首页 / 专利库 / 建筑材料 / 基板 / 位置検出装置

位置検出装置

阅读:366发布:2023-12-17

专利汇可以提供位置検出装置专利检索,专利查询,专利分析的服务。并且,下面是位置検出装置专利的具体信息内容。

被検出体(62、72、821)の回転を検出可能な位置検出装置であって、 前記被検出体の回転軸(Ra1、Ra70、Ra80)を挟んで設けられ、前記被検出体と一体に回転可能な複数の磁界形成部(11、12)と、 前記被検出体と一体に回転可能に設けられ、前記磁界形成部とともに前記被検出体の回転軸に交わる閉磁路(Mp11、Mp12)を形成するヨーク(16、17)と、 他の平面に比べて面積が大きい一の平面(201、301、401)が前記回転軸に沿うよう設けられる回路基板(20、30、40)と、 前記回路基板に設けられ、前記一の平面に沿う第一の方向の磁束密度を検出可能な感磁面を有し、前記第一の方向の磁束密度に応じた第一信号を出可能な第一磁気検出部(21、31、41)と、 前記回路基板に設けられ、前記一の平面と交わる第二の方向の磁束密度を検出可能な感磁面を有し、前記第二の方向の磁束密度に応じた第二信号を出力可能な第二磁気検出部(22、32、42)と、 を備え、 前記磁界形成部は、複数の前記磁界形成部が前記回転軸を挟んで対向する方向に対して交差する方向にN極とS極とが並ぶように設けられ、 前記ヨークは、複数の前記磁界形成部の前記N極同士を接続するように設けられた第1のヨークと、複数の前記磁界形成部の前記S極同士を接続するように設けられた第2のヨークとを含み、 前記第一磁気検出部および前記第二磁気検出部は、前記回転軸に沿う方向における前記磁界形成部または前記ヨークの前記被検出体側の端面(164)から前記磁界形成部または前記ヨークの前記被検出体とは反対側の端面(165)までの間の、前記磁界形成部および前記ヨークによって囲まれる領域(Ar1、Ar2、Ar3)に位置する位置検出装置。前記第一磁気検出部および前記第二磁気検出部と電気的に接続し、前記第一信号および前記第二信号に基づいて前記被検出体の回転角を演算する演算部(25、35、45)をさらに備える請求項1に記載の位置検出装置。前記演算部は、前記第一信号および前記第二信号に基づいて前記被検出体の回転角のアークタンジェントを演算する請求項2に記載の位置検出装置。前記演算部は、前記回路基板に設けられている請求項2または3に記載の位置検出装置。前記演算部が演算する前記被検出体の回転角に応じた回転角信号を外部に出力可能な出力端子(251、351、451)をさらに備え、 前記出力端子は、前記回転軸に沿う方向に延びるよう形成されている請求項2〜4のいずれか一項に記載の位置検出装置。前記回路基板を複数備える請求項1〜5のいずれか一項に記載の位置検出装置。複数の前記回路基板のうち一の回路基板(20)に設けられる一の第一磁気検出部(21)が磁束密度を検出可能な第一の方向と複数の前記回路基板のうち他の回路基板(40)に設けられる他の第一磁気検出部(41)が磁束密度を検出可能な第一の方向とは同じ方向であり、 前記一の回路基板に設けられる一の第二磁気検出部(22)が磁束密度を検出可能な第二の方向と前記他の回路基板に設けられる他の第二磁気検出部(42)が磁束密度を検出可能な第二の方向とは同じ方向である請求項6に記載の位置検出装置。前記第一磁気検出部および前記第二磁気検出部は、前記回路基板に表面実装されている請求項1〜7のいずれか一項に記載の位置検出装置。前記第一磁気検出部、前記第二磁気検出部、および、前記回路基板を封止するモールド樹脂部材(181、191、391)をさらに備え、 前記モールド樹脂部材は、前記一の平面に沿う面が前記モールド樹脂部材の他の面に比べて広くなるよう形成されている請求項1〜8のいずれか一項に記載の位置検出装置。前記被検出体は、電子制御スロットル装置(60)が有する弁部材(621)である請求項1〜9のいずれか一項に記載の位置検出装置。前記被検出体は、排気再循環バルブ装置(70)が有する弁部材(72)である請求項1〜9のいずれか一項に記載の位置検出装置。前記被検出体は、アクセル装置(80)が有するアクセルペダル(821)である請求項1〜9のいずれか一項に記載の位置検出装置。

说明书全文

本発明は、被検出体の回転を検出可能な位置検出装置に関する。

従来、車両に用いられる電子制御スロットル装置が備えるスロットルバルブの回転角、排気還流バルブ装置が備えるEGRバルブの回転角、または、アクセルペダル装置が備えるアクセルペダルの回転角などを検出する位置検出装置が知られている。例えば、特許文献1には、被検出体の回転軸に対して略垂直な方向の磁線を有する磁界を形成する磁石、当該磁界内に設けられる平板状の回路基板、当該回路基板の一平面上に設けられ当該一平面に平行な方向の磁束密度を検出可能な二つの縦型ホール素子、および、当該一平面に垂直な方向の磁束密度を検出可能な横型ホール素子を備える位置検出装置が記載されている。

特開2007−155617号公報

しかしながら、特許文献1に記載の位置検出装置では、三つのホール素子は、当該位置検出装置が備える磁石以外の部材によって形成される磁界(以下、「外部磁界」という)も検出可能なため、この外部磁界によって検出精度が低下するおそれがある。また、特許文献1に記載の位置検出装置では、回路基板は、磁石が形成する磁界の磁力線に沿うよう一平面が設けられているため、回転軸に対して略垂直な方向の体格が大きくなる。すなわち、位置検出装置の体格が比較的大きくなる。

本発明は、体格を小さくしつつ外部磁界による回転角の検出精度の低下を防止する位置検出装置を提供することにある。

本発明は、被検出体の回転角を検出可能な位置検出装置であって、複数の磁界形成部、ヨーク、回路基板、第一磁気検出部、および、第二磁気検出部を備える。 磁界形成部は、被検出体の回転軸を挟んで設けられ、被検出体と一体に回転可能である。 ヨークは、被検出体と一体に回転可能に設けられ、磁界形成部とともに被検出体の回転軸に交わる閉磁路を形成する。 回路基板は、他の平面に比べて面積が大きい一の平面が回転軸に沿うよう設けられる。 第一磁気検出部は、回路基板に設けられ、一の平面に沿う第一の方向の磁束密度を検出可能な感磁面を有し、当該第一の方向の磁束密度に応じた第一信号を出力可能である。 第二磁気検出部は、回路基板に設けられ、一の平面と交わる第二の方向の磁束密度を検出可能な感磁面を有し、当該第二の方向の磁束密度に応じた第二信号を出力可能である。 磁界形成部は、複数の磁界形成部が回転軸を挟んで対向する方向に対して交差する方向にN極とS極とが並ぶように設けられている。ヨークは、複数の磁界形成部のN極同士を接続するように設けられた第1のヨークと、複数の磁界形成部のS極同士を接続するように設けられた第2のヨークとを含む。 本発明の位置検出装置では、第一磁気検出部および第二磁気検出部は、回転軸に沿う方向における磁界形成部またはヨークの被検出体側の端面から磁界形成部またはヨークの被検出体とは反対側の端面までの間の、磁界形成部およびヨークによって囲まれる領域に位置する。

本発明の位置検出装置では、第一磁気検出部および第二磁気検出部は、磁界形成部およびヨークによって囲まれる領域に位置している。これにより、被検出体の回転角検出において外部磁界による外乱を少なくすることができる。すなわち、外部磁界に対するロバスト性が向上し、被検出体の回転角の検出精度の低下を防止することができる。

また、第一磁気検出部および第二磁気検出部が設けられている回路基板は、他の平面に比べて面積が大きい一の平面が被検出体の回転軸に沿うよう設けられている。これにより、一の平面を貫く閉磁路の磁界の強さおよび当該磁界の磁力線の方向は、一の平面に沿う方向の磁束密度を検出可能な感磁面を有する第一磁気検出部と、一の平面に交わる方向の磁束を検出可能な感磁面を有する第二磁気検出部とによって検出可能となる。したがって、被検出体の回転軸に交わるよう一の平面が設けられる場合に比べ被検出体の回転軸に垂直な方向の大きさを小さくすることができる。すなわち、第一磁気検出部および第二磁気検出部を囲むよう形成されているヨークの体格を小さくすることができるため、位置検出装置の体格を小さくすることができる。 また、ヨークの体格を小さくすることができるため、回転軸上に磁界形成部が形成する磁界の強さが比較的強くなる。これにより、被検出体の回転角に対する磁界の強さおよび当該磁界の磁力線の方向の変化が大きくなるため、被検出体の回転角の検出精度を向上することができる。

本発明の第一実施形態による位置検出装置が適用される電子制御スロットル装置の断面図である。

図1のII部拡大図である。

図2のIII−III線断面図である。

本発明の第一実施形態による位置検出装置における被検出体の回転角の演算方法を説明する特性図である。

本発明の第二実施形態による位置検出装置の模式図である。

本発明の第三実施形態による位置検出装置の模式図である。

本発明のその他の実施形態を示す模式図であって、第一実施形態による位置検出装置が適用される排気再循環バルブ装置の断面図である。

本発明のその他の実施形態を示す模式図であって、第一実施形態による位置検出装置が適用されるアクセル装置の断面図である。

比較例の位置検出装置の模式図である。

図9のX−X線断面図である。

以下、本発明の複数の実施形態について図面に基づいて説明する。

(第一実施形態) 本発明の第一実施形態による位置検出装置を図1〜4を参照して説明する。第一実施形態による「位置検出装置」としての回転角検出装置1は、車両のエンジンへの吸気量を制御する電子制御スロットル装置60に用いられる。

最初に、電子制御スロットル装置60の概略構成を説明する。電子制御スロットル装置60は、図1に示すように、ハウジング61、「被検出体」としてのスロットルバルブ62、ハウジングカバー63、回転角検出装置1、ECU64などを備えている。

ハウジング61は、エンジンに空気を導入する吸気通路610を有する。吸気通路610にはスロットルバルブ62が設けられている。

スロットルバルブ62は、弁部材621、バルブシャフト622を有している。弁部材621は、吸気通路610の内径より僅かに小さい外径を有する略円板状に形成され、バルブシャフト622に固定されている。バルブシャフト622の両側は、ハウジング61に回転可能に軸受けされている。これにより、スロットルバルブ62は、バルブシャフト622の中心を回転軸として回転可能である。 バルブシャフト622の一端には、モータ623が設けられている。モータ623は、エンジンの電子制御装置(ECU)64の指令により駆動制御される。モータ623の駆動によってスロットルバルブ62の開度が制御され、エンジンに供給される吸気量が調節される。

ハウジングカバー63は、樹脂により略皿状に形成されている。ハウジングカバー63は、ハウジング61のバルブシャフト622の他端が突出する側にねじ631によって取り付けられている。ハウジングカバー63には回転角検出装置1と電気的に接続する配線632が固定されている。

回転角検出装置1は、図1に示すように、ハウジング61とハウジングカバー63のとの間に設けられている。回転角検出装置1は、図2、3に示すように、筒部材10、「磁界形成部」としての磁石11、12、「磁路形成部材」としてのヨーク16、17、ホールIC18などを備える。なお、図2には、ハウジングカバー63が位置する方向を「カバー方向」とし、弁部材621が位置する方向を「バルブ方向」として図示する。

筒部材10は、バルブシャフト622の他端に設けられている有底筒状の部材である。筒部材10の底壁101には、通孔102が形成されている。通孔102にはバルブシャフト622の他端が挿入されている。筒部材10は、バルブシャフト622に対して固定されている。

磁石11、12は、筒部材10が有する側壁103の内壁面にバルブシャフト622の回転軸Ra1を挟むよう設けられている。磁石11、12は、筒部材10に固定されているため、スロットルバルブ62と一体に回転可能である。磁石11、12は、それぞれN極とS極とを有する。図3には、便宜的に、磁石11、12におけるN極を「N」と示し、S極を「S」と示す。

ヨーク16、17は、図3に示すように、回転軸Ra1に垂直な断面形状が略半円弧状となるよう形成されている。ヨーク16とヨーク17とは、筒部材10の内壁面にバルブシャフト622の回転軸Ra1を挟むよう設けられている。

ヨーク16は、磁石11のN極側の端面111と磁石12のN極側の端面121とに当接するよう設けられている。ヨーク16は、二つの当接部161、162、および、円弧部163を有する。 当接部161は、ヨーク16の一方の端部に設けられ、円弧部163に比べ幅が広くなるよう形成されている。当接部161は、磁石11の端面111と当接している。また、当接部162は、ヨーク16の他方の端部に設けられ、円弧部163に比べ幅が広くなるよう形成されている。当接部162は、磁石12の端面121と当接している。当接部161、162は、当接している磁石11、12に対するヨーク16の安定性を維持するとともに、磁石11、12が形成する磁界の磁力線を比較的多くヨーク16内に導くことが可能である。 円弧部163は、回転軸Ra1の径外方向において当接部161と当接部162とを接続するよう設けられている。

ヨーク17は、磁石11のS極側の端面112と磁石12のS極側の端面122とを接続するよう設けられている。ヨーク17は、二つの当接部171、172、および、円弧部173を有する。 当接部171は、ヨーク17の一方の端部に設けられ、円弧部173に比べ幅が広くなるよう形成されている。当接部171は、磁石11の端面112と当接している。また、当接部172は、ヨーク17の他方の端部に設けられ、円弧部173に比べ幅が広くなるよう形成されている。当接部172は、磁石12の端面122と当接している。当接部171、172は、当接している磁石11、12に対するヨーク17の安定性を維持するとともに、磁石11、12が形成する磁界の磁力線を比較的多くヨーク17内に導くことが可能である。 円弧部173は、当接部171と当接部172とを接続するよう設けられている。

磁石11は、図3に示すように、ヨーク16の当接部161および当接部161側の円弧部163とヨーク17の当接部171および当接部171側の円弧部173とともに閉磁路Mp11を形成する。 磁石12は、図3に示すように、ヨーク16の当接部162および当接部162側の円弧部163とヨーク17の当接部172および当接部172側の円弧部173とともに閉磁路Mp12を形成する。 これにより、筒部材10の内部空間100には回転軸Ra1に交わる方向に閉磁路Mp11、Mp12が形成される。

ホールIC18は、回路基板20、「第一磁気検出部」としての第一ホール素子21、「第二磁気検出部」としての第二ホール素子22、演算部25、および、モールド樹脂部材181を有する。ホールIC18は、筒部材10の内部空間100に挿入されているハウジングカバー63の突出部633の内部に設けられている。ホールIC18では、回路基板20、第一ホール素子21、第二ホール素子22および演算部25は、モールド樹脂部材181によって樹脂封止されている。モールド樹脂部材181は、回路基板20の形状に沿うよう略平板状に形成されている。

回路基板20は、平板状の部材である。回路基板20が有する面のうち他の面に比べて面積が大きい二つの平面201、202は、回転軸Ra1に沿うよう設けられている。二つの平面201、202のうち「一の平面」としての平面201には、図示しない金属薄膜による回路が形成されている。

第一ホール素子21は、回路基板20の平面201上に実装されている。第一ホール素子21は、「第一の方向」としての平面201に沿う方向であって、かつ、回転軸Ra1に垂直な方向の磁束密度を検出可能な感磁面を有する。すなわち、第一ホール素子21は、いわゆる、縦型ホール素子である。第一ホール素子21は、検出した磁束密度に応じた第一信号を演算部25に出力する。

第二ホール素子22は、回路基板20の平面201上に実装されている。第二ホール素子22は、「第二の方向」としての平面201に垂直な方向、すなわち、第一ホール素子21が検出可能な磁束密度の方向に対して垂直な方向の磁束密度を検出可能な感磁面を有する。すなわち、第二ホール素子22は、いわゆる、横型ホール素子である。第二ホール素子22は、検出した磁束密度に応じた第二信号を演算部25に出力する。

本実施形態では、第一ホール素子21および第二ホール素子22は、回転軸Ra1に垂直な方向において閉磁路を形成する磁石11、12およびヨーク16、17に囲まれる位置に設けられる。具体的には、以下のように説明できる。 第一ホール素子21および第二ホール素子22は、図2に示すように、回転軸Ra1に沿う方向において磁石11、12およびヨーク16、17のバルブ方向側に位置するヨーク16の端面164と、カバー方向側に位置するヨーク16の端面165との間に位置する(図2の両端矢印線Ap1で示される範囲)。また、第一ホール素子21および第二ホール素子22は、図2に示すように、回転軸Ra1に垂直な方向において、磁石11、12およびヨーク16、17の内壁面より回転軸Ra1側に位置する(図2の両端矢印線Av1で示される範囲)。すなわち、第一ホール素子21および第二ホール素子22は、図2、3に示す磁石11、12およびヨーク16、17によって囲まれている領域Ar1に位置する。端面164は、特許請求の範囲に記載の「回転軸に沿う方向における磁界形成部またはヨークの被検出体側の端面」に相当する。また、端面165は、「回転軸に沿う方向における磁界形成部またはヨークの被検出体とは反対側の端面」に相当する。

演算部25は、回路基板20の平面201上に設けられている。演算部25は、第一ホール素子21および第二ホール素子22と電気的に接続している。演算部25は、第一ホール素子21が出力する第一信号と第二ホール素子22が出力する第二信号とに基づいてスロットルバルブ62の回転角を演算する。

ここで、演算部25におけるスロットルバルブ62の回転角の演算方法について図4に基づいて説明する。 図4(a)には、スロットルバルブ62の回転角に対する第一ホール素子21が出力する第一信号および第二ホール素子22が出力する第二信号の変化を示している。図3に示す状態におけるスロットルバルブ62の回転角を0度とすると、第一ホール素子21が出力する第一信号は、スロットルバルブ62の回転角に対して正弦カーブの出力となる(図4(a)に示す曲線S21)。一方、第二ホール素子22が出力する第二信号は、スロットルバルブ62の回転角に対して余弦カーブの出力となる(図4(a)に示す曲線S22)。

演算部25では、第一信号と第二信号との比、すなわち、第一信号を第二信号で除して得られる値のアークタンジェント値からスロットルバルブ62の回転角を検出する。第一信号をYs、第二信号をYc、第一信号Ysを第二信号Ycで除して得られる値をR、及び、スロットルバルブ62の回転角をαと定義すると、回転角αは、第一信号Ys及び第二信号Ycの正負または0の場合分けによって表1のように演算される。

ただし、R=(Ys/Yc)、−90

表1による演算結果に基づいて回転角信号との対応を示すと図4(b)のようになる。演算部25では、このようにしてスロットルバルブ62の回転角を演算する。

演算部25は、回転軸Ra1に沿う方向に延びるよう形成されている「出力端子」としてのターミナル251と電気的に接続している。演算部25は、ターミナル251を介して演算したスロットルバルブ62の回転角に応じた回転角信号をハウジングカバー63内の配線632に出力する。配線632に出力された回転角信号は、ECU64に伝達される。

回転角検出装置1では、第一ホール素子21および第二ホール素子22は、回転軸Ra1に沿う方向にヨーク16の端面164と端面165との間に位置し、かつ、回転軸Ra1に垂直な方向において磁石11、12およびヨーク16、17の内壁面より回転軸Ra1側に位置する。これにより、第一ホール素子21および第二ホール素子22は、スロットルバルブ62の回転角を検出するとき、磁石11、12以外の部材によって形成される外部磁界による外乱を少なくすることができる。すなわち、回転角検出装置1の外部磁界に対するロバスト性が向上し、スロットルバルブ62の回転角の検出精度の低下を防止することができる。

また、回転角検出装置1は、体格を小さくすることができる。ここで、比較例として、回路基板のホールICが搭載されている平面がスロットルバルブの回転軸に交わるよう設けられている回転角検出装置の構成および作用を図9、10に基づいて説明する。 図9は、スロットルバルブ62の回転軸Ra0を含む平面における比較例の回転角検出装置90の断面図を示す。図10には、回転角検出装置90を回転軸Ra0に沿う方向から見た模式図を示す。なお、図9には、図2に示した回転角検出装置1と同じように、突出部633を有するハウジングカバー63が位置する方向を「カバー方向」とし、バルブシャフト622に連結する弁部材621が位置する方向を「バルブ方向」として図示する。

回転角検出装置90は、筒部材91、磁石921、922、ヨーク923、924、ホールIC93などを備える。 回転角検出装置90では、図9に示すように、筒部材91内のホールIC93が有する回路基板931は、二つのホール素子94、95が搭載されている平面932が回転軸Ra0に対して垂直に交わるよう設けられている。すなわち、図10に示すように、磁石921、922およびヨーク923、924が形成する閉磁路Mp91、Mp92が平面932に略平行に通るよう回路基板931が設けられている。このため、筒部材91の体格は、比較的大きくなる。

本実施形態の回転角検出装置1では、回路基板20は、第一ホール素子21および第二ホール素子22が搭載される平面201がスロットルバルブ62の回転軸Ra1に沿うよう設けられている。これにより、平面201に沿う方向の磁束密度を検出可能な第一ホール素子21と、平面202に垂直に交わる方向の磁束密度を検出可能な第二ホール素子22とによって閉磁路の磁界の強さ及び当該磁界の磁力線の方向が検出可能となる。したがって、比較例の回転角検出装置90のように、回路基板のホール素子を搭載する平面が被検出体の回転軸に対して垂直に交わるよう設けられている場合に比べ、ヨーク16、17の体格を小さくすることができるため、回転角検出装置1の体格を小さくすることができる。

また、比較例の回転角検出装置90では、ホールIC93が信号を出力するターミナル933は、回路基板931が回転軸Ra0に対して垂直に交わるよう設けられているため、図10に示すように、回転軸Ra0に対して略垂直な方向に一旦突出した後、回転軸Ra0に沿った方向に延びるよう形成されている。このため、筒部材91の体格がさらに大きくなる。 一方、回転角検出装置1では、ターミナル251は、回転軸Ra1に沿う方向に延びるよう形成されている。これにより、ホールIC18の体格を小さくすることができるため回転角検出装置1の体格をさらに小さくすることができる。

回転角検出装置1では、縦型ホール素子である第一ホール素子21が出力する信号および横型ホール素子である第二ホール素子22が出力する信号に基づくアークタンジェントの演算によってスロットルバルブ62の回転角を演算する。これにより、図4に示すように、二つのホール素子で360度の回転角を検出することができる。

電子制御スロットル装置60が用いられる環境では、環境温度が大きく変化しやすい。このため、磁石11、12が形成する磁界の変化が比較的大きくなる。回転角検出装置1では、第一ホール素子21が出力する第一信号と第二ホール素子22が出力する第二信号は、スロットルバルブ62の回転角の正接関数を演算可能な二つの変数となっている。当該二つの変数は、閉磁路の磁束密度を二つの方向に分解したときの磁束成分と一対一の関係を有しており、温度の変化によって磁束密度が変化しても当該二つの変数の比は変化しない。これにより、回転角検出装置1において演算されるスロットルバルブ62の回転角は、環境温度の影響を受けにくくなっている。したがって、環境温度を起因とする回転角の検出精度の低下を防止することができる。

また、回転角検出装置1では、第一ホール素子21および第二ホール素子22は、回路基板20に表面実装されている。これにより、回路基板20をさらに小さくすることができる。また、演算部25は、回路基板20に設けられるため、回転角検出装置1の体格をさらに小さくすることができる。

また、モールド樹脂部材181は、回路基板20の形状に沿うよう略平板状に形成されている。これにより、モールド樹脂部材が回転軸に対して略垂直な方向に比較的広い面を有する場合に比べ、ホールIC18の回転軸に対して略垂直な方向の体格を小さくすることができる。したがって、回転角検出装置1の体格をさらに小さくすることができる。

(第二実施形態) 次に、本発明の第二実施形態による位置検出装置を図5に基づいて説明する。第二実施形態は、ホールICの数が第一実施形態と異なる。なお、第一実施形態と実質的に同一の部位には同一の符号を付し、説明を省略する。

第二実施形態による「位置検出装置」としての回転角検出装置2を図5に示す。回転角検出装置2は、筒部材10、磁石11、12、ヨーク16、17、二つのホールIC18、19などを備える。

ホールIC19は、回路基板30、「第一磁気検出部」としての第一ホール素子31、「第二磁気検出部」としての第二ホール素子32、演算部35、および、モールド樹脂部材191を有する。ホールIC19は、ホールIC18とともにハウジングカバー63の突出部633の内部に設けられている。ホールIC19では、回路基板30、第一ホール素子31、第二ホール素子32および演算部35は、モールド樹脂部材191によって樹脂封止されている。モールド樹脂部材191は、回路基板30の形状に沿うよう略平板状に形成されている。

回路基板30は、平板状の部材である。回路基板30が有する平面のうち他の平面に比べて面積が大きい二つの平面301、302は、回転軸Ra1に沿うよう設けられている。二つの平面301、302のうち「一の平面」としての平面301には、図示しない金属薄膜による回路が形成されている。本実施形態では、平面301は、ホールIC18の回路基板20の平面201に向かい合うよう形成されている。

第一ホール素子31は、回路基板30の平面301上に実装されている。第一ホール素子31は、「第一の方向」としての平面301に沿う方向であって、かつ、回転軸Ra1に垂直な方向の磁束密度を検出可能な感磁面を有する。すなわち、第一ホール素子31は、いわゆる、縦型ホール素子である。第一ホール素子31は、検出した磁束密度に応じた第一信号を演算部35に出力する。

第二ホール素子32は、回路基板30の平面301上に実装されている。第二ホール素子32は、「第二の方向」としての平面301に垂直な方向の磁束密度を検出可能な感磁面を有する。すなわち、第二ホール素子32は、いわゆる、横型ホール素子である。第二ホール素子32は、検出した磁束密度に応じた第二信号を演算部35に出力する。 本実施形態では、第一ホール素子31および第二ホール素子32は、図5に示す磁石11、12およびヨーク16、17によって囲まれている領域Ar1に位置する。

演算部35は、平面301上に設けられ、第一ホール素子31および第二ホール素子32と電気的に接続している。演算部35は、第一ホール素子31が出力する第一信号と第二ホール素子32が出力する第二信号とに基づいてアークタンジェントの演算を行い、スロットルバルブ62の回転角を演算する。演算部35は、演算したスロットルバルブ62の回転角に応じた回転角信号を回転軸Ra1に沿う方向に延びるよう形成されている「出力端子」としてのターミナル351を介して配線632に出力する。

回転角検出装置2では、ホールIC18が有する回路基板20の平面201とホールIC19が有する回路基板30の平面301とは、対向しつつ回転軸Ra1に沿うよう設けられている。これにより、筒部材10の体格を比較的小さくすることができる。したがって、回転角検出装置2は、第一実施形態の効果を奏する。

また、回転角検出装置2では、二つの回路基板20、30のそれぞれにおいて平面201、301に沿う方向の磁束密度、および、平面201、301に垂直な方向の磁束密度を検出することができる。二つの回路基板20、30のそれぞれが有する演算部25、35では、スロットルバルブ62の回転角をそれぞれ演算することができる。これにより、回転角検出装置2では、例えば、通常は一方の回路基板における演算結果に基づいてスロットルバルブ62の回転角を決定するが、一方の回路基板にスロットルバルブ62の回転角を決定できない不具合が生じたとき、他方の回転基板における演算結果に基づいてスロットルバルブ62の回転角を決定することができる。このように、回転角検出装置2では、スロットルバルブ62の回転角を検出可能な機能を二重にし、冗長性を持たせることができる。

(第三実施形態) 次に、本発明の第三実施形態による回転角検出装置を図6に基づいて説明する。第三実施形態は、ホールICの数が第一実施形態と異なる。なお、第一実施形態と実質的に同一の部位には同一の符号を付し、説明を省略する。

第三実施形態による「位置検出装置」としての回転角検出装置3を図6に示す。回転角検出装置3は、筒部材10、磁石11、12、ヨーク16、17、二つのホールIC18、39などを備える。

ホールIC39は、「他の回路基板」としての回路基板40、「他の第一磁気検出部」としての第一ホール素子41、「他の第二磁気検出部」としての第二ホール素子42、演算部45、および、モールド樹脂部材391を有する。ホールIC39は、ホールIC18とともにハウジングカバー63の突出部633の内部に設けられている。ホールIC39では、回路基板40、第一ホール素子41、第二ホール素子42および演算部45は、モールド樹脂部材391によって樹脂封止されている。モールド樹脂部材391は、回路基板40の形状に沿うよう略平板状に形成されている。

回路基板40は、平板状の部材である。回路基板40が有する平面のうち他の平面に比べて面積が大きい二つの平面401、402は、回転軸Ra1に沿うよう設けられている。二つの平面401、402のうち「一の平面」としての平面401には、図示しない金属薄膜による回路が形成されている。本実施形態では、平面402は、ホールIC18が有する回路基板20の平面201に向かい合うよう形成されている。

第一ホール素子41は、回路基板40の平面401上に実装されている。第一ホール素子41は、「第一の方向」としての平面401に沿う方向の磁束密度を検出可能な感磁面を有する。すなわち、第一ホール素子41は、いわゆる、縦型ホール素子である。第一ホール素子41は、検出した磁束密度に応じた第一信号を演算部45に出力する。

第二ホール素子42は、回路基板40の平面401上に実装されている。第二ホール素子42は、「第二の方向」としての平面402に垂直な方向の磁束密度を検出可能な感磁面を有する。すなわち、第二ホール素子42は、いわゆる、横型ホール素子である。第二ホール素子42は、検出した磁束密度に応じた第二信号を演算部45に出力する。 本実施形態では、第一ホール素子41および第二ホール素子42は、図6に示す磁石11、12およびヨーク16、17によって囲まれている領域Ar1に位置する。

演算部45は、平面401上に設けられ、第一ホール素子41および第二ホール素子42と電気的に接続している。演算部45は、第一ホール素子41が出力する第一信号と第二ホール素子42が出力する第二信号とに基づいてアークタンジェントの演算を行い、スロットルバルブ62の回転角を演算する。演算部45は、演算したスロットルバルブ62の回転角に応じた回転角信号を回転軸Ra1に沿う方向に延びるよう形成されている「出力端子」としてのターミナル451を介して配線632に出力する。

回転角検出装置3では、ホールIC18が有する「一の回路基板」としての回路基板20の平面201とホールIC39が有する回路基板40の平面401とは、同じ方向に向かいつつ回転軸Ra1に沿うよう設けられている。これにより、筒部材10の体格を比較的小さくすることができる。したがって、回転角検出装置3は、第一実施形態の効果を奏するとともに、回転角を検出可能な機能を二重にし、冗長性を持たせることができる。

また、回転角検出装置3では、「一の第一ホール素子」としての第一ホール素子21が磁束密度を検出可能な方向と第一ホール素子41が磁束密度を検出可能な方向とは同じ方向となる。また、「一の第二ホール素子」としての第二ホール素子22が磁束密度を検出可能な方向と第二ホール素子42が磁束密度を検出可能な方向とは同じ方向となる。これにより、それぞれのホールIC18、39が有する演算部25、45における演算方法を同じにすることができる。

(他の実施形態) 上述の実施形態では、「位置検出装置」は、電子制御スロットル装置に適用されるとした。しかしながら、本発明の「位置検出装置」が適用される装置はこれに限定されない。

図7に第一実施形態による「位置検出装置」を適用した排気再循環バルブ装置の断面図を示す。図7に示す排気再循環バルブ装置70は、車両に搭載されたエンジンの排気流路から吸気流路へEGRガスを戻すものである。排気再循環バルブ装置70は、ボディ71、「被検出体」および「弁部材」としてのEGRバルブ72、センサケース73、回転角検出装置1などを備えている。

ボディ71は、エンジンの排気流路から吸気流路へEGRガスを戻すEGR流路711を有する。EGR流路711の内壁にはノズル712が固定されている。ボディ71には、EGR流路711の開度を調整するEGRバルブ72を回転駆動可能なモータ713が設けられている。 EGRバルブ72は、シャフト721を介してボディ71に回転可能に支持されている。EGRバルブ72は、シャフト721の回転角度に応じてEGR流路711の開口面積を変更可能な円板状のバタフライ弁である。EGRバルブ72は、複数のギアの組み合わせによって伝達されたモータ713の回転トルクによって回転する。 センサケース73は、EGRバルブ72の回転角を検出可能な回転角検出装置1のホールIC18を支持している。また、回転角検出装置1の磁石11、12およびヨーク16は、シャフト721の一端に設けられモータ713と連結されている略筒状のギア722に収容されている。すなわち、ギア722が第一実施形態で説明した電子制御スロットル装置60における筒部材10に相当する。

排気再循環バルブ装置70では、回路基板20の第一ホール素子21および第二ホール素子22が搭載されている面は、EGRバルブ72の回転軸Ra70に沿うよう形成されている。 また、第一ホール素子21および第二ホール素子22は、回転軸Ra70に沿う方向において磁石11、12およびヨーク16のEGRバルブ72側に位置するヨーク16の端面164と、EGRバルブ72側とは反対側に位置するヨーク16の端面165との間に位置する(図7の両端矢印線Ap2で示される範囲)。また、第一ホール素子21および第二ホール素子22は、回転軸Ra70に垂直な方向において、磁石11、12およびヨーク16の内壁面より回転軸Ra70側に位置する(図7の両端矢印線Av2で示される範囲)。すなわち、第一ホール素子21および第二ホール素子22は、図7に示す磁石11、12およびヨーク16、17によって囲まれている領域Ar2に位置する。これにより、回転角検出装置1は、排気再循環バルブ装置70においても第一実施形態の効果を奏する。

また、図8に第一実施形態による「位置検出装置」を適用したアクセル装置の断面図を示す。図8に示すアクセル装置80は、運転者のアクセルペダルの踏み込み量に応じた信号をスロットルバルブの開度を制御するECUに出力するものである。アクセル装置80は、支持部材81、操作部82、センサケース83、回転角検出装置1などを備えている。

支持部材81は、車体に取り付けられ、内部に収容されている操作部82を回転可能に支持する。 操作部82は、「被検出体」としてのアクセルペダル821、シャフト822などを有する。アクセルペダル821は、運転者が踏み込み操作可能なよう支持部材81の外に設けられている。アクセルペダル821は、ペダルアーム823を介してシャフト822と一体に回転可能である。シャフト822は、支持部材81内において支持部材81に回転可能に設けられている。シャフト822の径外方向には、シャフト822にアクセルペダル821をアクセル閉方向に回転するよう付勢するアクセル戻し部824やアクセルペダル821の踏み込み時と解放時にアクセルペダル821に作用する回転トルクを異ならせるヒステリシス機構部825が設けられている。 センサケース83は、支持部材81の外側に設けられ、アクセルペダル821の回転角を検出する回転角検出装置1のホールIC18を支持している。また、回転角検出装置1の磁石11、12およびヨーク16は、シャフト822の一端に設けられている。すなわち、シャフト822の一端が第一実施形態で説明した電子制御スロットル装置60における筒部材10に相当する。

アクセル装置80では、回路基板20の第一ホール素子21および第二ホール素子22が搭載されている面は、シャフト822の回転軸Ra80に沿うよう形成されている。 また、第一ホール素子21および第二ホール素子22は、回転軸Ra80に沿う方向において磁石11、12およびヨーク16のヒステリシス機構部825側に位置するヨーク16の端面164と、最もヒステリシス機構部825側とは反対側に位置するヨーク16の端面165との間に位置する(図8の両端矢印線Ap3で示される範囲)。また、第一ホール素子21および第二ホール素子22は、回転軸Ra80に垂直な方向において、磁石11、12およびヨーク16の内壁面より回転軸Ra80側に位置する(図8の両端矢印線Av3で示される範囲)。すなわち、第一ホール素子21および第二ホール素子22は、図8に示す磁石11、12およびヨーク16、17によって囲まれている領域Ar3に位置する。これにより、回転角検出装置1は、アクセル装置80においても第一実施形態の効果を奏する。

また、上述の実施形態による回転角検出装置は、これらの他に、流量制御弁装置やハイトセンサなどに適用されてもよい。上述の実施形態による回転角検出装置を流量制御弁装置やハイトセンサに適用すると、電子制御スロットル装置やアクセル装置に比べ広い角度範囲において検出精度を低下させることなく被検出体の回転角度を演算することができる。

上述の実施形態では、回転角検出装置は、縦型ホール素子である第一ホール素子が出力する第一信号および横型ホール素子である第二ホール素子が出力する第二信号に基づくアークタンジェントの演算を行うことによって被検出体の回転角を演算するとした。しかしながら、第一信号および第二信号に基づいて被検出体の回転角を演算する方法はこれに限定されない。一つの横型ホール素子が出力する信号に基づいて二つの縦型ホール素子が出力する信号を補正し、被検出体の回転角を演算してもよい。

上述の実施形態では、演算部は、回路基板に設けられるとした。しかしながら、演算部は、回路基板以外の部材に設けられてもよい。また、演算部は、備えていなくてもよい。

上述の実施形態では、二つのホール素子は、回路基板に表面実装されるとした。二つのホール素子は、回路基板にスルーホール実装されてもよい。

上述の実施形態では、第二ホール素子は、「第二の方向」としての平面201に垂直な方向の磁束密度を検出可能な感磁面を有するとした。しかしながら、「第二の方向」はこれに限定されない。平面201に交わる方向であればよい。

上述の実施形態では、第一ホール素子および第二ホール素子は、回路基板の「他の平面に比べ面積が大きい一の平面」としての平面上に設けられるとした。しかしながら、第一ホール素子および第二ホール素子は、回路基板の「他の平面」に設けられてもよい。

以上、本発明はこのような実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の形態で実施可能である。

1、2、3・・・回転角検出装置(位置検出装置) 11、12・・・磁石(磁界形成部) 16、17・・・ヨーク 20、30、40・・・回路基板 21、31、41・・・第一ホール素子(第一磁気検出部) 22、32、42・・・第二ホール素子(第二磁気検出部) 25、35、45・・・演算部 164・・・端面(回転軸に沿う方向における磁界形成部またはヨークの被検出体側の端面) 165・・・端面(回転軸に沿う方向における磁界形成部またはヨークの被検出体とは反対側の端面) Ar1、Ar2、Ar3・・・領域

高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈