首页 / 专利库 / 无土农业 / 过滤器 / 一种空气净化器及其实现方法

一种空气净化器及其实现方法

阅读:808发布:2020-05-08

专利汇可以提供一种空气净化器及其实现方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种 空气 净化 器 及其实现方法,所述净化器为以上下端设受控 风 道相通的 隔热 板相隔、左右设置空气净化室和安装发热体的加热再生室的壁挂式空气净化器,在于,所述加热再生室下壁上设有与室内空气相连通的受控风道,用于净化空气输出和新风输出,以及排污时补入空气;在空气净化器外、加热再生室下壁上风道进出口设第二 温度 传感器 ,用于监测室温和净化及新风输岀温度;在空气净化室内设置第一温度传感器,用于监测净化模 块 和净化器内温度,以及间接监测室温和室外新风温度。方法在于,排污时不仅一次性带岀加热再生室内污气和粗效 过滤器 上 吸附 的灰尘,并延时关闭发热体,从而更有效地排污,且通过发热体可对净化/新风输岀加温。,下面是一种空气净化器及其实现方法专利的具体信息内容。

1.一种空气净化器,由空气净化室和安装发热体的加热再生室以左右设置并用隔热板相隔离的热再生壁挂式空气净化器;所述隔热板上端设有受第三电控空气开/关控制的道,隔热板下端设有受第四电控空气阀开/关控制的风道,加热再生室和空气净化室之间通过隔热板上下端所设的风道相连通;所述空气净化室下壁上分别设有与室内空气相连通且受第二电控空气阀开/关控制的净化输入风道,以及以穿过墙壁与室外大气相连通且受第五电控空气阀开/关控制的新风输入/排污输岀风道;所述空气净化室内从隔热板上下端风道之间由下至上依次安装粗效过滤器、高效可再生VOCs及甲吸附材料、风机;所述风机正向运转时风向向上,风机反向运转时风向向下;空气净化器内外分别安装有第一温度传感器和第二温度传感器;其特征在于,所述加热再生室下壁上设有与室内空气相连通且受第一电控空气阀开/关控制的风道,其风道用于净化模式时净化空气输出和新风模式时新风输出,以及净化模式时排污补入空气;第二温度传感器安装于空气净化器外、加热再生室下壁上所设风道的进出口,用于监测室温和净化及新风输岀温度;第一温度传感器安装于空气净化器的空气净化室内高效可再生VOCs及甲醛吸附材料以下空间,用于监测高效可再生VOCs及甲醛吸附材料和空气净化器内温度,以及间接监测室温和室外新风温度。
2.根据权利要求1所述的一种空气净化器,其特征在于,所述第一温度传感器和第二温度传感器分别与控制处理器单元的输入端相连接;所述风机、发热体、第一电控空气阀至第五电控空气阀分别与控制处理器单元的输出端相连接;控制处理器单元键盘包括模式选择键和加温设置键;控制处理器单元数据存储器包含存储有排污时延时关闭发热体的设定时间的单元。
3.根据权利要求1所述的一种空气净化器,其特征在于,所述第一温度传感器安装于空气净化室内粗效过滤器以下空间。
4.根据权利要求1所述的一种空气净化器,其特征在于,所述第一温度传感器安装于粗效过滤器与高效可再生VOCs及甲醛吸附材料之间。
5.一种根据权利要求1或2任一项所述的空气净化器的实现方法,其特征在于,包括如下步骤:
⑴ 通过控制处理器单元键盘上模式选择键选择空气净化器在净化模式或新风模式下工作,当选择净化模式时,运行过程依次循环净化、脱附、排污三个阶段,当选择新风模式时将室外新风引入室内,若对净化阶段输岀至室内的空气有加热要求时,通过控制处理器单元键盘上加温设置键选择净化阶段输岀空气加温及设置相应的净化输岀温度,若对新风模式输岀至室内的新风有加热要求时,通过控制处理器单元键盘上加温设置键选择新风模式输岀新风加温及设置相应的新风输岀温度;
⑵ 净化模式的净化阶段运行过程
① 开启加热再生室下壁上风道,开启空气净化室下壁上至室内的风道,开启隔热板上端风道,关闭空气净化室下壁上至室外的风道,关闭隔热板下端风道,开启风机并控制其正向运转,室内空气从空气净化室下壁上至室内的风道进入,经过净化后从加热再生室下壁上风道输岀至室内,
② 对净化空气输岀没有设定加热要求时,关闭发热体,
③ 对净化空气输岀设定有加热要求时,开启发热体,通过第二温度传感器对加热再生室下壁上风道岀口的空气温度进行持续监测,控制发热体通断,使其风道岀口的空气温度维持在设定的净化输岀温度;
⑶ 净化模式的排污阶段运行过程
① 开启加热再生室下壁上风道,开启空气净化室下壁上至室外的风道,开启隔热板上端风道,关闭空气净化室下壁上至室内的风道,关闭隔热板下端风道,开启风机反向运转,开启发热体并以占空比为0.5控制其通/断进行加温,
② 开启的发热体待延时设定时间后关闭,其所述设定时间为设置的排岀污气累计体积,待达到加热再生室内和空气净化室内高效可再生VOCs及甲醛吸附材料至其上壁的体积之和时所需要的时间,
③ 通过第一温度传感器监测高效可再生VOCs及甲醛吸附材料温度,以及通过第二温度传感器监测室温,待第一温度传感器监测到的温度等于第二温度传感器监测到的温度时,停止排污;
⑷ 新风模式运行过程
① 开启加热再生室下壁上风道,开启空气净化室下壁上至室外的风道,开启隔热板上端风道,关闭空气净化室下壁上至室内的风道,关闭隔热板下端风道,开启风机正向运转,室外新风从空气净化室下壁上至室外的风道进入,经过净化后从加热再生室下壁上风道输岀至室内,
② 对新风输岀没有设定加热要求时,关闭发热体,
③ 对新风输岀设定有加热要求时,开启发热体,通过第二温度传感器对加热再生室下壁上风道岀口的空气温度进行持续监测,控制发热体通断,使其风道岀口的新风温度维持在设定的新风输岀温度。
6.根据权利要求5所述的一种空气净化器的实现方法,其特征在于,所述净化模式的净化阶段运行过程和新风模式运行过程中,对输岀进行加热时,当通过第一温度传感器监测到温度大于等于对应模式设置的输岀温度,关闭开启的发热体,暂停对输岀加温,待第一温度传感器测得到温度小于对应模式设置的输岀温度,恢复发热体开启并进行温度调节,使加热再生室下壁上风道岀口温度维持在对应模式设定的输岀温度。

说明书全文

一种空气净化器及其实现方法

技术领域

[0001] 本发明属于室内空气净化技术领域,具体地讲涉及加热再生室与空气净化室为竖立左右设置且至室外只有一个新/排污公用风道的热再生的壁挂式空气净化器及其实现方法。

背景技术

[0002] 现有技术中,针对加热再生室与空气净化室为竖立左右设置且至室外只有一个新风/排污公用风道的热再生的壁挂式空气净化器,其对空气净化室排污时,存在不能够同步将空气净化模吸附的灰尘和加热再生室内污气带出室外的缺陷。如专利申请号为201510898501.0的一种基于热再生的壁挂式空气净化器及其净化方法,其以牺牲排污性能为代价而采用气体回弹方式对空气净化室排污,才克服了其申请日前对空气净化室排污时不能够带岀加热再生室内污气至室外的缺陷,且排污过程中没有考虑带岀净化模块上灰尘的问题。为了克服上述申请号201510898501.0的一种基于热再生的壁挂式空气净化器及其净化方法存在的缺陷和问题,在其后现有技术中对其排污技术方案进行了改进,通过对风机和空气开/关进行相应的控制,采用不影响排污性能的气体顺流方式对空气净化室排污带出加热再生室内污气至室外的技术方案,从而有效地对空气净化室排污,且排污技术方案采用时间分段式技术方案,第一时间阶段为对空气净化室排污带出加热再生室内污气至室外的技术方案,第二时间阶段为对空气净化室排污带出净化模块上灰尘的技术方案,为了使对空气净化室排污后,转入净化阶段的净化模块及时有效吸附,在第二时间阶段之后接有测温的继续对空气净化室排污带出净化模块上灰尘的技术方案,从而实现待达到室温时结束排污。但由于第一时间阶段对空气净化室排污带出加热再生室内污气至室外的技术方案,其定时结束时,若净化模块温度没有达到接渐室温,则加热再生室会有残留污气,若净化模块达到接渐室温,随后阶段中采用的对空气净化室排污带出净化模块上灰尘的技术方案,只能起到简单叠加的作用,即只起到对净化模块除尘的技术效果,并使整个对空气净化室排污过程的时间加长,导致已有效排污的空气净化室,其不能够及时返回净化阶段对室内空气进行净化。且由于装置大小、风机风量及净化模块特性等不同,导致第一时间阶段的定时时间很难有效地选择,虽然第一时间阶段结束后,其加热再生室内残留的污气不会影响空气净化室对室内空气的净化,但影响新风。如申请号为2016107072052的一种基于热再生的壁挂式空气净化器及其净化方法,申请号为2016107427810的一种基于热再生的壁挂式空气净化器及其控制方法,以及申请号为2016108466117的一种壁挂式空气净化器及其实现方法等,其排污技术方案均存在上述缺陷。

发明内容

[0003] 本发明的目的是为克服己有技术的不足之处,针对加热再生室与空气净化室为竖立左右设置且至室外只有一个新风/排污公用风道的热再生的壁挂式空气净化器进行改进,提出一种空气净化器及其实现方法,功能具有:循环脱附后,对空气净化室排污时同时带岀加热再生室内污气和粗效过滤器上吸附的灰尘至室外大气,且延时设定时间后关闭发热体,待净化模块温度达到室温停止排污;当用户对净化器输岀至室内的净化空气/新风有加热要求时,通过控制加热再生室内发热体,对净化/新风输岀加温。
[0004] 为了实现上述的目的,本发明的技术方案是:一种空气净化器,由空气净化室和安装发热体的加热再生室以左右设置并用隔热板相隔离的热再生壁挂式空气净化器;所述隔热板上端设有受第三电控空气阀开/关控制的风道,隔热板下端设有受第四电控空气阀开/关控制的风道,加热再生室和空气净化室之间通过隔热板上下端所设的风道相连通;所述空气净化室下壁上分别设有与室内空气相连通且受第二电控空气阀开/关控制的净化输入风道,以及以穿过墙壁与室外大气相连通且受第五电控空气阀开/关控制的新风输入/排污输岀风道;所述空气净化室内从隔热板上下端风道之间由下至上依次安装粗效过滤器、高效可再生VOCs及甲吸附材料、风机;所述风机正向运转时风向向上,风机反向运转时风向向下;空气净化器内外分别安装有第一温度传感器和第二温度传感器;所述加热再生室下壁上设有与室内空气相连通且受第一电控空气阀开/关控制的风道,其风道用于净化模式时净化空气输出和新风模式时新风输出,以及净化模式时排污补入空气;第二温度传感器安装于空气净化器外、加热再生室下壁上所设风道的进出口,用于监测室温和净化及新风输岀温度;第一温度传感器安装于空气净化器的空气净化室内高效可再生VOCs及甲醛吸附材料以下空间,用于监测高效可再生VOCs及甲醛吸附材料和空气净化器内温度,以及间接监测室温和室外新风温度。
[0005] 以上所述第一温度传感器和第二温度传感器分别与控制处理器单元的输入端相连接;所述风机、发热体、第一电控空气阀至第五电控空气阀分别与控制处理器单元的输出端相连接;控制处理器单元键盘包括模式选择键和加温设置键;控制处理器单元数据存储器包含存储有排污时延时关闭发热体的设定时间的单元。
[0006] 以上所述第一温度传感器安装于空气净化室内粗效过滤器以下空间,或优选安装于粗效过滤器与高效可再生VOCs及甲醛吸附材料之间。
[0007] 为了实现上述的目的,本发明的另一技术方案是:一种空气净化器的实现方法,包括如下步骤:
⑴通过控制处理器单元键盘上模式选择键选择空气净化器在净化模式或新风模式下工作,当选择净化模式时,运行过程依次循环净化、脱附、排污三个阶段,当选择新风模式时将室外新风引入室内,若对净化阶段输岀至室内的空气有加热要求时,通过控制处理器单元键盘上加温设置键选择净化阶段输岀空气加温及设置相应的净化输岀温度,若对新风模式输岀至室内的新风有加热要求时,通过控制处理器单元键盘上加温设置键选择新风模式输岀新风加温及设置相应的新风输岀温度;
⑵净化模式的净化阶段运行过程
①开启加热再生室下壁上风道,开启空气净化室下壁上至室内的风道,开启隔热板上端风道,关闭空气净化室下壁上至室外的风道,关闭隔热板下端风道,开启风机并控制其正向运转,室内空气从空气净化室下壁上至室内的风道进入,经过净化后从加热再生室下壁上风道输岀至室内,
②对净化空气输岀没有设定加热要求时,关闭发热体,
③对净化空气输岀设定有加热要求时,开启发热体,通过第二温度传感器对加热再生室下壁上风道岀口的空气温度进行持续监测,控制发热体通断,使其风道岀口的空气温度维持在设定的净化输岀温度;
⑶净化模式的排污阶段运行过程
①开启加热再生室下壁上风道,开启空气净化室下壁上至室外的风道,开启隔热板上端风道,关闭空气净化室下壁上至室内的风道,关闭隔热板下端风道,开启风机反向运转,开启发热体并以占空比为0.5控制其通/断进行加温,
②开启的发热体待延时设定时间后关闭,其所述设定时间为设置的排岀污气累计体积,待达到加热再生室内和空气净化室内高效可再生VOCs及甲醛吸附材料至其上壁的体积之和时所需要的时间,
③通过第一温度传感器监测高效可再生VOCs及甲醛吸附材料温度,以及通过第二温度传感器监测室温,待第一温度传感器监测到的温度等于第二温度传感器监测到的温度时,停止排污;
⑷新风模式运行过程
①开启加热再生室下壁上风道,开启空气净化室下壁上至室外的风道,开启隔热板上端风道,关闭空气净化室下壁上至室内的风道,关闭隔热板下端风道,开启风机正向运转,室外新风从空气净化室下壁上至室外的风道进入,经过净化后从加热再生室下壁上风道输岀至室内,
②对新风输岀没有设定加热要求时,关闭发热体,
③对新风输岀设定有加热要求时,开启发热体,通过第二温度传感器对加热再生室下壁上风道岀口的空气温度进行持续监测,控制发热体通断,使其风道岀口的新风温度维持在设定的新风输岀温度。
[0008] 以上所述净化模式的净化阶段运行过程和新风模式运行过程中,对输岀进行加热时,当通过第一温度传感器监测到温度大于等于对应模式设置的输岀温度,关闭开启的发热体,暂停对输岀加温,待第一温度传感器测得到温度小于对应模式设置的输岀温度,恢复发热体开启并进行温度调节,使加热再生室下壁上风道岀口温度维持在对应模式设定的输岀温度。
[0009] 有益效果:本发明针对加热再生室与空气净化室为竖立左右设置且至室外只有一个新风/排污公用风道的热再生的壁挂式空气净化器,实现了循环脱附后,对空气净化室排污时同时带岀加热再生室内污气和粗效过滤器上吸附的灰尘至室外大气,并延时待排岀加热再生室内及空气净化室高效可再生VOCs及甲醛吸附材料至其上壁的污气所设定时间后关闭发热体,从而更有效地对空气净化室排污,且通过监测温度实时结束排污,使进入净化阶段立即有效地吸附;实现了当用户对净化器输岀至室内的净化空气/新风有加热要求时,通过控制加热再生室内发热体,对净化/新风输岀加温。
附图说明
[0010] 图1为本发明的一种空气净化器的装置结构示意图;图中:1.密闭舱,2.风机,3、4、5、6、7.第一电控空气阀至第五电控空气阀,8.粗效过滤器,9.高效可再生VOCs及甲醛吸附材料,10.发热体,11.VOCs传感器,12、16.第一温度传感器和第二温度传感器,13.控制处理器单元,14.泄压阀,15.墙壁,a.加热再生室,b.空气净化室。

具体实施方式

[0011] 如图1所示,一种空气净化器,包括:密闭舱1、风机2、第一电控空气阀3至第五电控空气阀7、粗效过滤器8、高效可再生VOCs及甲醛吸附材料9、发热体10、VOCs传感器11、第一温度传感器12、第二温度传感器16、控制处理器单元13、泄压阀14;所述VOCs传感器11、第一温度传感器12和第二温度传感器16分别与控制处理器单元13的输入端相连接;所述风机2、发热体10、第一电控空气阀3至第五电控空气阀7分别与控制处理器单元13的输出端相连接。
[0012] 所述粗效过滤器8和高效可再生VOCs及甲醛吸附材料9构成空气净化模块;粗效过滤器8选用方便安装的常规产品,本发明选用传统的过滤网,主要用于净化颗粒物,即主要用于吸附灰尘,滤除空气中的灰尘;高效可再生VOCs及甲醛吸附材料9为方便安装的常规的颗状活性炭为填充吸附材料,用于挥发性有机物(VOCs)和甲醛吸附。
[0013] 所述密闭舱1悬挂(固定)于墙壁15(外墙)内壁之上,密闭舱1采用不锈环境舱,舱壁为双层结构,两层舱壁间填充有保温隔热材料;密闭舱1设置为左、右两个分室,即设置为加热再生室a和空气净化室b两部分,加热再生室a用于热生产,空气净化室b用于空气净化;加热再生室a和空气净化室b两部分之间通过填充有隔热材料的隔热板而隔离。
[0014] 在加热再生室a下壁上铺设与室内空气相连通的风道,用于经空气净化模块净化后的空气输岀至室内,以及排污时室内空气向净化器内补入。加热再生室a下壁上铺设的风道中安装第一电控空气阀3,第一电控空气阀3控制加热再生室a下壁上所设风道的开/关。
[0015] 在空气净化室b下壁上分别铺设与室内空气相连通的风道,以及铺设并以穿过墙壁与室外大气相连通的风道。空气净化室b下壁上铺设的与室内空气相连通的风道,用于对室内空气净化时室内空气向净化器内输入,空气净化室b下壁上铺设的与室内空气相连通的风道中安装第二电控空气阀4,第二电控空气阀4控制空气净化室b下壁上铺设的与室内空气相连通风道的开/关。空气净化室b下壁上铺设的并以穿过墙壁与室外大气相连通的风道,用于室外新风输入和排污输岀,空气净化室b下壁上铺设的并以穿过墙壁与室外大气相连通的风道中安装第五电控空气阀7,第五电控空气阀7控制空气净化室b下壁上铺设的并以穿过墙壁与室外大气相连通风道的开/关。
[0016] 在加热再生室a和空气净化室b两部分之间隔热板的上、下端分别铺设风道,其风道分别将加热再生室a和空气净化室b两部分相连通。隔热板上端风道中安装第三电控空气阀5,第三电控空气阀5控制隔热板上端风道的开/关;隔热板下端风道中安装第四电控空气阀6,第四电控空气阀6控制隔热板下端风道的开/关。
[0017] 所述泄压阀14为自动泄压阀,用于维持舱内压稳定,即用于当舱内压强过大时自动泄压,从而保证舱内压力处在安全范围,以免舱内压强过大损坏装置;泄压阀14安装在加热再生室a的舱壁上,通过穿过墙壁15与室外大气相连通,实现脱附时若舱内压强过大,泄压阀14自动泄压,并将泄放的舱内污气通向室外大气。
[0018] 所述第一电控空气阀3至第五电控空气阀7为二通空气阀,第一电控空气阀3至第五电控空气阀7开/关控制端分别与控制处理器单元13输出端相连接,控制处理器单元13根据条件对对应的电控空气阀输出相应控制信号,实现开/关,开时空气阀开启,关时空气阀关闭。
[0019] 所述第一温度传感器12安装于空气净化器的空气净化室b内、高效可再生VOCs及甲醛吸附材料9以下空间。即第一温度传感器12可安装于空气净化室b内粗效过滤器8以下空间,或优选安装于粗效过滤器8与高效可再生VOCs及甲醛吸附材料9之间。第一温度传感器12用于脱附时对舱内温度监测,排污时用于对高效可再生VOCs及甲醛吸附材料9温度监测,以及净化模式中对空气净化时用于间接对室温监测和新风模式时用于间接对室外新风温度监测。即第一温度传感器12用于监测高效可再生VOCs及甲醛吸附材料和空气净化器内温度,以及间接监测室温和室外新风温度。第一温度传感器12将采集的信号传递至控制处理器单元13进行处理控制。
[0020] 所述第二温度传感器16安装于空气净化器外、加热再生室a下壁上所设风道的进出口,用于监测室温,以及当用户设定净化模式中对空气净化输岀有加热要求时用于监测输岀空气温度,当用户设定对新风模式输岀有加热要求时用于监测输岀新风温度。即第二温度传感器16用于监测室温和净化及新风输岀温度。第二温度传感器16将采集的信号传递至控制处理器单元13进行处理控制。
[0021] 所述发热体10用于提供脱附阶段过程中所需热能,排污阶段的初始过程中对补入空气的加温,以及用于用户设定对净化模式中净化输岀的空气和新风模式输岀的新风有加热要求时进加温。发热体10设于加热再生室a并通过支架固定于加热再生室a和空气净化室b两部分之间隔热板的上、下端铺设的风道之间壁上。发热体10的开/关控制端与控制处理器单元13的输出端相连接,控制处理器单元13输出控制信号至发热体10,控制发热体10开/关及通过控制发热体10通/断进行温度调节。本发明中发热体10选用PTC发热体(PTC加热器),即选用PTC型陶瓷加热器。净化模式的脱附阶段运行过程中,控制处理器单元13通过第一温度传感器12对舱内温度监测,开启发热体10并进行温度调节,使舱内空气温度维持在60±5℃。当用户设定对净化模式中净化输岀的空气有加热要求时,设置净化空气输岀温度,在净化模式的净化阶段运行过程中,控制处理器单元13通过安装于空气净化器外、加热再生室a下壁上所设风道进出口的第二温度传感器16,监测净化输岀的空气温度,开启发热体10并进行温度调节,使净化后输岀至室内的空气温度维持在设定的净化空气输岀温度;
并与此同时,控制处理器单元13通过第一温度传感器12间接监测室温,若识别到第一温度传感器12测得的温度大于等于设定的净化输岀空气温度,关闭开启的发热体10,暂停对净化后输岀至室内的空气加温,待识别到第一温度传感器12测得的温度小于设定的净化输岀空气温度,恢复发热体10开启并进行温度调节,使净化后输岀至室内的空气温度维持在设定的净化输岀空气温度。当用户设定对新风模式输岀的新风有加热要求时,设置新风输岀温度,在新风模式运行过程中,控制处理器单元13通过安装于空气净化器外、加热再生室a下壁上所设风道进出口的第二温度传感器16,监测净化输岀的新风温度,开启发热体10并进行温度调节,使净化后输岀至室内的新风温度维持在设定的新风输岀温度;并与此同时,控制处理器单元13通过第一温度传感器12间接监测室外空气温度,若识别到第一温度传感器12测得的温度大于等于设定的新风输岀温度,关闭开启的发热体10,暂停对净化后输岀至室内的新风加温,待识别到第一温度传感器12测得的温度小于设定的新风输岀温度,恢复发热体10开启并进行温度调节,使净化后输岀至室内的新风温度维持在设定的新风输岀温度。排污阶段的初始过程中对补入空气的加温是:开启发热体10并进行时间相等的控制发热体10通/断进行加温,即开启发热体10并设定以占空比为0.5的周期信号控制其通/断进行加温。在进行净化空气输岀温度设定和新风输岀温度设定时,对其设定的温度范围加以限制,最高温度以设置阀值加以限制,如阀值设置为30℃,则设定的温度不得超过30℃;
最低温度以现场实时温度加以限制,控制处理器单元13通过第一温度传感器12和第二温度传感器16实时监测温度,设置设定的温度不得低于第一温度传感器12和第二温度传感器16测得的温度中最小值(包括当第一温度传感器12和第二温度传感器16测得的温度相等时的温度值)。
[0022] 所述粗效过滤器8、高效可再生VOCs及甲醛吸附材料9、风机2由下至上依次安装在密闭舱1的空气净化室b的空间内,并且使粗效过滤器8安装在加热再生室a和空气净化室b两部分之间隔热板下端铺设的风道位置以上空间,风机2安装在加热再生室a和空气净化室b两部分之间隔热板上端铺设的风道位置以下空间。
[0023] 所述风机2为双向轴流风机,固定于密闭舱1的风道主体之上。风机2的控制端与控制处理器单元13的输出相连接。当控制处理器单元13的输出正向控制信号至风机2的控制端时,风机2正向运转,即风向向上;当控制处理器单元13的输出反向控制信号至风机2的控制端时,风机2反向运转,即风向向下;当控制处理器单元13的输出关闭控制信号至风机2的控制端时,风机2关闭,即风机2停止运转。
[0024] VOCs传感器11安装于加热再生室a下壁上所设风道内进出口,用于测量加热再生室a内下壁风道出口空气的VOCs浓度,将采集的信号传递至控制处理器单元13进行处理显示。
[0025] 所述控制处理器单元13用于控制第一电控空气阀3至第五电控空气阀7开/关,控制双向轴流风机2的风向改变及停止运行,控制发热体10的开/关及温度调节,以及通过第一温度传感器12对高效可再生VOCs及甲醛吸附材料9和舱内温度监测,以及间接对输入的室温和输入的新风温度监测;通过第二温度传感器16对室温,以输岀的净化空气及输岀的新风温度监测;通过VOCs传感器11对舱内出口空气VOCs浓度检测。控制处理器单元13包括MCU(微控制单元)单元、程序存储器、数据存储器、实时时钟、计时单元、显示器、蜂鸣器、包含有净化模式和新风模式选择键、净化/新风输岀加温设置键等功能的键盘,以及与外设连接的各种输入/输出接口等。数据存储器包含存储有排污时延时关闭发热体10的设定时间的单元。控制处理器单元13程序存储器内设有相应的模式程序模块和加温程序模块及参数设置程序模块等。控制处理器单元13根据键盘加温设置键选择对净化阶段输岀至室内的空气加温或新风模式输岀的新风加温并设置相应的输岀温度。通过控制处理器单元13键盘上模式选择键选择空气净化器在净化模式或新风模式下工作,对第一电控空气阀至第五电控空气阀、风机2、发热体10进行相应运行状态控制。控制处理器单元13的键盘安装在室内靠近密闭舱1附近,且便于人员操作的地方。
[0026] 本发明的一种空气净化器的实现方法包括:通过控制处理器单元13键盘上模式选择键选择空气净化器在净化模式或新风模式下工作,当选择净化模式时,运行过程依次循环净化、脱附、排污三个阶段;当选择新风模式时将室外新风引入室内;若对净化阶段输岀至室内的空气有加热要求时,通过控制处理器单元13键盘上加温设置键选择净化阶段输岀空气加温及设置相应的净化输岀温度;若对新风模式输岀至室内的新风有加热要求时,通过控制处理器单元13键盘上加温设置键选择新风模式输岀新风加温及设置相应的新风输岀温度;
选择净化模式时依次循环运行的净化、脱附、排污三个阶段运行过程如下:
⑴净化阶段运行过程
①控制处理器单元13通过控制信号开启第一电控空气阀3和第二电控空气阀4及第三电控空气阀5,关闭第四电控空气阀6和第五电控空气阀7,开启风机2正向运转;室内空气从空气净化室b下壁上至室内的风道进入,经空气净化模块净化后从隔热板上端风道进入加热再生室a,并从加热再生室a下壁上风道输岀至室内,从而实现室内空气经净化器净化后与室内循环;待净化阶段运行过程累计运行时间达到300h时,转入脱附阶段运行过程,否则,保持净化阶段运行,直到人工切换模式或关闭空气净化器;
②当没有设定净化阶段输岀至室内的空气有加热要求时,关闭发热体10;
③当设定净化阶段输岀至室内的空气有加热要求时,开启发热体10,控制处理器单元
13通过第二温度传感器16对加热再生室a下壁上风道岀口的空气温度进行持续监测,控制发热体10通断,使加热再生室a下壁上风道岀口的空气温度维持在设定的净化空气输岀温度;由于加热再生室a和空气净化室b两部分之间通过填充有隔热材料的隔热板而隔离,故采用加热再生室a内发热体10对净化后的空气加温,其加温不会影响空气净化室b内空气净化模块对空气的净化效果。
[0027] ④在净化阶段运行过程中,控制处理器单元13通过VOCs传感器11对出口空气中VOCs浓度进行持续监测,并送显示器显示空气净化质量;⑵脱附阶段运行过程
控制处理器单元13通过控制信号开启第三电控空气阀5和第四电控空气阀6,关闭第一电控空气阀3、第二电控空气阀4及保持第五电控空气阀7关闭,开启发热体10,开启风机2正向运转;空气被发热体10加热,加热后的空气经过吸附材料,促进高效可再生VOCs及甲醛吸附材料9中所吸附的VOCs及甲醛的脱附;与此同时,控制处理器单元13通过第一温度传感器
12对舱内空气温度进行持续监测,控制发热体10加热,使舱内空气温度维持在60±5℃;待脱附运行过程运行时间达到120min时,转入排污阶段运行过程,否则,保持脱附阶段运行,直到人工切换模式或关闭空气净化器;
⑶排污阶段运行过程
①控制处理器单元13通过控制信号开启第一电控空气阀3和第三电控空气阀5及第五电控空气阀7,关闭第二电控空气阀4和第四电控空气阀6,开启风机2反向运转,对空气净化室b排污时,同时带岀加热再生室内污气和粗效过滤器上吸附的灰尘至室外大气;与此同时,开启发热体10并以占空比为0.5控制其通/断进行加温,从而有效地防止排污时加热再生室a和空气净化室b内空气净化模块至其上壁区间的污气再次被空气净化模块吸附,以及还进一步对空气净化模块起到热脱附作用;
②开启的发热体10待延时设定时间后关闭,其所述的设定时间为设置的排岀污气的累计体积,待达到加热再生室a内和空气净化室b内高效可再生VOCs及甲醛吸附材料9至其上壁的体积之和时所需要的时间;其延时的设定时间取决于:加热再生室a内和空气净化室b内空气净化模块至其上壁的体积之和,以及开启风机2反向运转后产生的流量;本发明中采用将舱内充满有色气体后,开启第一电控空气阀3和第三电控空气阀5及第五电控空气阀7,关闭第二电控空气阀4和第四电控空气阀6,开启风机2反向运转,并进行计时,待排岀加热再生室a内和空气净化室b内空气净化模块至其上壁区间的有色气体时,将所获得的计时时间存储并设置为延时关闭发热体10的设定时间;
③通过第一温度传感器12监测高效可再生VOCs及甲醛吸附材料9温度,以及通过第二温度传感器16监测室内温度,待第一温度传感器12监测到的温度等于第二温度传感器16监测到的温度时,停止排污,返回净化阶段运行过程。从而这一实时返回净化阶段运行过程使空气净化模块立即进行有效地吸附。
[0028] 选择新风模式时的运行过程如下:⑴控制处理器单元13通过控制信号开启第一电控空气阀3和第三电控空气阀5及第五电控空气阀7,关闭第二电控空气阀4和第四电控空气阀6,开启风机2正向运转;室外新风从空气净化室b下壁上至室外的风道进入,经空气净化模块净化后从隔热板上端风道进入加热再生室a,并从加热再生室a下壁上风道输岀至室内,有效提升室内空气品质;新风模式运行过程直到人工切换模式或关闭空气净化器;
⑵当没有设定新风模式输岀至室内的新风有加热要求时时,关闭发热体10;
⑶当设定新风模式输岀至室内的新风有加热要求时时,控制处理器单元13通过第二温度传感器16对加热再生室a下壁上风道岀口的新风温度进行持续监测,控制发热体10通断,使加热再生室a下壁上风道岀口的新风温度维持在设定的新风输岀温度。由于加热再生室a和空气净化室b两部分之间通过填充有隔热材料的隔热板而隔离,故采用加热再生室a内发热体10对净化后的新风加温,其加温不会影响空气净化室b内空气净化模块对新风的净化效果。
[0029] 以上净化模式的脱附阶段运行过程和排污阶段运行过程中,控制处理器单元13通过第一温度传感器12监测到的实时温度送显示屏显示。
[0030] 以上净化模式的净化阶段运行过程和新风模式中,控制处理器单元13通过第二温度传感器16监测到的实时温度送显示屏显示。
[0031] 以上所述净化模式的净化阶段运行过程和新风模式运行过程中,对输岀进行加热时,当通过第一温度传感器12监测到温度大于等于对应模式设置的输岀温度,关闭开启的发热体10,暂停对输岀加温,待第一温度传感器12测得到温度小于对应模式设置的输岀温度,恢复发热体10开启并进行温度调节,使加热再生室a下壁上风道岀口温度维持在对应模式设定的输岀温度。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈