第二势垒层142的厚度会导致阱层143的发射波长在p型AlGaN层的影响下变化的问题。考虑到杂质扩散的影响,为了控制阱层143的特性,第二势垒层142的厚度被设定为4.5nm或更大。特别地,如果第二势垒层142的厚度大于阱层143的厚度,则对AlGaN层与阱层143之间的应变影响的弛豫效果是高的。这里,过厚的第二势垒层142会导致器件电阻的增大。此外,如果第二势垒层142过厚,从阱层143溢流的载流子会积累并导致吸收。为了减小该影响,第二势垒层142优选比第一势垒层141薄。可以成功操作其第二势垒层142的厚度为9nm或更小的半导体发光器件,而电压增加在由发射波长所预想的操作电压的10%以内。
[0133] 第一势垒层141的厚度可以被设定为在例如不小于4.5nm且不大于30nm的范围内的值。如果第一势垒层141的厚度为4.5nm或更大,则显现出材料的固有特性,由此实现抑制空穴溢流的效果。在第一势垒层141的厚度为30nm或更小的情况下,可以相对容易地生长高质量的晶体。
[0134] 此外,第一势垒层141的厚度优选大于阱层143的厚度。通过使第一势垒层141的厚度大于阱层143的厚度,可以有效地控制向阱层143的载流子供给。特别地,第一势垒层141的厚度优选不小于阱层143的厚度的两倍。通过将第一势垒层141的厚度设定为不小于阱层143的厚度的两倍,载流子可以被供给到第一势垒层141的两侧,因此提高了将载流子供给到阱层143的精确度。这里,如上所述,通过用Si高掺杂第一势垒层141,可以减小施加到阱层143的压电场的影响,以及可以高效率地获得光发射。
[0135] 如果第一势垒层141和第二势垒层142中的Al组成比超过10%,晶体质量会劣化。用少量的In掺杂第一势垒层141和第二势垒层142具有改善晶体质量的效果。当第一势垒层141和第二势垒层142中的In组成比为0.3%或更高时,观察到该效果。然而,如果In组成比超过1.0%,晶体质量劣化,并且发光效率降低。然而,如果厚度是小的,则In组成比可以增加到2%。
[0136] 例如,在该实施例中,在第一势垒层141的膜厚度为15nm或更大的情况下,最高In组成比被限制为约1%。然而,如果第一势垒层141被减薄到7nm,则即使对于2%的In组成比,晶体也不会劣化,并获得强光发射。
[0137] 接下来,将说明第一势垒层141的生长技术。
[0138] 具有高晶体质量的四元混合晶体AlGaInN层难以生长。此外,如果用Si进行高掺杂,则晶体易于劣化。通过调查LED器件结构和生长条件的优化,发明人成功增加了由AlGaInN构成的势垒层141中的In组成比而没有劣化晶体质量。
[0139] 例如,如上所述,在该实施例中,如果第一势垒层141的膜厚度超过15nm,则最高In组成比被限制为约1%。然而,如果第一势垒层141被减薄到7nm,则即使对于2%的In组成比,晶体也不会劣化,并获得强光发射。
[0140] 通过增加In组成比,可以使与由GaInN构成的阱层143的界面更陡峭。因此,提高了阱层143的结晶性。从而,可以用Si高浓度地掺杂由AlGaInN构成的第一势垒层141。
[0141] 此外,通过减小Si高掺杂的第一势垒层141的膜厚度,可以用Si以更高的浓度掺杂第一势垒层141。
[0142] 在第一势垒层141与第二势垒层142之间进行比较,第一势垒层141的Al组成比可以是高的。在该情况下,第一势垒层141具有较大的带隙。这增强了限制空穴的效果。由此,当增大注入电流时,电流泄漏减小,并可以提高光输出功率。对于电子,第二层151(p型AlGaN层)用作势垒。因此,使得第二势垒层142的Al组成比充分地低于第二层151的Al组成比。
[0143] 例如,第一势垒层141的Al组成比可以被设定为8%或更高,而第二势垒层142的Al组成比可以被设定为7%。在该情况下,在高温下生长第一势垒层141之后,可以在低于该高温的生长温度下生长阱层143和第二势垒层142。由此,因为在高温下生长具有高Al组成比的第一势垒层141,第一势垒层141可以被生长为高质量晶体。另一方面,在低温下生长具有低Al组成比的阱层143和第二势垒层142,以便生长具有良好特性的具有例如高In组成比的阱层143。
[0144] 这里,在将第二势垒层142生长到足以保护阱层143的表面的厚度之后,可以在较高的温度下生长第二势垒层142。
[0145] 例如,第一势垒层141可以具有两层结构,其为具有高Al组成比的AlGaN层和具有低Al组成比的AlGaInN层的组合。在这样的结构中,可以通过AlGaN层抑制空穴溢流。此外,通过AlGaInN层,可以改善晶体表面的特性,并且可以在具有改善的特性的该晶体表面上形成阱层143。在该情况下,可以在高温下生长AlGaN层和部分的AlGaInN层,并可以在与阱层143相同的温度下生长剩余的AlGaInN层。通过这样的方法,可以在高温下生长高质量AlGaN晶体,另一方面可以在适于阱层143的温度下生长阱层143。这样的温度改变需要长的时长,由此降低了工艺效率。在发光部具有多量子阱结构的情况下,对每一个势垒层和阱层进行这样的工艺需要花费很长的时间,由此降低了工艺效率。然而,在该实施例中,发光部140具有单量子阱结构,因此仅仅需要一次这样的工艺。由此,可以将这样的工艺实施作为实用的工艺序列。
[0146] 第二实施例
[0147] 图2为示例了根据本发明的第二实施例的半导体发光器件的配置的示意性截面图。
[0148] 如图2所示,除了第一层131、第二层151和发光部140之外,根据该实施例的半导体发光器件20还包括被设置在第一层131与发光部140之间的第一叠层结构体210。
[0149] 第一叠层结构体210包括包含AlGaInN的多个第三层203和与所述多个第三层203交替地层叠并包含GaInN的多个第四层204。
[0150] 所述多个第三层203和所述多个第四层204沿Z轴方向层叠。
[0151] 所述多个第三层203中的每一个具有小于第一势垒层141和第二势垒层142的厚度。所述多个第四层204中的每一个具有小于阱层143的厚度。
[0152] 第三层203为例如低应变层。第四层204为例如具有比第三层203高的应变的高应变层。
[0153] 可以将第三层203形成为具有与例如第一势垒层141相同的组成。也就是,在第一势垒层141包含Al0.07Ga0.925In0.005N的情况下,第三层203可以包含Al0.07Ga0.925In0.005N。第18 -3
三层203的厚度为例如2nm。此外,用例如约5×10 cm 的Si掺杂第三层203。
[0154] 可以将第四层204形成为具有与例如阱层143相同的组成。也就是,在阱层143包含Ga0.93In0.07N的情况下,第四层204可以包含Ga0.93In0.07N。第四层204的厚度可以为例如1nm。
[0155] 例如,第三层203的数目为30,第四层204的数目为30。也就是,层叠30对的第三层203和第四层204。
[0156] 除上述之外的其他配置可以与半导体发光器件10的配置相似,因此略去了对其的说明。
[0157] 例如,如果将第三层203形成为具有与第一势垒层141相同的组成,则可以在与第一势垒层141相同的条件下生长第三层203。这有利于工艺。此外,在生长第一势垒层141之前,在生长第三层203的过程中,可以花费足够长的时间来准备与第一势垒层141相同的生长条件。这用于增强第一势垒层141的可控性。
[0158] 例如,如果将第四层204形成为具有与阱层143相同的组成,则可以在与阱层143相同的条件下生长第四层204。这有利于工艺。此外,在生长阱层143之前,在生长第四层204的过程中,可以花费足够长的时间来准备与阱层143相同的生长条件。这用于增强阱层
143的可控性。
[0159] 另一方面,例如,如果第四层204包含具有低于阱层143的In组成比和大于阱层143的带隙的GaInN,则可以减少第四层204对从阱层143的发射光的吸收。此外,在该情况下,因为减少的吸收,可以使第四层204更厚,且可以增加第三层203和第四层204的对的数目。
[0160] 这里,第三层203和第四层204的对的数目不限于30。可以适宜地设定该数目。此外,取代均等化第三层203的数目与第四层204的数目,可以通过增加额外一个第三层203来使第三层203的数目大于第四层204的数目。由此,可以将所述多个第三层203和所述多个第四层204层叠为开始于第三层203并结束于第三层203。可替代地,可以通过增加额外一个第四层204来使第四层204的数目大于第三层203的数目。由此,可以将所述多个第三层203和所述多个第四层204层叠为开始于第四层204并结束于第四层204。
[0161] 在设置在半导体发光器件20中的第一叠层结构体210中,在第一叠层结构体210内部的晶体是应变的。由此,改善了晶体质量。这提高了在第一叠层结构体210上设置的半导体层(例如,发光部140中的半导体层,特别地,阱层143)的晶体质量。由此,半导体发光器件20可以获得更高的发光效率。也就是,例如,第一叠层结构体210的配置被最优化为使得阱层143的晶体质量最好。
[0162] 在该实施例中,发光部140中的阱层143与GaN层晶格失配。因此,在第一叠层结构体210上层叠的阱层143中积累了应变。这里,层叠在第一叠层结构体210中的第三层203和第四层204的重复数目可以被适当地设计以改善在第一叠层结构体210中的晶体质量。这还可以抑制由第一叠层结构体210和阱层143中的总应变超过极限而导致的阱层
143的晶体特性劣化。
[0163] 所述多个第四层的204的总厚度与阱层143的厚度之和为例如不小于25nm且不大于45nm。这使得能够生长以高发光效率和小发射谱扩展为特征的良好晶体。
[0164] 特别地,在所述多个第四层的204的总厚度与阱层143的厚度之和不小于30nm且不大于35nm的情况下,获得了特别好的晶体。
[0165] 推断其原因在于以下方面。当所述多个第四层的204的总厚度与阱层143的厚度之和被设定为不小于25nm且不大于45nm时,总应变量(包括晶体的组成波动)对应于在不引起晶体劣化的范围中的上限附近。
[0166] 在使用包括多个第三层203和多个第四层204的第一叠层结构体210的情况下,发明人发现以下事实。从晶体下部(例如,从第一叠层结构体210观察的在衬底110侧上的第二缓冲层122)延伸到第一叠层结构体210的晶体位错的方向在第一叠层结构体210中变化。使位错的方向接近于与第一叠层结构体210的c面表面垂直的方向。也就是,使晶体位错的方向接近于与晶面垂直的方向(即,层叠方向或Z轴方向)。从层叠方向观察,这对应于发光部140中的晶体位错的长度的减小。也就是,从层叠方向观察,这对应于在发光部140中的缺陷区域的面积的减小。
[0167] 由此,认为通过采用第一叠层结构体210,可以增强形成在第一叠层结构体210上的晶体的质量。推断这是在基于第一叠层结构体210的半导体发光器件20中晶体质量和发光效率得以提高的原因。
[0168] 在该实施例中,在由蓝宝石构成的衬底110上,在高温下在第一缓冲层121(AlN层)和第二缓冲层122(未掺杂的GaN层)上形成n型接触层130(n型GaN层)。由此,获得具有低位错密度的高质量GaN晶体。因此,n型限制层(第一层131)具有良好的晶体质量。此外,在第一层131上形成的发光部140具有高晶体质量。
[0169] 更具体而言,在该实施例的发光部140的晶体中,大多数位错是独立的。多个位错之间存在极少的接触和纠缠(entanglement)。这用于直接地显现出通过使位错方向与垂直于晶面的方向对准而实现的改善晶体特性的效果。因此,通过应用第一叠层结构体210并接合上述缓冲层的组合,更显著地显现出通过第一叠层结构体210实现的改善晶体质量的效果。
[0170] 这里,在该实施例中,第四层204的厚度的下限被确定为不小于这样的值的厚度,在该厚度值下,第四层204呈现其作为连续层的材料特性。第四层204的厚度的上限通过用于在第四层204的吸收边的能量与阱层143的吸收边的能量之间的提供差异的条件确定。
[0171] 特别地,第四层204的厚度被设定为例如四个原子层或更大,且不大于这样的厚度,在该厚度处,第四层204的吸收边的能量充分大于阱层143的吸收边的能量。更具体而言,将与第四层204的吸收边的能量对应的波长设定在其中阱层143的发射谱的强度为峰值的一半或更小的波长的短波长侧。
[0172] 在另一方面,在第三层203中,使Al组成比与第一势垒层141的Al组成比(Al组成比为约10%或更低)相当(comparable)。这可以减小在第三层203与GaN层之间的势垒对电子的阻,并可以生长高质量晶体。
[0173] 在该实施例中,第一势垒层141可以具有两层结构,其为具有高Al组成比的AlGaN层和具有低Al组成比的AlGaInN层的组合。通过这样的结构,可以通过AlGaN层抑制空穴溢流。此外,通过AlGaInN层,可以改善晶体表面的特性,并可以在具有改善的特性的该晶体表面上形成阱层143。例如,在升高至1000℃的生长温度下生长作为第一势垒层141的一部分的AlGaN层(Al组成比不低于20%且不高于26%)和AlGaInN层(Al组成比为8%)。然后,可以在较低的生长温度下生长构成剩余的第一势垒层141的AlGaN层和阱层
143。这使得半导体发光器件具有低的空穴溢流,并实现阱层143的高发光效率和从低电流到高电流的高光输出功率。
[0174] 接下来,将说明根据该实施例的制造半导体器件和晶片的方法的特征。
[0175] 为了 实 现高 效率 的 半导 体 发光 器件,优 选通 过大 致 连续 生 长(generallycontinuous growth)来形成用于发光的阱层143以及在其两侧的第一势垒层141和第二势垒层142。这是为了减少由于中断生长而产生的界面缺陷。这里,至少在第一势垒层141与阱层143之间以及在阱层143与第二势垒层142之间存在异质结界面。在该界面处,生长被中断以调节用于供给原材料的条件。除了该中断时间之外的连续生长被称为大致连续生长。
[0176] 一般而言,在其中GaInN层作为发光层的薄多量子阱中,GaInN层具有高In组成比。由此,低温下的晶体生长适于GaInN层。另一方面,鉴于Al与氮之间的强耦合,对于包含Al的势垒层,希望高生长温度。因此,如果在相同温度下连续地生长包含具有高In组成比的GaInN的阱层和包含Al的势垒层,便不能选择同时适用于阱层和势垒层的生长条件。这引起不能生长高质量晶体的问题。
[0177] 在根据该实施例的半导体发光器件和晶片中,发光部140基于单个的厚阱层143。从而,由量子效应导致的光发射能量偏移小。因此,阱层143可以包括具有低In组成比和大带隙的GaInN层。这使得可以在高温下生长。
[0178] 另一方面,用In掺杂势垒层(第一势垒层141和第二势垒层142)有助于原子在晶体生长期间在晶体表面处运动。由此,可以在低温下生长包含Al的AlGaInN。因为In的低摄入效率(intake efficiency),为了轻微的In掺杂,将大量的In原材料供给到晶体表面。这有助于原子在晶体表面移动,并使得能够在低温下进行晶体生长。也就是,在根据该实施例的半导体发光器件和晶片中,可以在高温下生长阱层143,并可以在低温下生长势垒层(第一势垒层141和第二势垒层142)。这使得可以能够在大致恒定的温度下大致连续地生长(没有故意地改变温度)。由此,在根据该实施例的半导体发光器件和晶片中,可以减小在邻近阱层143的界面处的晶体缺陷。
[0179] 也就是,通过大致连续地生长用于发光的阱层143以及在其两侧的第一势垒层141和第二势垒层142的方法,制成根据该实施例的半导体发光器件和晶片。这使得可以形成特别地在低电流区域中具有高发光效率的半导体发光器件和晶片。
[0180] 接下来,说明根据该实施例的制造半导体发光器件和晶片的方法的可替代的特征。根据该实施例的制造半导体发光器件和晶片的方法的可替代的特征在于,可以在与发光部140(阱层143、第一势垒层141和第二势垒层142)大致相同的温度下生长叠层结构(特别地,第一叠层结构体210)。
[0181] 通过设置第一叠层结构体210,晶体中的位错方向改变,并且预期可以在第一叠层结构体210上形成具有高发光效率的阱层143。然而,如果生长温度在第一叠层结构体210与发光部140之间变化,则缺陷的传播方向变化。这导致对不能改善发光部140的特性的顾虑,虽然设置了第一叠层结构体210。因此,优选在大致相等的温度下生长第一叠层结构体210、第一势垒层141、阱层143以及第二势垒层142。
[0182] 如上所述,在根据该实施例的半导体发光器件中,可以在大致相同的温度下生长阱层143和势垒层(第一势垒层141和第二势垒层142)。另一方面,第一叠层结构体210的例如第三层203和第四层204的材料可以被选择为这样的材料对,该材料对分别与势垒层和阱层143的材料对相似(例如,可能相同)并允许在与势垒层和阱层143相同的生长温度下进行有利的晶体生长。由此,可以容易地在大致相等的温度下生长具有良好特性的第一叠层结构体210、第一势垒层141、阱层143和第二势垒层142的晶体。
[0183] 在包括大数目的叠层并具有复杂配置的半导体发光器件和晶片中,如果最优生长条件在层与层之间变化,则条件的选择会消耗时间。由此,难以制造对于基本上所有层都具有良好特性的器件。然而,在根据该实施例的半导体发光器件和晶片中,可以在大致相等的温度下生长叠层结构体、势垒层以及发光层。这使得能够在适宜的生长条件下容易地生长高质量晶体。
[0184] 也就是,可以通过在大致相等的温度下生长叠层结构体、势垒层以及发光层的方法来制造根据该实施例的半导体发光器件和晶片。这使得能够在适宜的生长条件下容易地生长高质量晶体。因此,可以制造出具有高发光效率的半导体发光器件和晶片。
[0185] 图3为示例了根据本发明的第二实施例的另一半导体发光器件的配置的示意性截面图。
[0186] 如图3所示,在根据该实施例的另一半导体发光器件21中,第一势垒层141具有三层结构。其余结构与半导体发光器件20相似,因此略去了对其的说明。
[0187] 更具体而言,第一势垒层141包括被设置在第一层131与阱层143之间(在该实例中,在第一叠层结构体210与阱层143之间)的第一子层141a、被设置在第一子层141a与阱层143之间的第二子层141b、以及被设置在第一子层141a与第一层131之间(在该实例中,在第一子层141a与第一叠层结构体210之间)的第三子层141c。
[0188] 第一子层141a示例性地为具有高Al组成比的AlGaN层。第二子层141b示例性地为具有低Al组成比的AlGaInN层。第二子层141b具有低于第一子层141a的Al组成比。第三子层141c示例性地为具有低Al组成比的AlGaInN层。第三子层141c具有低于第一子层141a的Al组成比。
[0189] 在第一子层141a中的Al组成比为例如15%。第一子层141a的厚度为例如5nm。
[0190] 在第二子层141b中的Al组成比为例如7%。第二子层141b的厚度为例如5nm。
[0191] 使得在第三子层141c中的Al组成比为与例如第一叠层结构体210的第三层203的Al组成比相等。第三子层141c的厚度为例如2nm。
[0192] 可替代地,在第一子层141a中的Al组成比被设定为例如不低于10%且不高于17 -3
26%。第一子层141a的厚度被设定为不小于5nm且不大于50nm。可以用不低于5×10 cm
19 -3
且不高于1×10 cm 的Si作为n型杂质来掺杂第一子层141a。
[0193] 在第二子层141b中的Al组成比被设定为例如不低于6%且不高于10%。在第二子层141b中的In组成比被设定为例如不低于0.3%且不高于1%。第二子层141b的厚度被设定为例如不小于3nm且不大于15nm。这里,根据需要设置第二子层141b。在一些情况下可以略去第二子层141b。
[0194] 通过设置如此配置的第一子层141a,可以获得抑制空穴溢流的效果。这具有在半导体发光器件中在高电流操作期间改善光输出功率的效果。此外,可以抑制在升高的操作温度下光输出功率的降低。
[0195] 通过设置第二子层141b,可以改善晶体表面的特性,并且可以在具有改善的特性的该晶面上形成阱层143。这特别地抑制了非辐射中心的形成并具有在半导体发光器件的操作期间提高低电流区域的发光效率的显著效果。这里,如果用n型杂质掺杂第二子层141b,则可以屏蔽非辐射中心,由此可以改善低电流区域中的发光效率。
[0196] 可替代地,在没有设置第二子层141b的情况下,可以使阱层143接近具有大带隙的AlGaN层(第一子层141a)。由此,可以提高阱层143中的载流子浓度。因此,可以提高效率。此外,特别地,即使输出功率大时,也可以限制发光效率的降低。这使得半导体发光器件即使在高温下高电流操作下也可以以高发光效率操作。
[0197] 第三子层141c用作保护层,用于覆盖第四层204的表面以生长高质量第一子层141a。根据需要而设置第三子层141c。在一些情况下,可以略去第三子层141c。
[0198] 例如,在与第三层203相同的温度(850℃)下生长第三子层141c。随后,将生长温度升高到1040℃以生长第一子层141a。然后,降低生长温度以生长第二子层141b和阱层143。这使得半导体发光器件具有低空穴溢流、阱层143中的高发光效率、以及从低电流到高电流的高光输出功率。
[0199] 第三实施例
[0200] 图4为示例了根据本发明的第三实施例的半导体发光器件的配置的示意性截面图。
[0201] 如图4所示,除了第一层131、第二层151以及发光部140之外,根据第三实施例的半导体发光器件30还包括被设置在第一层131与发光部140之间的第二叠层结构体220。
[0202] 第二叠层结构体220包括包含GaN的多个第五层205以及与所述多个第五层205交替地层叠并包含GaInN的多个第六层206。
[0203] 所述多个第五层205和所述多个第六层206沿Z轴方向层叠。
[0204] 所述多个第五层205中的每一个具有小于第一势垒层141和第二势垒层142的厚度。所述多个第六层206中的每一个具有小于阱层143的厚度。
[0205] 第五层205包含例如以约5×1018cm-3的Si掺杂的GaN。第五层205的厚度为例如2nm。
[0206] 第六层206包含例如具有7%的In组成比的GaInN。也就是,第六层206具有与阱层143相同的组成。第六层206的厚度被设定为例如1nm。
[0207] 这里,层叠30对第五层205和第六层206。
[0208] 除了上述之外的配置可以与半导体发光器件10相似,因此略去了对其的说明。
[0209] 发明人发现,通过提供如上所述配置的第二叠层结构220,提高了晶体表面的平坦度。
[0210] 这大概是由于用于第五层205的GaN是二元化合物并且在GaN生长期间具有改善横向均匀性的显著效果。
[0211] 由此,通过使用能够改善平坦度的第二叠层结构220,提高了发光部140(特别地,阱层143)的平坦度。因此,可以改善晶体特性,由此可以提高发光效率。此外,通过提高平坦度,还可以改善除了阱层143之外的其他半导体层的平坦度。该效果还用于提高发光效率。此外,因为半导体发光器件30也是基于SQW结构,因此半导体发光器件30可以享有参考第一实施例描述的效果。
[0212] 因此,根据该实施例的半导体发光器件30同样获得了高效率地发射近紫外光的半导体发光器件。
[0213] 第四实施例
[0214] 图5为示例了根据本发明的第四实施例的半导体发光器件的配置的示意性截面图。
[0215] 如图5所示,除了第一层131、第二层151以及发光部140之外,根据本发明的第四实施例的半导体发光器件40还包括被设置在第一层131与发光部140之间的第一叠层体210和第二叠层结构体220。
[0216] 第一叠层结构体210和第二叠层结构体220可以分别为参考第二和第三实施例所说明的叠层体。
[0217] 这使得可以享有通过第一叠层体210实现的提高晶体质量的效果和通过第二叠层结构体220实现的提高平坦度的效果。还可以设置多个第一叠层体210和多个第二叠层结构体220。在该情况下,第二叠层结构体220可以被插入在多个第一叠层结构体210之间。
[0218] 第二叠层结构体220可以被设置在第一叠层体210与发光部140之间,或者被设置在第一叠层体210与第一层131之间。在下面的说明中,假设第二叠层结构体220被设置在第一叠层体210与第一层131之间。
[0219] 也就是,在根据该实施例的半导体发光器件40中,在第一层131(n型限制层)与第一叠层结构体210之间设置第二叠层结构体220。
[0220] 同样地,在半导体发光器件40中,第一势垒层141包含Al0.07Ga0.925In0.005N。第三层18 -3
203包含Al0.07Ga0.925In0.005N。第三层203的厚度为2nm。此外,用Si以例如约5×10 cm掺杂第三层203。
[0221] 另一方面,阱层143包含Ga0.93In0.07N。第四层204包含Ga0.93In0.07N。第四层204的厚度为1nm。第三层203的数目为30,第四层204的数目为30。这里,可以在第三层203的两侧设置第四层204,以便例如第三层203的数目为30而第四层204的数目为31。
[0222] 另一方面,第二叠层结构体220的第五层205包含用Si以例如1.2×1018cm-3掺杂的GaN。第五层205的厚度被设定为2.5nm。
[0223] 第六层206包含Ga0.93In0.07N。第六层206的厚度被设定为1nm。第五层205的数目为30,第六层206的数目为30。这里,可以在第五层205的两侧上设置第六层205,以便第五层203的数目为30而第六层206的数目为31。在与第六层206一致的低温下生长第二叠层结构体220的情况下,在降低的温度下生长的初始层为第六层206。因此,通过增加第六层206的数目,可以以较平坦的层来开始生长。这使得能够生长具有特别高质量的晶体。
[0224] 在上述实例中,在第一叠层结构体210中的第三层203和第四层204的对的数目与在第二叠层结构体220中的第五层205和第六层206的对的数目相等。然而,这些对的数目可以相同或不同,并被适宜地配置。
[0225] 实际制造如此配置的半导体发光器件40,并评估其特性。然后,确认了具有高效率的近紫外光发射。
[0226] 由此发现,通过组合使用具有提高平坦度的显著效果的第二叠层结构体220和具有提高结晶性的显著效果的第一叠层结构体210,进一步提高了发光效率。
[0227] 更具体而言,具有提高平坦度的显著效果的第二叠层结构体220引入了应变。因此,在保持晶体表面的平坦度的同时,可以使晶体中的位错的方向接近于与晶体表面垂直的方向(与层叠方向平行的方向)。此外,通过引入第一叠层结构体210,使位错更接近于与晶体表面垂直的方向。认为原因在于以下方面。在第一叠层结构体210中的第三层203(AlGaN层)与第四层204(GaInN层)之间的晶格失配大于在第二叠层结构体220中的第五层205(GaN层)与第六层206(GaInN层)之间的晶格失配。因此,第一叠层结构体210具有比第二叠层结构体220更大的使位错弯曲的力。
[0228] 也就是,第二叠层结构体220具有小的在各层之间的晶格失配和小的使位错弯曲的力,但具有高表面平坦度。另一方面,第一叠层结构体210具有大的在各层之间的晶格失配和大的使位错弯曲的力。在该实施例中,通过组合第二叠层结构体220和第一叠层结构体210,可以使位错的方向更有效地接近于与晶体表面垂直的方向而不降低晶体表面的平坦度。这使得能够生长具有更高质量的晶体。
[0229] 通过使用具有该实施例的叠层结构体的晶片制造半导体发光器件,可以获得具有更高效率的特性。
[0230] 在该实施例中,可以使第三层203比第五层205薄。例如,第三层203的厚度可以为2nm,第四层204的厚度可以为1nm,第五层205的厚度可以为2.5nm,第六层206的厚度可以为1nm。
[0231] 可以使第三层203比第五层205薄的原因如下。为了减少来自发光层的光的吸收,优选使第一叠层结构体210和第二叠层结构体220的吸收波长尽可能地短。因为第三层203包含Al,第三层203具有大于第五层205(GaN层)的带隙。因此,为了均衡第一叠层结构体210和第二叠层结构体220中的能级,使第三层203比第五层205薄。由此,可以使第一叠层结构体210中的平均In组成比更高。因此,可以以小的生长厚度更有效地改善晶体特性。
[0232] 在该实施例中,可以使第四层204比第五层205厚。此外,可以使第四层204的In组成比高于第五层205的In组成比。其原因如下。为了减小对来自发光层的光的吸收,优选使第一叠层结构体210和第二叠层结构体220的吸收波长尽可能地短。因为第三层203包含Al,第三层203具有大于第五层205(GaN层)的带隙。因此,为了均衡在第四层204和第六层206中形成的能级,采用下列配置中的至少一种配置:增大第四层204的厚度;以及增大第四层204中的In组成比。由此,可以使第一叠层结构体210中的平均In组成比大于第二叠层结构体220中的平均In组成比。因此,可以更有效地改善晶体特性。
[0233] 在该实施例中,对于第二叠层结构体220,在层叠12对的第五层205和第六层206的情况下,在晶体表面上观察到了显著的不规则性。然而,在层叠16对的情况下,改善了表面的平坦度。此外,在层叠18、20和27对的情况下,获得了具有高光输出功率的半导体发光器件。由此,第五层205和第六层206的对的数目优选不小于16且不大于27。然而,在层叠27对的情况下,还观察到了晶体中的缺陷的增加。因此,更优选地,第五层205和第六层206的对的数目不小于16且不大于20。
[0234] 在该实施例中,在第一势垒层141中的Si浓度优选尽可能地高。这是为了通过Si掺杂将足够的正电荷源引入到第一势垒层141中,以抑制由于压电场效应而施加到阱层143的电场的影响。然而,高Si浓度导致晶体质量的劣化。因此,通过仅仅在薄的第一势垒层141中增加Si浓度,可以抑制压电场的影响,同时抑制晶体的特性劣化。
[0235] 为了抑制晶体的特性劣化,在第一叠层结构体210中,Si浓度优选低于第一势垒层141中的Si浓度。
[0236] 另一方面,在第一叠层结构体210(AlGaInN层和GaInN层)中的异质结构的能带不连续性(discontinuity)与第二叠层结构体220(GaN层和GaInN层)中的异质结构的能带不连续性之间进行比较,在第一叠层结构体210中的异质结的能带不连续性更大。因此,为了减小半导体发光器件的电阻,优选以比第二叠层结构体220高的浓度的Si掺杂第一叠层结构体210。然而,如果在第一叠层结构体210中的Si浓度太高,晶体质量会劣化。因此,还以与GaN层和GaInN层的异质结构对应的足够浓度的Si掺杂第二叠层结构体220。
[0237] 另一方面,第二势垒层142中的高Si浓度会造成载流子溢流和内部吸收。因此,优选在第二势垒层142中的Si浓度是低的。
[0238] 因此,使第一势垒层141中的Si浓度高于第一叠层结构体210中的Si浓度。使第二叠层结构体220中的Si浓度低于第一叠层结构体210中的Si浓度。使第二势垒层142中的Si浓度低于第二叠层结构体220中的Si浓度。
[0239] 通过采用这样的Si浓度分布,提高了晶体特性,并抑制了压电场的效应的影响。因此,可以提高发光效率。此外,电阻是低的,并且载流子溢流的影响不显著。因此,可以提高发光效率。由此,根据该实施例的半导体发光器件40获得了高效率地发射近紫外光的半导体发光器件。
[0240] 第五实施例
[0241] 图6为示例了根据本发明的第五实施例的半导体发光器件的配置的示意性截面图。
[0242] 如图6所示,根据本发明的第五实施例的半导体发光器件50包括在导电衬底460上的第一层131、发光部140、以及第二层151。导电衬底460由例如Ge构成。
[0243] 具体地,在导电衬底460与第二层151之间设置p型接触层150。在导电衬底460与p型接触层150之间设置p侧电极160。p侧电极160具有对从发光部140发射的光的反射性。
[0244] 在该实例中,在导电衬底460与p侧电极160之间设置粘附金属层455。在导电衬底460与粘附金属层455之间设置接合金属层465。
[0245] 另一方面,在第一层131的与发光部140相对的侧上设置n型接触层130。在n型接触层130的与第一层131相对的侧上形成低杂质浓度半导体层135。
[0246] 低杂质浓度半导体层135中的杂质浓度低于n型接触层130中的杂质浓度。低杂质浓度半导体层135为例如未掺杂的GaN层。低杂质浓度半导体层135可以为上述的第二缓冲层122(晶格弛豫层)。
[0247] 低杂质浓度半导体层135可以具有两层结构。更具体而言,可以在第二缓冲层122与n型接触层130之间设置n型低杂质浓度层(未示出),以便第二缓冲层122和该n型低杂质浓度层构成低杂质浓度半导体层135。在这样的配置中,上述n型低杂质浓度层具有低n型杂质浓度。因此,可以容易地在第二缓冲层122上生长高晶体质量的n型低杂质浓度层,然后在其上生长n型接触层130。这里,n型接触层130具有高杂质浓度,并且其晶体生长是困难的。然而,在该配置中,可以在高质量基底(foundation)晶体上生长n型接触层130。由此,可以生长高质量n型接触层130。
[0248] 在低杂质浓度半导体层135中设置开口138。开口138暴露部分的n型接触层130。开口138从低杂质浓度半导体层135的与n型接触层130相对的侧上的主表面135a而与n型接触层130连通。也就是,开口138的底部与n型接触层130连通。
[0249] 将n侧电极170设置为覆盖在开口138中暴露的n型接触层130和部分的低杂质浓度半导体层135。
[0250] 在低杂质浓度半导体层135的未被n侧电极170覆盖的部分的主表面135a上设置具有波纹(corrugation)137p的粗糙表面部分137。
[0251] 虽然在图6中被省略,但可以设置上述第一叠层结构体210和第二叠层结构体220中的至少一者。在下面的说明中,假设设置了第一叠层结构体210和第二叠层结构体220。
[0252] 通过例如以下方法制造半导体发光器件50。
[0253] 例如,在由蓝宝石构成的衬底110上,形成第一缓冲层121、第二缓冲层122(构成了低杂质浓度半导体层135)、n型接触层130、第一层131(n型限制层)、第一叠层结构体210、第二叠层结构体220、发光部140、第二层151(p型限制层)以及p型接触层150的晶体层,以形成晶体叠层体180。
[0254] 然后,进行以下工艺:在晶体叠层体180上形成p侧电极160;将晶体叠层体180接合到导电衬底460;去除衬底110和第一缓冲层121;以及在暴露的晶体层(n型接触层130)上形成n侧电极170并在低杂质浓度半导体层135上形成粗糙表面部分137(即,波纹
137p)。
[0255] 首先,将说明在由蓝宝石构成的衬底110上的晶体层的实例。
[0256] 例如,通过金属有机化学气相沉积,在具有由蓝宝石c面构成的表面的衬底110上形成具有例如以2μm厚度的包含AlN的第一缓冲层121。然后,在第一缓冲层121上形成具有例如2μm厚度的未掺杂的GaN层作为第二缓冲层122。
[0257] 这里,第一缓冲层121可以包含上述的AlN。然而,该实施例并不局限于此。例如,第一缓冲层121可以包含Alα2Ga1-α2N(0.8≤α2≤1)。在该情况下,可以通过调整Al组成比来补偿晶片翘曲。
[0258] 然后,形成具有例如6μm厚度的Si掺杂的n型GaN层(Si浓度为例如不低于18 -3 20 -3
1×10 cm 且不高于1×10 cm )作为n型接触层130。然后,在n型接触层130上形成具有例如0.5μm厚度的Si掺杂的n型GaN层作为第一层131。
[0259] 随后,形成上述第二叠层结构体220和第一叠层结构体210。然后,形成Si掺杂19 -3 19 -3
的n型Al0.07Ga0.925In0.005N层(Si浓度为例如不低于1.0×10 cm 且不高于1.5×10 cm )作为第一势垒层141。然后,在第一势垒层141上形成GaInN层(波长不小于380nm且不大于400nm)作为阱层143。然后,在阱层143上形成Al0.07Ga0.925In0.005N层(Si浓度为例如
18 -3
1.0×10 cm 或更低,具体地,可以略去Si掺杂)作为第二势垒层142。
[0260] 此外,形成具有0.02μm厚度的Mg掺杂的p型Al0.22Ga0.78N层(Mg浓度为例如19 -3
1.0×10 cm )作为第二层151。然后,形成具有0.28μm厚度的Mg掺杂的p型GaN层作为p型接触层150。
[0261] 通过将p型接触层150的Mg浓度设定为相对高的1×1020cm-3或更高且低于21 -3
1×10 cm ,可以改善与p侧电极160的欧姆接触。然而,在半导体发光二极管的情况下,与半导体激光二极管相比,接触层与发光层之间的距离是短的。存在对由于Mg扩散而导致的特性劣化的担忧。这里,p侧电极160与p型接触层150之间的接触表面积是大的。这导致在操作期间的低电流密度。利用该事实,可以将p型接触层150中的Mg浓度降低到约
19 -3 20 -3
1.0×10 cm 或更高且低于1.0×10 cm 而不会显著地损害电特性。由此,可以防止Mg扩散,并可以改善光发射特性。
[0262] 接下来,将说明下列工艺:在晶体叠层体180上形成p侧电极160,将晶体叠层体180接合到导电衬底460,以及去除衬底110和第一缓冲层121。
[0263] 首先,为了形成p侧电极160,使用真空蒸发装置连续地形成例如具有200nm厚度的Ag和具有2nm厚度的Pt。在剥离之后,在400℃下在气氛中进行烧结处理1min(分钟)。
[0264] 然后,在p侧电极160上形成具有1000nm厚度的例如Ni膜和Au膜的层叠膜作为粘附金属层455。
[0265] 然后,使形成在由例如Ge构成的导电衬底460上的接合金属层465(例如,具有3μm膜厚度的AuSn焊料)与形成在晶体叠层体180上的粘附金属层455相对。通过加热到等于或高于AuSn的共熔点的温度(例如300℃),将导电衬底460接合到晶体叠层体180。
[0266] 然后,从由蓝宝石构成的衬底110侧,例如,施加YVO4固态激光器的第三谐波(355nm)或第四谐波(266nm)激光。该激光具有小于与第二缓冲层122(GaN层,例如上述未掺杂的GaN缓冲层)中的GaN的禁带宽度对应的禁带波长的波长。也就是,激光具有高于GaN的禁带宽度的能量。
[0267] 该激光在第二缓冲层122(未掺杂GaN缓冲层)的第一缓冲层121(单晶AlN缓冲层)侧的区域中被有效地吸收。由此,第二缓冲层122(GaN缓冲层)中的第一缓冲层121(单晶AlN缓冲层)侧的GaN被所产生的热分解
[0268] 这里,第一缓冲层121可以包含上述的AlN。然而,该实施例不局限于此。例如,第一缓冲层可以包含Alα2Ga1-α2N(0.8≤α2≤1)。在该情况下,可以通过调整Al组成比来补偿翘曲。
[0269] 在这样的激光剥离方法中,GaN的温度迅速升高。由此,发生快速的热膨胀和热收缩。在第一缓冲层121由AlN构成的情况下,因为其高热导率,热迅速传播。这可以减轻局部热膨胀和收缩的影响。
[0270] 另一方面,在第一缓冲层121由AlGaN构成的情况下,Ga的仅仅少量添加急剧降低了热导率。这可以抑制激光导致的温度改变的影响的传播,并适宜于局部地和迅速地改变温度。由此,可以降低激光的输出功率。这可以抑制激光导致的损伤在晶片内的传播。
[0271] 然后,通过盐酸处理等等去除分解的GaN。由此,剥离由蓝宝石构成的衬底110并使衬底110与晶体叠层体180分离。
[0272] 接下来,将对在暴露的晶体层(n型接触层130)上形成n侧电极170和在低杂质浓度半导体135上形成波纹137p进行说明。
[0273] 通过去除从由蓝宝石构成的衬底110剥离的第二缓冲层(未掺杂的GaN层)的一部分而形成开口138。该开口138暴露了n型接触层130(n型GaN层,即,上述Si掺杂的n型GaN层)的一部分。这里,为了防止n侧电极70的台阶断开(step disconnection),优选将开口138的侧表面处理为锥形形状。例如,可以通过使用抗蚀剂掩模的采用氯气的干法蚀刻来形成50°锥形的凹陷作为开口138。通过剥离方法等等形成具有500nm厚度的Ti/Pt/Au层叠膜以覆盖在开口138中暴露的n型接触层130(Si掺杂的n型GaN层)和部分第二缓冲层122(未掺杂的GaN层)。将该层叠膜构图为n侧电极170。
[0274] 随后,通过例如使用KOH溶液的性蚀刻处理第二缓冲层122(未掺杂的GaN层)的在n侧电极170外侧的表面,以形成波纹137p。在下列条件下进行使用KOH溶液的处理,例如:将1mol/L的KOH溶液加热到80℃,并进行20min的蚀刻。由此,形成波纹137p。
[0275] 接下来,通过解理、蓝宝石刀刃切割等等,将导电衬底460切割为单独的器件。由此,制成根据该实施例的半导体发光器件50。
[0276] 在上面中,使波纹137p的尺寸大于例如从发光部140发射的发射光的波长。具体地,使波纹137p的尺寸大于例如从发光部140发射的发射光的低杂质浓度半导体层135中的波长。因此,光路径在具有波纹137p的粗糙表面部分137中变化,从而提高光提取效率。由此,获得具有较高效率的半导体发光器件。
[0277] 因此,在根据该实施例的半导体发光器件50中,通过在其主表面为蓝宝石层的c面的衬底110上的包含Alx3Ga1-x3N(0.8≤x3≤1)的单晶缓冲层生长GaN层。在GaN层上设置第一层131。即,半导体发光器件50还包括:衬底110,其主表面为蓝宝石层的c面;单晶缓冲层,其被设置在衬底110与第一层131之间,该单晶缓冲层包含Alx3Ga1-x3N(0.8≤x3≤1);以及GaN层,其被设置在单晶缓冲层与第一层131之间。
[0278] 该单晶缓冲层包括例如第一缓冲层121。也就是,该单晶缓冲层包括例如高碳浓度第一AlN缓冲层121a和在第一AlN缓冲层121a上形成的高纯度第二AlN缓冲层121b。
[0279] 此外,经由单晶缓冲层生长的上述GaN层包括例如第二缓冲层122、n型接触层130、Si掺杂的n型限制层等等。
[0280] 由此,通过经由上述单晶缓冲层而在衬底110上生长GaN层,可以获得具有高晶体质量的GaN层。
[0281] 导电衬底460可以由至少是导电的材料构成。虽然对其没有特别的限制,但可以使用Si、Ge等等的半导体衬底和Cu、CuW等等的金属板。此外,导电衬底460不需要整体导电。导电衬底460仅仅需要至少在其一部分中是导电的。例如,可以使用其中金属布线被设置在树脂中的板等等。
[0282] p侧电极160至少包含银或其合金。除了银之外的金属的单层膜对可见光带的反射效率在420nm或更短的紫外光带区域中倾向于随着波长变短而降低。然而,银还对于不小于370nm且不大于410nm的紫外光带区域中的光具有高反射效率特性。因此,在用于紫外光发射的半导体发光器件的p侧电极160由银合金构成的情况下,优选p侧电极160的在与半导体层形的界面侧的部分具有较高的银组成比。p侧电极160的厚度优选为100nm或更大以确保光反射效率。
[0283] 为了防止焊料扩散到p侧电极160中或与p侧电极160反应,可以在p侧电极160上设置扩散防止层。扩散防止层具有不与银反应或不会主动扩散到银中的特性。该扩散防止层与p侧电极160电接触。该扩散防止层可以由高熔点金属的单层膜或层叠膜构成,所述高熔点金属例如为(V)、铬(Cr)、(Fe)、钴(Co)、镍(Ni)、铌(Nb)、钼(Mo)、钌(Ru)、铑(Rh)、钽(Ta)、钨(W)、铼(Re)、铱(Ir)以及铂(Pt)。
[0284] 更优选地,构成扩散防止层的金属具有高功函数以便一些扩散也不会造成问题,并且该金属很可能与p型接触层150(p型GaN层)形成欧姆接触。该金属包括铁(Fe)、钴(Co)、镍(Ni)、铑(Rh)、钨(W)、铼(Re)、铱(Ir)以及铂(Pt)中的至少一种。
[0285] 在单层膜的情况下,扩散防止层的厚度优选在不小于5nm且不大于200nm的范围内,以便可以保持膜状态。在层叠膜的情况下,对扩散防止层的厚度没有特别的限制,但其可以被设定为在例如不小于10nm且不大于10000nm的范围内的值。
[0286] 在根据该实施例的半导体发光器件50中,在由蓝宝石构成的衬底110上形成GaN层。在GaN层上形成第一层131。在第一层131上形成发光部140。在发光部140上形成第二层151。然后,去除衬底110。即,第一层131被设置在发光部140与形成在由蓝宝石构成的衬底110上的GaN层之间。并且衬底110被去除。在由此配置的半导体发光器件50中,可以实现特别高的发光效率。
[0287] 更具体而言,在具有从其去除了衬底110的薄膜结构的半导体发光器件50中,其中将光提取到外部的光路径的平均长度是长的。因此,减少在器件(半导体层)内部的吸收对于提高光提取效率是非常有效的。由此,在通过去除衬底110而获得的配置中,可以特别显著地实现该实施例的通过将单量子阱结构用于发光部140而抑制在器件内部(在半导体层内部)的光吸收的效果。
[0288] 当将晶体叠层体180接合到导电衬底460时以及当通过激光分解GaN层以剥离由蓝宝石构成的衬底110时,晶体叠层体180的晶体层容易产生晶体缺陷并被损害。
[0289] 这大概可以归因于在导电衬底460、蓝宝石以及GaN层之间的热膨胀系数差异、局部加热、由GaN分解而产生的产物等等。如果晶体缺陷和损伤发生在晶体层中,则包含在p侧电极160中的Ag扩散通过晶体缺陷和损伤。这会导致加速地增加晶体内部的泄漏和晶体缺陷。
[0290] 根据该实施例,阱层143为单层。因此,可以通过叠层结构从衬底110侧施加的应变而显著地改善晶体(阱层143)的特性。此外,因为是单层,阱层143并不具有会发生在MQW结构中的问题(在多个阱层中,在生长衬底侧上晶体质量改善是不足的,并且在与生长衬底相反的侧上应变过量地增加,导致晶体特性劣化的问题)。由此,可以最大化阱层143的晶体质量。
[0291] 在与该实施例中一样地使晶体受到由于衬底110的去除而产生的载荷的情况下,可以特别有效地实现该效果。也就是,在去除了用于晶体生长的衬底110之后,晶体同样可以获得高质量。
[0292] 与在该实施例中一样,在通过去除衬底110以利用由高反射率金属构成的电极(p侧电极160)处的反射来提取光而获得的结构中,在衬底110与生长晶体之间的界面处以及在衬底110内部均不存在光损耗。因此,该实施例具有通过减小晶体中的光损耗来改善发光效率的显著效果。
[0293] 也就是,在该实施例中,采用SQW结构。由此,从具有高发光效率的阱层143发射的光不会被具有低效率的其他阱层吸收。因为不存在该吸收问题,因此可以以极高的效率将光提取到外部。
[0294] 特别地,在该实施例中,通过引入第一叠层结构体210和第二叠层结构体220,显著提高了晶体质量。因此,该实施例有效地抑制了在去除衬底110时会发生的阱层143的特性劣化。
[0295] 在具有通过去除衬底110而获得的结构的半导体发光器件中,很可能发生发光效率的降低。发明人分析了在该配置中易于发生发光效率降低的原因。结果,发明人推断出,在去除衬底110的工艺中从衬底110侧施加的高应变导致了晶体中位错的增加,这显著地引起发光效率的降低。
[0296] 更具体而言,在去除衬底110时,如果通过加热来去除衬底110,则认为具有与热膨胀有关的横向分量的位错被引入到晶体中。此外,当剥离衬底110时,产生了被剥离的部分和未剥离的部分。因此,剥离利用倾斜施加的力而进行。由此,可以推断,伴随着衬底110的去除而发生的位错同样具有倾斜分量。
[0297] 在根据该实施例的半导体发光器件50中,在衬底110与发光部140之间引入了第一叠层结构体210和第二叠层结构体220。认为它们影响伴随着衬底110的去除而发生的位错的方向的改变(向横向和倾斜方向的改变)。也就是,可以假定,在该实施例中,因为使位错的方向接近于与晶体表面垂直的方向,因此获得了抑制位错方向改变的效果。这抑制了在去除衬底110时会发生的发光效率的降低,并能够实现高效率地发射光的半导体发光器件。
[0298] 在该实施例中,同时使用了第一叠层结构体210和第二叠层结构体220。因此,上述效果特别显著。然而,即使在其中一种的情况下,也可以实现提高发光效率的效果。特别地,如果使用第一叠层结构体210,第三层203与第四层204之间的晶格失配是大的,因此改变位错方向的效果是显著的。此外,即使在晶体在面中不均匀的情况下,改变位错方向的效果也是显著的,并且对半导体发光器件的效率提高的贡献是显著的。
[0299] 如上所述,可以将根据本发明的该实施例的配置应用到基于通过去除衬底110而获得的配置的半导体发光器件。于是,因为高晶体质量,抑制了伴随着衬底110的去除而引起的晶体特性劣化。因此,可以实现具有特别高的效率的光发射。也就是,通过组合使用通过去除衬底110而获得的配置、SQW结构的发光部140以及第一叠层结构体210,可以特别有效地提高发光效率。此外,通过与第二叠层结构体220的进一步组合,则可以更有效地提高发光效率。
[0300] 第六实施例
[0301] 图7为示例了根据本发明的第六实施例的晶片的配置的示意性截面图。
[0302] 如图7所示,根据该实施例的晶片560包括包含n型GaN和n型AlGaN中的至少一种的第一层131、包含p型AlGaN的第二层151以及发光部140。发光部140具有由第一势垒层141、第二势垒层142以及阱层143构成的单量子阱结构。第一势垒层141被设置在第一层131与第二层151之间并包含Alx1Ga1-x1-y1Iny1N(0<x1,0≤y1,x1+y1<1)。第二势垒层142被设置在第一势垒层141与第二层151之间并包含Alx2Ga1-x2-y2Iny2N(0<x2,0≤y2,x2+y2<1)。阱层143被设置在第一势垒层141与第二势垒层142之间并包含Alx0Ga1-x0-y0Iny0N(0≤x0,0<y0,x0+y0<1,y1<y0,y2<y0)。
[0303] 阱层143具有不小于4.5nm且不大于9nm的厚度。阱层143发射近紫外光。阱层143的峰值波长为例如不小于380nm且不大于400nm。
[0304] 如此配置的晶片560可以实现与根据本发明的实施例的上述半导体发光器件相似的效果。晶片560可以提供高效率地发射近紫外光的晶片。
[0305] 如图7所示,晶片560还可以包括参考根据本发明的实施例的上述半导体发光器件而说明的各种层。
[0306] 在晶片560中,特别地,阱层143的厚度优选地被设定为不小于5nm且不大于7nm。
[0307] 图8为示例出根据本发明的第六实施例的另一晶片的配置的示意性截面图。
[0308] 如图8所示,根据该实施例的晶片570还包括被设置在第一层131与发光部140之间的第一叠层结构体210。第一叠层结构体210包括包含AlGaInN的多个第三层203和与所述多个第三层203交替地层叠并包含GaInN的多个第四层204。所述多个第三层203中的每一个具有小于第一势垒层141和第二势垒层142的厚度。所述多个第四层204中的每一个具有小于阱层143的厚度。
[0309] 此外,晶片570还包括被设置在第一层131与发光部140之间的第二叠层结构体220。第二叠层结构体220包括包含GaN的多个第五层205和与所述多个第五层205交替地层叠并包含GaInN的多个第六层206。所述多个第五层205中的每一个具有小于第一势垒层141和第二势垒层142的厚度。所述多个第六层206中的每一个具有小于阱层143的厚度。
[0310] 如以上参考根据本发明的实施例的半导体发光器件所述,可以设置第一叠层结构体210和第二叠层结构体220中的至少一者。此外,可以将第二叠层结构体220设置在第一层131与第一叠层结构体210之间。
[0311] 所述多个第四层204的总厚度与阱层143的厚度之和可以为不小于25nm且不大于45nm。
[0312] 晶片570中的提高发光效率的效果如参考根据实施例的半导体发光器件所述。
[0313] 第七实施例
[0314] 根据该实施例的制造半导体发光器件的方法为,例如,制造参考第五实施例所述的半导体发光器件50的方法。
[0315] 图9为示例了根据本发明的第七实施例的用于制造半导体发光器件的方法的流程图。
[0316] 如图9所示,在根据该实施例的制造半导体发光器件的方法中,在其主表面为蓝宝石层的c面的衬底110上形成包含Alx3Ga1-x3N(0.8≤x3≤1)的单晶缓冲层(步骤S101)。例如,依次形成高碳浓度第一AlN缓冲层121a和在第一AlN缓冲层121a上形成的高纯度第二AlN缓冲层121b。
[0317] 然后,在单晶缓冲层上形成GaN层(步骤S102)。例如,形成第二缓冲层122、n型接触层130等等。
[0318] 然后,在GaN层上,形成包括第一层131的n型半导体层,该第一层131包含n型GaN和n型AlGaN中的至少一种(步骤S103)。
[0319] 然后,在n型半导体层上,形成包含Alx1Ga1-x1-y1Iny1N(0<x1,0≤y1,x1+y1<1)的第一势垒层141(步骤S104)。
[0320] 然后,在第一势垒层141上,形成包含Alx0Ga1-x0-y0Iny0N(0≤x0,0<y0,x0+y0<1,y1<y0,y2<y0)的阱层143(步骤S105)。阱层143的厚度被设定不小于4.5nm且不大于9nm。阱层143发射近紫外光。阱层143的峰值波长为例如不小于380nm且不大于400nm。
[0321] 然后,在阱层143上形成包含Alx2Ga1-x2-y2Iny2N(0<x2,0≤y2,x2+y2<1)的第二势垒层142(步骤S106)。
[0322] 然后,在第二势垒层142上,形成包括第二层151的p型半导体层,第二层151包含p型AlGaN(步骤S107)。
[0323] 然后,在形成p型半导体之后,去除衬底110(步骤S108)。
[0324] 在根据该实施例的制造半导体发光器件的方法中,去除衬底110的工艺与SQW结构的发光部140组合。由此,可以特别有效地提高发光效率。此外,通过与第一叠层结构体210和第二叠层结构体220中的至少一者的进一步组合,可以更有效地提高发光效率。
[0325] 第八实施例
[0326] 图10为示例了根据第八实施例的用于制造半导体发光器件的方法的流程图。
[0327] 如图10所示,在根据该实施例的用于制造半导体发光器件的方法中,通过金属有机化学气相沉积,在由蓝宝石构成的衬底110上形成AlN层(第一缓冲层121)(步骤S201)。例如,依次形成高碳浓度第一AlN缓冲层121a和在第一AlN缓冲层121a上形成的高纯度第二AlN缓冲层121b。
[0328] 然后,在该AlN层上,通过金属有机化学气相沉积形成GaN层(步骤S202)。例如,形成第二缓冲层122、n型接触层130等等。
[0329] 然后,在该GaN层上,通过金属有机化学气相沉积形成包括第一层131的n型半导体层,第一层131包含n型GaN和n型AlGaN中的至少一种(步骤S203)。
[0330] 然后,在n型半导体层上,通过金属有机化学气相沉积形成包含Alx1Ga1-x1-y1Iny1N(0<x1,0≤y1,x1+y1<1)的第一势垒层141(步骤S204)。
[0331] 然后,在第一势垒层141上,通过金属有机化学气相沉积形成包含Alx0Ga1-x0-y0Iny0N(0≤x0,0<y0,x0+y0<1,y1<y0,y2<y0)的阱层143(步骤S205)。
阱层143的厚度被设定不小于4.5nm且不大于9nm。阱层143发射近紫外光。阱层143的峰值波长为例如不小于380nm且不大于400nm。
[0332] 然后,在阱层143上,通过金属有机化学气相沉积形成包含Alx2Ga1-x2-y2Iny2N(0<x2,0≤y2,x2+y2<1)的第二势垒层142(步骤S206)。
[0333] 然后,在第二势垒层142上,通过金属有机化学气相沉积形成包括第二层151的p型半导体层,第二层151包含p型AlGaN(步骤S207)。
[0334] 具体地,直接在上述n型半导体层上形成第一势垒层141。直接在第一势垒层141上形成阱层143。直接在阱层143上形成第二势垒层142。直接在第二势垒层142上形成p型半导体层。这里,如上所述,包括第一层131的n型半导体层可以包括形成在第一层131上的第一叠层结构体210和第二叠层结构体220中的至少一者。
[0335] 这样的制造方法可以形成具有高晶体质量的半导体层。通过由该方法形成具有SQW结构的发光部140,可以以高的生产率制造以特别高的效率发射近紫外光的半导体发光器件。
[0336] 这里,可以进一步实施形成第一叠层结构体210和第二叠层结构体220中的至少一者的工艺。这可以更有效地提高发光效率。
[0337] 用于制造半导体发光器件的上述方法还可以应用于晶片的制造方法。
[0338] 也就是,根据本发明的实施例的制造晶片的方法可以包括上述步骤S201到S207。由此,可以以高的生产率制造以特别高的效率发射近紫外光的晶片。同样,在制造晶片的该方法中,可以进一步实施形成第一叠层结构体210和第二叠层结构体220中的至少一者的工艺。这可以更有效地提高发光效率。
[0339] 这里所称的“氮化物半导体”包括具有由化学式BxInyAlzGa1-x-y-zN(0≤x≤1,0≤y≤1,0≤z≤1,x+y+z≤1)表示的任何组合物的半导体,其中组成比x、y和z在各自的范围内变化。此外,在上述化学式中,“氮化物半导体”还包括进一步包含除了N(氮)之外的任何V族元素的那些半导体、进一步包含为控制诸如导电类型的各种材料特性而添加的各种元素的那些半导体、以及进一步包含各种非故意添加的元素的那些半导体。
[0340] 上文中,参考具体实例描述了本发明的示例性实施例。然而,本发明并不受这些具体实例的限制。例如,本领域的技术人员可以对半导体发光器件的各要素(例如半导体层、发光部、阱层、势垒层、叠层结构体、电极、衬底、以及缓冲层)的配置、尺寸、材料品质、设置等等做出各种修改,这样的修改被以包括本发明的主旨的程度而被包括在本发明的范围内。
[0341] 此外,可以在技术可行的范围内组合具体实例的任何两个或多个要素;并以包括本发明的主旨的程度而被包括在本发明的范围内。
[0342] 此外,基于上述作为本发明的示例性实施例而说明的半导体发光器件、晶片、制造半导体发光器件的方法以及制造晶片的方法,本领域的技术人员通过适当的设计修改而可实施的所有半导体发光器件、晶片、制造半导体发光器件的方法以及制造晶片的方法同样以包括本发明的主旨的程度而被包括在本发明的范围内。
[0343] 此外,在本发明的精神内的各种修改和替代对于本领域的技术人员而言是显而易见的。因此应将所有这样的修改和替代视为在本发明的范围内。
[0344] 虽然说明了特定的实施例,但是这些实施例仅仅以实例的方式给出,并且不旨在限制本发明的范围。实际上,这里描述的新颖实施例可以被具体化为各种其他的形式;此外,可以进行这里描述的实施例的形式上的各种省略、替换和改变而不背离本发明的精神。所附权利要求及其等价物旨在覆盖落入本发明的范围和精神内的这样的形式或修改。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈