首页 / 专利库 / 微电子学 / 有机电子学 / 柔性电子 / 利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法

利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法

阅读:1034发布:2020-06-27

专利汇可以提供利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法专利检索,专利查询,专利分析的服务。并且本 发明 涉及一种利用超可拉伸晶态 纳米线 实现Micro-LED巨量转移的方法,包括以下步骤:利用PECVD或者PVD工艺在衬底上淀积一层绝缘介质层作为牺牲层;利用 光刻 、 电子 束直写或者掩膜板技术定义台阶边缘,以及与Micro-LED 接触 固定的区域,利用干法或湿法 刻蚀 工艺刻蚀绝缘介质层形成 弹簧 状垂直台阶 侧壁 ;并沿着台阶刻蚀制作引导通道;在制备好的台阶一端,通过光刻、 蒸发 或者溅射工艺,局部淀积一层催化金属层;升高 温度 至催化金属熔点以上,通入还原性气体 等离子体 进行处理,使催化金属层转变为分离的金属纳米颗粒;本发明方法突破了长期以来限制微发光 二极管 的大规模制备和巨量转移的问题。,下面是利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法专利的具体信息内容。

1.利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法, 包括以下步骤:1)利用PECVD或者PVD工艺在衬底上淀积一层绝缘介质层作为牺牲层;2)利用光刻电子束直写或者掩膜板技术定义台阶边缘,以及与Micro-LED接触固定的区域,利用干法或湿法刻蚀工艺刻蚀绝缘介质层形成弹簧状垂直台阶侧壁作为引导生长沟道
其特征在于,还包括以下几个步骤:
3)在制备好的台阶一端,通过光刻、蒸发或者溅射工艺,局部淀积一层催化金属层;
4)升高温度至催化金属熔点以上,通入还原性气体等离子体进行处理,使催化金属层转变为分离的金属纳米颗粒;
5)将温度降低到催化金属纳米颗粒熔点以下,将整个结构表面淀积覆盖非晶材料前驱体薄膜层;然后将温度升高至催化金属的熔点以上,使得纳米金属颗粒重新熔化,在其前端开始吸收非晶层,而在后端淀积出晶态的纳米线,在台阶的引导作用下,纳米线将沿台阶生长;
6)剩余的非晶材料前驱体薄膜层由氢气等离子体、ICP或者RIE刻蚀工艺去除;
7)旋涂一层具有粘性的薄膜,通过腐蚀性液体刻蚀牺牲层,使得晶态纳米线从衬底脱离;
8)将脱离后的纳米线转移到柔性衬底上;
9)将柔性衬底上的纳米线对准切割好的Micro-LED区域上,利用微加工技术中的对准技术,将具有高弹性的三维纳米线与Micro-LED区域进行衔接;
10)利用物理或者化学方法,使晶态纳米线与柔性衬底分离;
11)在自由空间或者液体中,利用晶态纳米线的作用,拉开各个独立的Micro-LED使其分离,并转移到已经制备好的驱动电路上;
12)利用物理或者化学方法,使Micro-LED与柔性衬底上的超弹性纳米线进行分离。
2.根据权利要求1所述的利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法,其特征在于:所述步骤1)中的衬底材料为晶、玻璃、箔、氮化硅、化硅、化硅、蓝宝石、聚酰亚胺或者聚对苯二甲酸
3.根据权利要求2所述的利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法,其特征在于:所述步骤2)中所述的引导生长沟道的形状为波浪状、弹簧状、三维或二维的骨架结构。
4.根据权利要求3所述的利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法,其特征在于:在步骤3)中在制备好的台阶一端,通过光刻、蒸发或者溅射工艺,局部淀积一层带状的催化金属层,所述催化金属层为In、 Sn、 Bi或Ga金属及其金属合金
5.根据权利要求4所述的利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法,其特征在于:所述步骤5)中所述的非晶材料前驱体薄膜层为非晶硅a-Si、非晶锗a-Ge或非晶碳a-C非晶合金层以及异质叠层结构。
6.根据权利要求5所述的利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法,其特征在于:在步骤9)所述的衔接方式为化学的胶、物理键合或者熔融的金属。
7.根据权利要求6所述的利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法,其特征在于:在步骤9)中所述的纳米线为硅半导体材料、金属或者金属合金材料形成的可拉伸结构。
8.根据权利要求7所述的利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法,其特征在于:在步骤10)和步骤12)中采用的分离方法,为化学溶解、物理热处理或者激光剥离方法。
9.根据权利要求8所述的利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法,其特征在于:在步骤11)中采用的分离方法,为外力作用或者外加电场,外加磁场,外加温度场方法,驱动纳米线作为外加骨架,将各个微小Micro-LED进行分离。

说明书全文

利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法

[0001]

技术领域

[0002] 本发明涉及一种利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法,尤其是涉及到利用现代干湿刻蚀工艺的方法,制备大规模可引导可拉伸结构的纳米线用于巨量转移的方法。

背景技术

[0003] Micro-LED,或者微发光二极管,即LED微缩技术,具体是将LED微缩化以及阵列化后巨量转移到驱动电路上,从而得到超小间距LED,并且将毫米尺寸的LED缩小到微米级。Micro-LED具备无需背光源、能够自发光的特性,同时其色彩更容易进行准确的调试,有更长的发光寿命和更高的亮度。Micro-LED 制备过程有四大关键技术,包含(1)芯片制备技术,(2)巨量转移技术,(3)键结技术(Bonding),以及(4)彩色化方案。在这些关键技术中,又以巨量转移技术最为困难。所谓巨量转移,就是将已经制备好的LED晶体直接搬移动到驱动电路背板上。
[0004] 巨量转移是制约Micro-LED产业化应用的最大技术阻碍。技术困难主要包含有以下两个部分:1)所需要转移的器件是LED器件的晶体外延层,并不需要移动制备过程中的衬底,同时由于Micro-LED尺寸极小,在数十微米的尺度,因此需要精细化的操作技术。2)转移的过程涉及到移动数万甚至数十万的LED,传统转移技术远远无法满足未来大量的转移需要。巨量转移目前的方式包括,精准抓取技术,自组装,选择性释放,转印技术等。然而,目前的工艺方法导致成本,数量,良品率都不能满足大规模的应用。目前,几家公司已经宣布在小规模上实现巨量转移,不过,考虑到大规模应用,还有相当的距离。绝大部分的成果制程还是在6吋到8吋晶圆上,以小尺寸的显示应用为主。大尺寸的显示应用目前只能够使用将小的显示屏幕拼贴来完成。
[0005] 因此,巨量转移技术高效率、良品率和转移精度的高要求,使巨量转移技术成为了微型发光二极管技术研发面临的最大挑战。

发明内容

[0006] 本发明所要解决的技术问题是,克服现有技术的缺点,提供一种转移技术高、灵活度高、纳米线受柔性衬底约束小、可弛豫空间大的Micro-LED巨量转移的方法。
[0007] 为了解决以上技术问题,本发明提供一种利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法,包括以下步骤:1)利用PECVD或者PVD工艺在衬底上淀积一层绝缘介质层作为牺牲层;
2)利用光刻电子束直写或者掩膜板技术定义台阶边缘,以及与Micro-LED接触固定的区域,利用干法或湿法刻蚀工艺刻蚀绝缘介质层形成弹簧状垂直台阶侧壁;并沿着台阶刻蚀制作引导通道;
3)在制备好的台阶一端,通过光刻、蒸发或者溅射工艺,局部淀积一层催化金属层;
4)升高温度至催化金属熔点以上,通入还原性气体等离子体进行处理,使催化金属层转变为分离的金属纳米颗粒;
5)将温度降低到催化金属纳米颗粒熔点以下,将整个结构表面淀积覆盖非晶材料前驱体薄膜层;然后将温度升高至催化金属熔点以上适当温度,对于In,采用350°,使得纳米金属颗粒重新熔化,在其前端开始吸收非晶层,而在后端淀积出晶态的纳米线,在三维台阶的引导作用下纳米线将沿台阶生长;
6)剩余的非晶材料前驱体由氢气等离子体、ICP或者RIE刻蚀工艺去除;
7)旋涂一层具有粘性的薄膜,通过腐蚀性液体刻蚀牺牲层,使得晶态纳米线从衬底脱离;
8)将脱离后的纳米线转移到柔性衬底上;
9)将柔性衬底上的纳米线对准切割好的Micro-LED区域上,利用微加工技术中的对准技术,将具有高弹性的三维纳米线与Micro-LED区域进行衔接;
10)利用物理或者化学方法,使晶态纳米线与柔性衬底分离;
11)在自由空间或者液体中,利用晶态纳米线的作用,拉开各个独立的Micro-LED使其分离,并转移到已经制备好的驱动电路上;
12)利用物理或者化学方法,使Micro-LED与柔性衬底上的超弹性纳米线进行分离。
[0008] 本发明进一步限定的技术方案是:所述步骤1)中衬底材料为晶、玻璃、箔、氮化硅、化硅、化硅、蓝宝石、聚酰亚胺或者聚对苯二甲酸(类塑料)。
[0009] 进一步的, 所述步骤2)中的引导沟道的形状,可以是波浪状,弹簧状,以及可能的三维,二维的骨架结构。
[0010] 进一步的,所述步骤3)中的催化金属可以是In, Sn, Bi, Ga等金属以及金属合金)。
[0011] 所述步骤5)中前驱体层为非晶硅a-Si、非晶锗a-Ge、非晶碳a-C或者其他的非晶合金层,以及异质叠层(如a-Ge/a-Si)结构。
[0012] 进一步的,所述步骤9)中使用的衔接方式,可以是化学的胶等,也可以是物理键合或者熔融的金属等方式。
[0013] 进一步的,所述步骤9)中所用的纳米线可以是硅等半导体材料,也可以是金属或者合金材料形成的,拉伸结构,包括但不限于可折叠的弹簧结构。
[0014] 可进一步的,所述步骤10)与12)中采用的分离方法,包括但不局限于利用化学溶解或物理热处理或者激光剥离等方法。
[0015] 可进一步的,所述步骤11)中采用的分离方法,除了外力作用的方法,还包括利用外场,例如外加电场,外加磁场,外加温度场等方法,驱动纳米线作为外加骨架,将各个微小Micro-LED进行分离。同时采用的分离方法的环境,可以是在液体中,或者气液界面中,或者真空无重力环境下等。
[0016] 本发明的有益效果是:本发明与现有技术相比:1)采用现代微加工技术制备出弹簧状引导沟道,在PECVD或者CVD中生长出沟道引导的具有超可拉伸性的晶态纳米线;2)通过光刻蚀技术形成的引导沟道和定位的催化剂区域后可实现纳米线生长的自定位、自定向;3)这种可拉伸纳米线转移到柔性衬底后,受衬底相对约束较小,可驰豫空间较多,从而大大提升了晶态纳米线的可拉伸性,能够更好的改善可拉伸性。4)将此具备超弹性的晶态纳米线与单个Micro LED进行键合和连接,作为外围骨架,在外场或外力的驱动下,通过拉伸形成分离的单个相同间隔的独立器件,并将其转移到驱动电路,可以有效大规模的分离并实现巨量转移过程。本发明方法提高了Micro-LED的巨量转移效率、合格率和可靠性,突破了长期以来限制微发光二极管的大规模制备和巨量转移的问题,为工业化生产和大规模应用微发光二极管铺平了道路;可以广泛的应用于Micro-LED制备以及转移的过程中。附图说明
[0017] 图1为本发明实施例1设计的实现4*4 Micro-LED转移的光刻模板。
[0018] 图2为本发明实施例1利用超可拉伸晶态纳米线实现Micro-LED巨量转移方法的示意图。
[0019] 图3为本发明实施例1的实验流程示意图。

具体实施方式

[0020] 下面结合附图和具体实施方式对本发明做进一步的说明。
[0021] 实施例1本实施例提供一种利用超可拉伸晶态纳米线实现Micro-LED的破片技术和巨量转移方法,如图1-3,图中:1.表示Micro-LED衬底基底,2.表示Micro-LED,3. 表示具有弹性的晶态纳米线,4. 进行外力的拉伸固定区域,5.与Micro-LED固定结合区域。
[0022] 实现Micro-LED的破片和巨量转移,主要包括以下几个步骤:1)在衬底上利用PECVD或者PVD工艺在衬底上淀积一层绝缘介质层;所述衬底的材料可以为晶硅、玻璃、铝箔、氮化硅、氧化硅、碳化硅、蓝宝石、聚酰亚胺或者聚对苯二甲酸(类塑料)。
[0023] 2)利用光刻、电子束直写或者掩膜板技术定义台阶边缘以及与每个LED进行结合的区域,利用电感耦合等离子体(ICP)刻蚀或者反应离子体刻蚀(RIE)工艺刻蚀介质层形成弹簧状垂直台阶侧壁结构;并沿着台阶刻蚀制作引导通道,所述引导沟道的形状,可以是波浪状,弹簧状,以及可能的三维,二维的骨架结构。
[0024] 3)在制备好的台阶一端,通过光刻、蒸发或者溅射工艺,局部淀积一层催化金属层在相应区域中,本实施例中的催化金属采用In,催化金属还可以是Sn, Bi, Ga等金属以及金属合金。
[0025] 4)升高温度至催化金属熔点以上,通入还原性气体等离子体进行处理,使催化金属层转变为分离的金属纳米颗粒;5)将温度降低到催化金属颗粒熔点以下,整个结构表面淀积覆盖非晶半导体前驱体薄膜层;然后将温度升高至,使得纳米金属颗粒重新熔化,在其前端开始吸收非晶层,而在后端淀积出晶态的纳米线;由于三维台阶的引导作用,纳米线将沿台阶生长;前驱体薄膜层为非晶硅a-Si、非晶锗a-Ge、非晶碳a-C或者其他的非晶合金层,以及异质叠层如a-Ge/a-Si结构。
[0026] 6)剩余的非晶半导体前驱体可由氢气等离子体、ICP或者RIE等刻蚀工艺去除;7)旋涂一层具有一定粘性的薄膜,通过腐蚀性液体例如氢氟酸刻蚀牺牲层刻蚀牺牲层,使得硅晶态纳米线可以从衬底脱离;
8)将脱离后的硅晶态纳米线转移到柔性衬底上,再用溶液将薄膜溶解,即可获得超可拉伸的柔性硅纳米弹簧。
[0027] 9)将柔性硅纳米弹簧对准需要破片并已经切割好的Micro-LED区域上,利用微加工技术中的对准技术,将具有高弹性的三维纳米线与Micro-LED区域上进行固定结合。其结合方式包括化学胶水,或者物理键合或者熔融的金属等方式,将高弹性纳米线做作为Micro-LED的外围框架。所用的纳米线可以是硅等半导体材料,也可以是金属或者合金材料形成的可拉伸结构。
[0028] 10)利用物理或者化学方法,使得晶态纳米线与柔性衬底进行分离。本步骤所述的利用物理或化学方法包括但不局限于利用化学溶解或者物理热处理或者激光剥离等方法。
[0029] 11)在自由空间,或者液体中,利用柔性硅纳米弹簧的作用力,拉开各个独立的Micro-LED,使其分离,并转移到已经制备好的驱动电路上。本步骤除了直接外力作用的方法,还包括利用外场,例如外加电场,外加磁场,外加温度场等方法,驱动纳米线作为外加骨架,将各个微小Micro-LED进行分离。采用的分离方法的环境,可以是在液体中,或者气液界面中,或者真空无重力环境下等。
[0030] 12)利用物理或者化学方法,使得Micro-LED与柔性衬底上的超弹性纳米线进行分离。本步骤所述的利用物理或化学方法包括但不局限于利用化学溶解或者物理热处理或者激光剥离等方法。
[0031] 除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈