首页 / 专利库 / 烟草制品及加工 / 烘烤 / 基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器

基于多晶纳米线矩形阵列和纳米PN结的微型能量收集器

阅读:4发布:2024-01-12

专利汇可以提供基于多晶纳米线矩形阵列和纳米PN结的微型能量收集器专利检索,专利查询,专利分析的服务。并且本 发明 的基于多晶 硅 纳米线 矩形阵列和纳米 PN结 的微型 能量 收集器,由光 电池 和热电 能量收集 器构成。光电池采用凝胶 旋涂 法制作ZnO 薄膜 得到纳米PN结,热 电能 量收集器由纳米线矩形单元矩形阵列而成,纳米线矩形单元采用深紫外 光刻 工艺得到纳米 热电偶 ,与传统的热电光电能量收集器相比, 多晶硅 纳米线热导率远低于传统体材料,具有较高的热电转化效率;纳米热电偶对之间、纳米线矩形单元之间通过金线连线进行电器互联,光电池和热电能量收集器收集的能量通 过热 电输出pad和光电输出pad进行输出。所收集的能量最终存储在充电电池中,充电电池中的电能可以实现给无线传感 节点 的供电。,下面是基于多晶纳米线矩形阵列和纳米PN结的微型能量收集器专利的具体信息内容。

1.一种基于多晶纳米线矩形阵列和纳米PN结的微型能量收集器,其特征在于:所述的基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器包括光电池和热电能量收集器;光电池包括N型硅片衬底(7),绒面(8),膜层(9),衬底n型掺杂区(10),衬底P型掺杂(11),氮化硅层(12),光电池电极(13),光电输出pad(14);热电能量收集器由纳米线矩形单元矩形阵列构成,纳米线矩形单元包括纳米热电堆,第二二氧化硅层(15),聚酰亚胺层(16),金属散热板(17),纳米热电堆包括N型多晶硅纳米线簇(18),P型多晶硅纳米线簇(19),金属连线(20)、聚甲基丙烯酸甲酯(21)和热电输出pad(22);所述的光电池和热电能量收集器由第一二氧化硅保护层(23)进行电学隔离,纳米线矩形单元之间通过金属连线(20)进行电器互联;收集的能量通过光电池的光电输出pad(14)和热电能量收集器的热电输出pad(22)连接向DC-DC转换模(4);该能量收集器主要功能是收集射频收发组件放大器(1)的热能和环境中的光能给无线传感节点(5)供电;基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器(3)将收集的能量通过DC-DC转换模块(4)将收集的电能转换成直流电信号,最终存储在充电电池(6)中,充电电池(6)中的电可以实现给无线传感节点(5)的供电。
2.根据权利要求1所述的一种基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器,其特征在于:N型多晶硅纳米线簇(18)和P型多晶硅纳米线簇(19)含有的纳米线数量为
50-200,N型多晶硅纳米线簇(18)和P型多晶硅纳米线簇(19)的多晶硅纳米线由深紫外光刻形成,直径为1-100nm,高度为2-10um;N型多晶硅纳米线簇(18)和P型多晶硅纳米线簇(19)之间利用金属连接线(20)进行连接。
3.根据权利要求1所述的一种基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器,其特征在于:N型多晶硅纳米线簇(18)和P型多晶硅纳米线簇(19)之间填充有聚甲基丙烯酸甲酯(21),起高了能量收集器结构的稳定性
4.根据权利要求1所述的一种基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器,其特征在于:所述的基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器的光电池的纳米PN结是利用凝胶旋涂法将乙酸锌旋涂在电池的上表面,旋涂3-9层,每旋涂1层后放入烘烤箱烘烤,使多余的溶液挥发,有利于ZnO薄膜的生成。最后放入升华炉中450℃高温热处理,干燥形成良好的ZnO薄膜,得到光电池纳米PN结的衬底n型掺杂区(10)。

说明书全文

基于多晶纳米线矩形阵列和纳米PN结的微型能量收集器

技术领域

[0001] 本发明提出了一种基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器,属于微电子机械系统(MEMS)的技术领域。

背景技术

[0002] 当今社会,能量收集日益引起人们的关注,原因是世界各国在大发展可再生能源,而且越来越小的电子系统可以通过越来越低的能量运行。例如:大型建筑物中用来监控房间温度的小装置可以利用建筑物自身的极微小振动来获得动力。射频收发机,尤其是其中的功率放大器,在工作时有相当一部分能量以热能的形式耗散,不仅造成收发组件的升温,影响了模正常的工作,还造成了能量的浪费。
[0003] 以多晶硅纳米线矩形阵列和纳米PN结作为发电元件的微型能量收集器,与传统的热电光电能量收集器相比,多晶硅纳米线热导率远低于传统体材料,具有较高的热电转化效率,可对射频功率放大器工作中耗散的热能和环境中的光能进行能量收集,收集产生的电能通过DC-DC转换被存贮在电池中,不仅能够提高能量的使用效率,减少能源的浪费,同时也可为布置在功率放大器周边的各种无线传感节点供电,最终实现绿色通信的目的。

发明内容

[0004] 技术问题:本发明的目的是提供一种基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器,包括热电能量收集器与光电池,分别采用多晶硅纳米矩形阵列与纳米PN结结构,用以提高输出功率,且集成在同一片衬底上,可同时对环境中的热能和光能进行收集,在复杂周围环境下,两种收集方式可相互补充,所收集的能量将转换成电能存储起来用于给无线传感节点供电,最终实现绿色通信。
[0005] 技术方案:为解决上述技术问题,本发明提出了一种基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器。其结构主要包括光电池和热电能量收集器,由硅衬底、绒面、膜层、衬底n型掺杂区、衬底P型掺杂、氮化硅层、光电池电极、光电池输出pad、二氧化硅隔离层、纳米热电堆、二氧化硅保护层、聚酰亚胺层和金属散热板构成。
[0006] 基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器制作在长载流子寿命的N型硅片衬底上,主要由光电池和热电能量收集器集成而成。光电池由N型硅片衬底、绒面、氧化铝镀膜层、衬底n型掺杂区、衬底P型掺杂、氮化硅层、光电池光电极和光电池输出pad构成。热电能量收集器由多晶硅纳米矩形单元构成,多晶硅纳米矩形单元之间通过金属连线进行电器互联,多晶硅纳米矩形单元包括纳米热电堆、二氧化硅保护层、聚酰亚胺层和金属散热板。其中纳米热电堆包括N型多晶硅纳米线簇、P型多晶硅纳米线簇、金属连线、聚甲基丙烯酸甲酯和热电输出pad。光电池和热电能量收集器由二氧化硅保护层相隔离。
[0007] 光电池的衬底选用长载流子寿命的N型硅片,衬底的下表面作为受光面,采用织构化的倒金字塔绒面结构,作用是减小入射光的反射;在绒面结构上涂覆了一层特定厚度的氧化铝镀膜层,利用氢钝化和固定电荷效应来减小电池的体复合与表面复合;同时,利用凝胶旋涂法将乙酸锌旋涂在电池的上表面,旋涂3-9层,每旋涂1层后放入烘烤箱烘烤,使多余的溶液挥发,有利于ZnO薄膜的生成。最后放入升华炉中450℃高温热处理,干燥形成良好的ZnO薄膜,得到光电池纳米 PN结,在纳米PN结P型ZnO薄膜掺杂旁边制作一个N-N+型的欧姆接触,用于制作光电极,在光电池上表面覆盖一层二氧化硅层钝化层,并于特定的区域开了一系列的电极接触孔,用于减少上表面的表面复合,采用金属互联层将收集的光电能量进行引出,相比传统的光电池结构,上表面的电极宽度很大,一方面减少了电池的背面反射,另一方面减小了电池的寄生电阻,有利于提高输出性能。
[0008] 热电能量收集器由多晶硅纳米矩形单元矩形阵列构成,多晶硅纳米矩形单元的平纳米热电堆是由多对水平纳米热电偶串联而成,水平纳米热电偶则由水平放置的N型多晶硅纳米线簇和P型多晶硅纳米线簇构成,多晶硅纳米线簇直接利用金属连接线进行电器互联,呈水平四方式结构排列在硅衬底上,纳米热电堆中心覆盖金属散热板,有效地实现了散热,增大了纳米热电堆与周围环境的热耦合,纳米热电堆的四周覆盖了一层聚酰亚胺层作为隔热层,实现与纳米热电堆热端的热学隔离;为了增加热电能量收集器结构的稳定性,纳米热电偶之间填充有聚甲基丙烯酸甲酯;纳米热电堆上也有一层氮化硅作为电器绝缘层。热电能量收集器和光电池之间有二氧化硅层,作为电器绝缘层。
[0009] 光电池的工作原理如下:当具有适当能量的光子入射于光电池的PN结时,光子与构成半导体材料相互作用产生电子和空穴,在PN结区域的电场作用下,电子向N型半导体扩散,空穴向P型半导体扩散,分别聚集于两个电极部分,产生一定的电势差同时在光电输出pad输出功率。输出功率时,除了光生电流外,由于输出电压,还存在一个与光生电流相反的结“暗电流”,输出到负载的电流实为光生电流和暗电流之差。
[0010] 热电能量收集器的工作原理如下:当在基于多晶硅纳米线矩形阵列和纳米PN 结的微型能量收集器的散热板上施加一定的温差,热量会从热端面注入,经过纳米热电堆后,最后从冷端面排出,并在热电能量收集器上形成一定的温度分布。由于纳米热电堆存在一定的热阻,在纳米热电堆的冷热结点之间会产生相应的温差,基于塞贝克效应纳米热电堆两端的热电输出pad会输出与温差成正比的电势,连接负载后可实现功率输出。
[0011] 该基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器用于射频收发组件中,将基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器的散热板贴在射频收发组件的功率放大器上方,对功率放大器工作中耗散的热能进行收集,能够减少能源的浪费,提高能源利用效率;光电池的受光面朝上,用于接受环境中的光线,对光能进行俘获,收集的能量通过DC-DC转换模块后,被存贮在电池中,可为布置在功率放大器周边的各种无线传感节点供电,最终实现绿色通信。
[0012] 有益效果:本发明相对于现有的发电机具有以下优点:
[0013] 1.本发明的基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器以多晶硅纳米线矩形阵列和纳米PN结作为发电元件,与传统的热电光电能量收集器相比,多晶硅纳米线热导率远低于传统体材料,具有较高的热电转化效率,;
[0014] 2.工艺上采用成熟的CMOS工艺和MEMS工艺制造,优点有体积小、成本低、可批量制造,以及能够和微电子电路实现单片集成;
[0015] 3.实现了热电-光电两种能量收集方式的单片集成,在复杂周围环境下,两种收集方式可相互补充,协同供电;
[0016] 4.光电池采用全背电极结构,相对传统光电池结构,具有无遮光损失、低电极串阻和便于器件互联的优势;
[0017] 5.基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器的热电能量收集器采用水平型结构,即热流路径平行于芯片表面,电流路径平行于芯片表面,使得纳米热电堆的两端具有相当较大的温度差,同时位于芯片平面内的纳米热电堆,可采用IC兼容工艺制作,具有较高的集成密度和较大的输出电压密度;
[0018] 6.光电池与热电光电能量收集器为固态能量转换器,没有可动部件,可靠性高,使用寿命长,无需维护,工作时不会产生噪音;
[0019] 7.基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器的所有电极均在同一平面,避免了类似过孔的复杂电学连接。附图说明
[0020] 图1为本发明基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器在射频收发组件中的应用示意图;
[0021] 图2为本发明基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器的光电池在制作绒面、镀膜、光电掺杂后的俯视结构示意图;
[0022] 图3为本发明基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器的光电池在制作绒面、镀膜、光电掺杂后图2中的A-A’向剖视图;
[0023] 图4为本发明基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器的光电池在图3的基础上制作氮化硅层后的俯视图;
[0024] 图5为本发明基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器的光电池在图4的基础上制作氮化硅层后图4中的B-B’向剖视图;
[0025] 图6为本发明基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器的光电池在图4的基础上制作氮化硅层后图4中的C-C’向剖视图;
[0026] 图7为本发明基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器的光电池在图6的基础上制作光电池电极和光电输出pad后的俯视图;
[0027] 图8为本发明基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器的光电池在图7的基础上制作光电池电极和光电输出pad后图7中的D-D’向剖视图;
[0028] 图9为本发明基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器的热电能量收集器的纳米线矩形单元纳米热电堆的俯视图;
[0029] 图10本发明基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器的图9 中热电能量收集器的纳米线矩形单元纳米热电堆的E-E’向剖视图;
[0030] 图11为本发明的由四个纳米线矩形单元矩形阵列而成的基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器的纳米热电堆最终俯视图;
[0031] 图12为本发明的由四个纳米线矩形单元矩形阵列而成的基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器的最终俯视图;
[0032] 图13为本发明的由四个纳米线矩形单元矩形阵列而成的基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器的图12中的F-F’向剖视图;
[0033] 图中包括:射频收发组件放大器1,后续信号处理模块2,串联四方式纳米热电能量收集3,DC-DC转换模块4,无线传感节点5,充电电池6,基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器3包括光电池和热电能量收集器,光电池包括N型硅片衬底7,绒面8,氧化铝镀膜层9,衬底n型掺杂区1,衬底P型掺杂11,氮化硅层12,光电池电极13,光电输出pad 14,热电能量收集器由多晶硅纳米矩形单元阵列而成,多晶硅纳米矩形单元包括纳米热电堆,第二二氧化硅层15,聚酰亚胺层16,金属散热板17,纳米热电堆包括N型多晶硅纳米线簇
18,P型多晶硅纳米线簇19,金属连线20、聚甲基丙烯酸甲酯 21和热电输出pad 22,多晶硅纳米矩形单元之间通过进行连线20进行电器互联,光电池和热电能量收集器由第一二氧化硅保护层23进行电学隔离。

具体实施方式

[0034] 下面结合附图对本发明的具体实施方式做进一步说明。
[0035] 参见图1,本发明提出了一种基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器,其主要功能是收集射频收发组件放大器1的热能和环境中的光能给无线传感节点5供电。将基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器3的金属散热板12贴在射频收发组件放大器1的表面,射频收发组件放大器1 的输出端接后续信号处理模块2,基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器3将收集射频收发组件放大器1的热能通过塞贝克效应转换成电能,同时收集环境中的光能转换成电能,然后通过DC-DC转换模块4将收集的电能转换成直流电信号,最终存储在充电电池6中。充电电池6中的电可以实现给无线传感节点5的供电。
[0036] 参见图2,光电池的构成如下。首先在N型硅片衬底7的一面制作绒面8,氧化铝镀膜层9,然后利用凝胶旋涂法将乙酸锌旋涂在电池的上表面,旋涂3-9 层,每旋涂1层后放入烘烤箱中烘烤,使多余的溶液挥发,有利于ZnO薄膜的生成。最后放入升华炉中450℃高温热处理,干燥形成良好的ZnO薄膜,得到光电池纳米PN结的衬底n型掺杂区10,在纳米PN结P型ZnO薄膜掺杂旁边制作一个N-N+型的欧姆接触,得到衬底P型掺杂11,其A-A’向剖视图如图3所示。然后在N型硅片衬底7上淀积一层氮化硅层12作为隔离保护层,为了将光电池的电极引出来,在氮化硅层8上的衬底n型掺杂区10、衬底P型掺杂11 的两端打孔,如图4所示,其B-B’向剖视图如图5所示,C-C’向剖视图如图 6所示。然后在氮化硅层8上淀积一层光电池电极13和光电输出pad 14,如图 7所示,其D-D’向剖视图如图8所示。
[0037] 参见图9,热电能量收集器的纳米线矩形单元制作在第一二氧化硅层23上,即热电能量收集器和光电池之间通过第一二氧化硅层23进行隔离,在第一二氧化硅层23上开孔出光电池的光电输出pad 14。首先在第一二氧化硅层23上制作纳米矩形单元的纳米热电堆,纳米热电堆包括N型多晶硅纳米线簇18,P型多晶硅纳米线簇19,金属连线20、聚甲基丙烯酸甲酯21和热电输出pad 22。其E-E’向剖视图如图10所示。然后在纳米热电堆上淀积一层第二二氧化硅层15,对纳米热电堆进行保护,纳米热电堆中间覆盖了一块金属板散热板17,有效地实现了散热,增大了纳米热电堆与周围环境的热耦合,纳米热电堆的四周覆盖了一层聚酰亚胺层16起到隔热的作用,使得热电偶的热端和冷端有一个温度差,最终将纳米矩形单元通过金属连线20进行连接,同时利用金属连线20将热电势从热电输出 pad 22输出。以4个纳米线矩形单元矩形阵列构成的热电能量收集器为例,其最终的纳米热电堆排列图如图11所示,整体覆盖第二二氧化硅层15、金属散热板 16和聚酰亚胺层17之后的俯视图如图
12所示,图12的F-F’向剖视图如图13 所示。
[0038] 基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器3由纳米线矩形单元矩形阵列而成,纳米线矩形单元之间通过金属连接20进行电器互联,纳米线矩形单元中的纳米热电偶对由N型多晶硅纳米线簇18和P型多晶硅纳米线簇19构成了热电偶的半导体臂,多晶硅纳米线簇含有的纳米线数量为50-200,多晶硅纳米线直径为1-100nm,高度为2-10um,N型多晶硅纳米线簇18和P型多晶硅纳米线簇19之间用金属连线20连接;为了增加基于多晶硅纳米线矩形阵列和纳米 PN结的微型能量收集器3结构的稳定性,热电偶之间填充有聚甲基丙烯酸甲酯21;在纳米热电堆的正上方,覆盖有第二二氧化硅层15起到保护和电学隔离的作用,纳米热电偶呈四方式排列,纳米热电堆中间覆盖了一块金属板散热板17,有效地实现了散热,增大了纳米热电堆与周围环境的热耦合,纳米热电堆的四周覆盖了一层聚酰亚胺层16起到隔热的作用,使得纳米热电偶的热端和冷端有一个温度差,最终基于塞贝克效应有热电势从热电输出pad 22输出。
[0039] 基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器的工作原理如下:当将基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器的金属散热板17 贴在射频收发组件1的表面时,热量会从基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器的金属散热板17注入,经过纳米热电堆后,最后从冷端面排出,并在基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器上形成一定的温度分布。由于纳米热电堆存在一定的热阻,在纳米热电堆的冷热结点之间会产生相应的温差,基于塞贝克效应纳米热电堆两端的热电输出pad 22会输出与温差成正比的电势;同时基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器的光电池会收集环境中的光能并转化成电能,通过光电式输出pad 14进行输出。将输出的电信号通过DC-DC转换模块4转换成直流信号存储在充电电池6中,用于给无线传感节点5供电,最终实现绿色通信。
[0040] 本发明的基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器的制备方法如下:
[0041] 1)选择N型硅片7作为衬底,磷的掺杂浓度为1×1015cm-3,电阻率约为5Ω cm,制作前进行双面抛光,并在氢氟酸溶液中浸泡,去除金属颗粒等杂质;
[0042] 2)采用一种添加剂制绒优化工艺制作绒面8,制绒液中HF/HNO3的体积比为1:2~1:6(例,1:3,1:4),分散剂小于0.1%(例0.09%、0.05%,0.01%) 腐蚀温度为6~25℃(例6℃、15℃、25℃),硅片单面减薄量约4~5μm;
[0043] 3)淀积备制一层氧化铝镀膜层9;
[0044] 4)采用纳米改性工艺进行表面微区修饰清洗,纳米改性工艺是以含有有机和浸润剂的碱性水溶液处理扩散后的硅片,去除硅片表面的微缺陷和有害杂质有机碱为烷基铵类,有机碱在水溶液中的重量百分含量为0.1~10%(例0.1%, 5%,10%);浸润剂在水溶液中的重量百分含量小于0.1%(例0.09%、0.05%, 0.01%)。硅片在此碱性溶液中处理时的温度为25~85℃(例25℃、55℃、85℃),时间为30秒~15分钟(例30秒、5分钟、15分钟)。
[0045] 5)多孔阳极氧化铝模板通过在支撑层上利用两步阳极氧化电化学法获得,用于光电太阳能纳米阵列结构的掺杂。
[0046] 6)乙酸锌[Zn(CH3COO)2·2H20]作为锌源,将乙酸锌和乙醇胺按比例溶于 200mL的乙二醇甲醚并充分搅拌,放置室温下陈化3~5天形成凝胶。将多孔阳极氧化铝模板转移到硅衬底得到样片,采用旋涂法将凝胶甩到硅衬底表面,旋涂3-9 层,每旋涂1层后放入烘烤箱中烘烤,使多余的溶液挥发,有利于ZnO薄膜的生成。最后放入升华炉中450℃高温热处理,干燥形成良好的ZnO薄膜,得到太阳能光电器件纳米阵列结构的衬底n型掺杂区10;
[0047] 7)将多孔阳极氧化铝模板转移到硅衬底得到样片,对样片进行P型掺杂物 (如,)来掺杂,得到太阳能光电器件纳米阵列结构的衬底P型掺杂区。
[0048] 8)采用PECVD工艺淀积一层100nm的氮化硅并光刻成型,作为氮化硅层 12,并暴露出电极接触区域;
[0049] 9)蒸发一层2μm厚的金层并光刻,形成光电池电极13;
[0050] 10)采用PECVD工艺淀积第一二氧化硅层23,作为电学绝缘层;
[0051] 11)采用低压化学气相淀积(LPCDV)工艺生长一层厚度为2μm的多晶硅;
[0052] 12)采用LPCVD工艺生长一层二氧化硅作为掩膜层,对多晶硅进行深紫外光刻,形成多晶硅纳米线结构;
[0053] 13)分别对多晶硅纳米线的相应区域进行N型磷离子掺杂和P型硼离子掺杂,分别形成N型多晶硅纳米线簇18和P型多晶硅纳米线簇19;
[0054] 14)旋涂一层聚甲基丙烯酸甲酯21填充热电偶之间的间隙,提高发电机结构的稳定性;
[0055] 15)蒸发一层厚度为0.3μm的金层,剥离法成型,作为纳米热电堆上金属连接线20;
[0056] 16)采用PECVD工艺生长第二二氧化硅层15,厚度为0.1μm,作为介质绝缘层;
[0057] 17)电镀一层厚度为1μm的金属铝,作为器件的金属散热板17。
[0058] 18)淀积一层厚度为1μm的聚酰亚胺层16,作为器件的纳米热电偶外部隔热层。
[0059] 区分是否为该结构的标准如下:
[0060] 本发明的基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器包括光电池和热电能量收集器,光电池包括N型硅片衬底7,绒面8,氧化铝镀膜层9,衬底n型掺杂区10、衬底P型掺杂11,氮化硅层12,光电池电极13,光电输出pad 14,热电能量收集器由纳米线矩形单元通过矩形阵列而成,纳米线矩形单元包括纳米热电堆,第二二氧化硅层15,聚酰亚胺层16,金属散热板17,纳米热电堆包括N型多晶硅纳米线簇18,P型多晶硅纳米线簇19,金属连线20、聚甲基丙烯酸甲酯21和热电输出pad 22,光电池和热电能量收集器由第一二氧化硅保护层23 进行电学隔离。纳米热电偶串联而成,热电势由热电输出pad 22进行输出,纳米热电堆呈四方式排列,纳米热电堆的中间覆盖了一层金属散热板17作为纳米热电堆的热端导热层,纳米热电堆的四周覆盖了一层聚酰亚胺层16作为纳米热电堆的冷端隔热层。聚甲基丙烯酸甲酯21用于填充热电偶之间的间隙,提高能量收集器结构的稳定性。基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器以多晶硅纳米线矩形阵列和纳米PN结作为发电元件,与传统的热电光电能量收集器相比,多晶硅纳米线热导率远低于传统体材料,具有较高的热电转化效率,收集的能量通过DC-DC转换模块4将收集的电能转换成直流电信号,最终存储在充电电池6 中。充电电池6中的电可以实现给无线传感节点5的供电,最终实现绿色通信。
[0061] 满足以上条件的结构即视为本发明的基于多晶硅纳米线矩形阵列和纳米PN结的微型能量收集器。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈