首页 / 专利库 / 畜牧业 / 家畜 / 反刍动物 / / 急性肺损伤细胞模型的制备方法及其应用

急性损伤细胞模型的制备方法及其应用

阅读:530发布:2023-12-26

专利汇可以提供急性损伤细胞模型的制备方法及其应用专利检索,专利查询,专利分析的服务。并且本 发明 涉及一种急性 肺 损伤细胞模型的制备方法及其应用,属于医药 生物 领域。其包括:1)将A549细胞置于诱导培养基中进行诱导培养,然后弃去培养基,消化 收获 细胞;2)将收获的A549细胞用培养基悬浮,置于培养皿中,添加炎性物质刺激激发 炎症 反应,继续培养12-48小时后,即可用于ALI药物筛选。,下面是急性损伤细胞模型的制备方法及其应用专利的具体信息内容。

1.一种ALI细胞模型的制备方法,其包括:
1)将A549细胞置于诱导培养基中进行诱导培养,然后弃去培养基,消化收获细胞;
2)将收获的A549细胞用培养基悬浮,置于培养皿中,添加炎性物质刺激激发炎症反应,继续培养12-48小时后,即用。
2.根据权利要求1所述的ALI细胞模型的制备方法,其特征在于,所述诱导培养基为SABM培养基(small airway basal medium),其中添加:2-10g/L的血清白蛋白、0.5-4g/L的转蛋白以及0.001-0.05ug/L的FGF。
3.根据权利要求1所述的ALI细胞模型的制备方法,其特征在于,所述诱导培养基为SABM培养基(small airway basal medium),其中添加:2-10g/L的牛血清白蛋白、0.5-4g/L的转铁蛋白以及0.001-0.05ug/L的FGF。
4.根据权利要求3所述的ALI细胞模型的制备方法,其特征在于,所述诱导培养基为SABM培养基(small airway basal medium),其中添加:4-6g/L的牛血清白蛋白、1-3g/L的转铁蛋白以及0.005-0.01ug/L的FGF。
5.根据权利要求1所述的ALI细胞模型的制备方法,其特征在于,所述炎性物质为LPS和PAF(血小板凝集因子);具体地讲,所述炎性物质在细胞培养液中的终浓度为10-100ug/L的LPS和0.1-10ng/L的PAF。
6.根据权利要求5所述的ALI细胞模型的制备方法,其特征在于,所述炎性物质在细胞培养液中的终浓度为15-30ug/L的LPS和0.5-2ng/L的PAF。
7.根据权利要求1所述的ALI细胞模型的制备方法,在步骤2)中,所述培养基选自F12K培养基、DMEM培养基和RPMI 1640培养基中的一种或多种。
8.权利要求1-7任一项所述制备方法所制备的细胞模型。
9.权利要求8所述细胞模型在筛选治疗ALI疾病药物中的应用。
10.权利要求8所述细胞模型在研究ALI发病机制中的应用。

说明书全文

急性损伤细胞模型的制备方法及其应用

技术领域

[0001] 本发明涉及一种急性肺损伤细胞模型的制备方法及其应用,属于医药生物领域。

背景技术

[0002] 急性肺损伤(Acute lung injury,ALI)是临床常见急重症,以进行性加重的呼吸困难、顽固的低血症为临床特征,其严重阶段可发展为成人呼吸窘迫综合征(Acute respiratory distress syndrome,ARDS),ARDS是临床危重症发生急性呼吸衰竭的主要原因,病死率高达50%。常见的致病因素主要有:感染、有害物质吸入、外伤、休克、中毒等。ALI的发病机制较为复杂,其病理基础是肺内失控的炎症反应所致的肺泡毛细血管膜损伤,进而导致肺肿及透明膜形成。肺泡II型上皮细胞作为肺泡主要结构细胞,在炎症因子和氧化应激的攻击下,其凋亡或坏死的数量直接决定了ALI的严重程度及预后走向,ALI/ARDS缺乏特效治疗,发病率及病死率均处于高水平,因而其发病机制以及药物筛选是本领域内的研究热点。
[0003] 细胞层面的药物筛选是药物研发中最基础环节,虽然细胞模型的试验结果与动物模型结果、人的临床结果存在较大差别,但是其可以节省大量的试验工作量和成本,排除大量活性较差的候选药物,因此细胞模型仍是目前药物研发或机制研究初级阶段中最为常用的实验手段。
[0004] 对于ALI的细胞模型来说,由于原代培养肺泡II型上皮细胞(alveolar epithelial type II cells,ATII)在体外培养过程中很快失去表达表面活性质的情况一直存在,从而导致其很难作为大规模的药物筛选细胞模型来进行使用。人肺细胞系A549是人肺腺癌细胞系,同时其也具备类肺泡II型上皮细胞的部分特性;因此本领域一直采用A549作为细胞模型,进行关于ALI的药物筛选以及作用机制的相关研究。为了模拟体内的炎症及氧化应激反应,本领域通常采用LPS、TNF-a添加到A549中来模拟体内的炎症反应,进而激发细胞内的氧化损伤,从而进行药物筛选或机制研究。
[0005] 出人意料的是,由于A549的肺癌细胞特性,其也作为肺癌细胞模型进行药物筛选;因此我们经常看到较为矛盾的结果。例如,非专利文献:刘斌[1],许可[2],韩宏斌[5],et al.白藜芦醇诱导A549细胞凋亡的实验研究[J].中华肿瘤防治杂志,2014,21(10):740-
743.公开了白藜芦醇通过下调Bcl-2的表达来促进A549细胞的凋亡,从而抑制其增殖;而非专利文献:崔立春,耿会生,杜建飞,et al.白藜芦醇对脂多糖诱导的人肺泡上皮细胞A549凋亡的保护作用机制[J].现代肿瘤医学,2014,22(7):1550-1553.公开了白藜芦醇通过提高Bcl-2的表达来保护A549所受到的炎症损伤。对于同一作用靶点来说,药物极少见到具有双重的调节活性,因此这就导致了采用A549作为ALI细胞药物筛选模型的客观性存在质疑。
[0006] 究其原因可能是A549具有双重细胞特性,使用时其所表达的ATII型细胞特征不明显,从而导致其作为ALI的药物筛选细胞模型仍然存在明显缺陷,容易导致评价结果客观性较差。

发明内容

[0007] 本发明的第一方面提供一种ALI细胞模型的制备方法,其包括:
[0008] 1)将A549细胞置于诱导培养基中进行诱导培养,然后弃去培养基,消化收获细胞;
[0009] 2)将收获的A549细胞用培养基悬浮,置于培养皿中,添加炎性物质刺激激发炎症反应,继续培养12-48小时后,即可用于ALI药物筛选。
[0010] 在一个实施方案中,所述诱导培养基为SABM培养基(small airway basal medium),其中添加:2-10g/L的血清白蛋白、0.5-4g/L的转蛋白以及0.001-0.05ug/L的FGF。所述A549细胞在诱导培养基中培养2-4天。
[0011] 在进一步地实施方案中,所述诱导培养基为SABM培养基(small airway basal medium),其中添加:4-6g/L的牛血清白蛋白、1-3g/L的转铁蛋白以及0.005-0.01ug/L的FGF。所述A549细胞在诱导培养基中培养3天。优选地,在A549细胞经过诱导培养后,弃去上清液,反复用PBS溶液清洗5-10次,然后再进行下一步骤。
[0012] 在另一个实施方案中,所述炎性物质为LPS和PAF(血小板凝集因子)。具体地讲,所述炎性物质在细胞培养液中的终浓度为10-100ug/L的LPS和0.1-10ng/L的PAF;优选的,所述炎性物质在细胞培养液中的终浓度为15-30ug/L的LPS和0.5-2ng/L的PAF。
[0013] 在步骤2)中,所述培养基选自F12K培养基、DMEM培养基和RPMI1640培养基中的一种或多种。
[0014] 在进一步地实施方案中,所述步骤2)为:将收获的A549细胞用培养基悬浮,置于培养皿中在孵箱培养1-3天后,添加终浓度10-100ug/L的LPS和0.1-10ng/L的PAF,继续培养12-48小时后,即可用于ALI药物筛选。
[0015] 本发明的第二方面是提供一种上述制备方法所制备的细胞模型。
[0016] 在一个实施方案中,所述细胞模型可用于治疗急性肺损伤的药物筛选,对于筛选过程来讲,一种方式是可以在步骤1)之后,添加炎性物质之前,添加药物对A549细胞进行预处理,然后添加炎性物质,进行造模以及后续的药效评价,也就是相当于动物实验中的预防给药。另一种方式是在添加炎性物质培养12-48小时后,在向培养基中添加药物,再继续培养一段时间后进行药效评价,也就是相当于动物实验中的预防性给药。在此本发明不进行特殊的限制,对于所述ALI细胞模型来说,加药方式是可以灵活选择的,以上仅是作为示例,其他不同时间节点的加药方式也包含在本发明的保护范围内。
[0017] 本发明的第三方面是提供所述细胞模型在筛选治疗ALI疾病药物中的应用。
[0018] 本发明的第四方面是提供所述细胞模型在研究ALI发病机制中的应用。
[0019] 本发明发现A549细胞的类AT II细胞特性较弱,因此直接将其作为ALI细胞模型有待商榷。在此基础上,尝试采用诱导剂使A549细胞进一步向AT II细胞方向分化,使其类AT II细胞特性增强,从而成为一种更加适合作为ALI细胞模型的工作细胞。
[0020] 在进一步地的造模环节本发明发现,单独的LPS炎症诱发很难降低激发A549细胞内部的炎症反应,以及后续的ROS产生以及细胞凋亡。为了后续更加准确的评价细胞模型炎症反应,在不添加其他炎症因子的情况下,本发明对炎症诱导剂进行了筛选,从而获得了LPS+PAF这种最佳的炎症诱导剂组合,获得的细胞模型状态稳定,适合作为ALI药物筛选以及病理机制研究的细胞模型。

具体实施方式

[0021] 还可进一步通过实施例来理解本发明,其中所述实施例说明了一些制备或使用方法。然而,要理解的是,这些实施例不限制本发明。现在已知的或进一步开发的本发明的变化被认为落入本文中描述的和以下要求保护的本发明范围之内。
[0022] 实施例1 A549细胞诱导培养
[0023] 实验方法:
[0024] A549细胞购自中国科学院上海细胞库,在37℃下,95%O2和5%CO2的条件培养传代,每隔两天传代一次,取对数生长期的A549细胞,消化收集细胞,其中一部分用SABM培养基(small airway basalmedium,Lonza)混悬,另一部分用RPMI 1640培养基(Hyclone,含10%体积的FBS)混悬(对照组),然后分别用培养基混悬调整浓度至1×105个/ml铺于6孔板中,每孔2ml,置于孵箱中培养1天后,对采用SABM培养基培养的A549细胞进行随机分组,每组添加不同的诱导组合物,对照组给予等量RPMI1640培养基,培养3天后,进行检测。
[0025] 检测指标:
[0026] 1)测定SABM培养基各组细胞增殖
[0027] 采用MTT法对各组细胞进行活性检测。
[0028] 2)测定各组细胞中SPA和SPC蛋白的含量
[0029] 表面活性物质关联蛋白(SP)是ATII型细胞的关键特性指标,尤其是SPC是ATII型细胞特异表达的表面活性物质关联蛋白,而其他3种表面活性蛋白SP-A、SP-B、SP-D在其它细胞中也有表达;因此我们选择SPA和SPC作为A549细胞向类ATII型细胞转化的评价指标。具体为将收集的细胞在液氮条件下研磨破碎,离心收集蛋白悬液,BCA定量至4mg/L,然后进行ELISA测定(人表面活性物质关联蛋白ELISA相关试剂盒均购自Biolegend)。
[0030] 具体结果如下:
[0031] 1)测定SABM培养基各组细胞增殖率组别 OD值
对照组 0.67±0.014
SABM组1 0.63±0.031
SABM组2 0.65±0.023
SABM组3 0.61±0.027
SABM组1添加的诱导组合物为(终浓度):4ml/L牛脑垂体提取液、10ug/L表皮生长因子、
5ng/L胰岛素、0.5ng/L肾上腺素、0.5ng/L氢化可的松、10ng/L运铁蛋白、0.06ng/L三碘甲状腺原酸、0.1g/L维A酸、2.5g/L牛血清白蛋白。
SABM组2添加的诱导组合物为(终浓度):5g/L的牛血清白蛋白、2g/L的转铁蛋白以及
0.008ug/L的FGF。
SABM组3添加的诱导组合物为(终浓度):4ml/L牛脑垂体提取液、10ug/L表皮生长因子、
5ng/L胰岛素、0.5ng/L肾上腺素、10ng/L运铁蛋白、2.5g/L牛血清白蛋白。
[0032] 从上述结果看出,经诱导培养的A549细胞增殖速度与对照组常规培养的A549细胞略低,但统计学上无明显差异,可见诱导培养对A549细胞增殖没有影响。
[0033] 2)各组细胞中SPA和SPC蛋白的含量组别 SPA(ng/L) SPC(ng/L)
对照组 57.2±6.9 11.8±5.1
SABM组1 101.8±10.3** 32.5±6.4**
SABM组2 98.9±8.7** 41.1±5.8**
SABM组3 73.6±9.9** 16.7±4.6
经Oneway-ANOVA检验,**代表与对照组相比p<0.01
[0034] 从上述结果看出,对照组细胞的SPA和SPC含量较低,说明虽然A549就有一定的AT II型细胞特性,但是不是特别明显。在经过诱导培养的A549细胞中SPA和SPC含量明显提高;尤其是组1和组2的提高效果最为明显,但是考虑后续需要制备ALI模型,尽量控制诱导组合物中化学物质添加,因此采用组2的诱导组合物效果最佳。
[0035] 实施例2炎性物质诱导A549细胞凋亡模型的制备
[0036] 按照实施例1组2的方法对A549细胞进行培养,然后消化收集细胞,用PBS对细胞反5
复离心清洗5次,确保无诱导培养基残留,然后用无血清RPMI 1640培养基悬浮,按1×10个/ml铺于6孔板中,每孔2ml,用于凋亡和ROS检测,再按1×105个/ml铺于96孔板中,每孔
100ul,用于细胞活性检测。另取未经诱导的A549细胞同样铺于6孔板及96孔板中。
[0037] 对诱导后的A549细胞进行分组,96孔板每组5孔,6孔板每组3孔;分别为LPS组、PAF组、LPS+PAF组和诱导对照组。LPS组、PAF组和LPS+PAF组添加相应的炎性诱导剂,诱导对照组添加等量的培养基。
[0038] 对未诱导后的A549细胞进行分组,分为LPS对照组和对照组,LPS对照组添加LPS,对照组添加等量的培养基。
[0039] 各组培养24h后进行相关检测。
[0040] 检测指标:
[0041] 1)对96孔板细胞测定各组细胞活性(MTT法)
[0042] 2)对96孔板细胞上清液测定TNF-α含量
[0043] 吸取细胞上清液,然后采用ELISA试剂盒检测上清液中TNF-α含量。
[0044] 3)对6孔板细胞采用流式细胞仪测定凋亡情况
[0045] 采用Anexin V-FITC/PI试剂盒按照试剂盒说明书对细胞进行标记,然后上流式细胞仪进行检测,其中Anexin V-FITC单标记的细胞为凋亡细胞,Anexin V-FITC和PI双标记的细胞为坏死细胞。
[0046] 4)对6孔板细胞采用流式细胞仪测定细胞内ROS产生情况
[0047] 采用DCFH-DA探针对细胞进行孵育标记,然后上流式细胞仪检测。
[0048] 具体结果如下:
[0049] 1)各组细胞活性经Oneway-ANOVA检验,**代表与对照组相比p<0.01
[0050] 从结果可以看出,对于未经诱导的A549细胞,LPS对增殖抑制效果较差,再考虑到A549细胞较弱的类AT II细胞特性,很难作为ALI细胞模型进行应用。而诱导后的A549细胞,对LPS敏感度更差,继续添加PAF后抑制增殖效果大幅增强,可以为药物筛选或机制研究提供较大的治疗窗。
[0051] 2)上清液中TNF-α含量经Oneway-ANOVA检验,**代表与对照组相比p<0.01
[0052] 3)各组细胞凋亡率情况组别 凋亡率(%) 坏死率(%)
对照组 2.7±0.6 0.9±0.7
LPS对照组 10.9±2.1 3.9±1.4
诱导对照组 1.3±0.5 0.8±0.6
LPS组 21.6±3.8 7.2±1.8
PAF组 3.4±0.9 1.7±0.8
LPS+PAF组 45.8±5.3 9.6±1.3
[0053] 4)各组细胞ROS产生情况组别 ROS标记率(%)
对照组 0.5±0.3
LPS对照组 4.6±3.7**
诱导对照组 0.9±0.6
LPS组 15.7±4.1**
PAF组 1.8±0.5
LPS+PAF组 21.4±4.6**
[0054] 从上述结果可以看出,无论是诱导后还是未经诱导的A549细胞,均可以激发细胞内的炎症反应,可以看到细胞在经LPS孵育后分泌TNF-α的量大幅增加,但是对于未经诱导的细胞组来说,这种炎症因子并未导致大规模的细胞凋亡,这无疑对药物筛选不利,无法客观评价候选化合物对细胞的实质保护作用。而经过诱导的细胞不仅炎症因子分泌量大幅增加并且凋亡率也明显提高。另外,炎症诱发凋亡的一个重要原因是炎症因子导致细胞内氧自由基(ROS)含量大幅增加,进而ROS激发细胞内的凋亡级联通路,从而导致细胞凋亡,因此我们又考察了各组细胞ROS含量情况,结果与凋亡结果类似,说明本发明的ALI模型明显触发了炎症相关各种机制通路,为后续的疾病机制考察提供了良好的研究背景。
[0055] 本发明的ALI模型经多次重复试验,稳定性好,重现性高,适于用作ALI疾病相关的药物筛选模型或疾病机制研究模型。
[0056] 本发明内容仅仅举例说明了要求保护的一些具体实施方案,其中一个或更多个技术方案中所记载的技术特征可以与任意的一个或多个技术方案相组合,这些经组合而得到的技术方案也在本申请保护范围内,就像这些经组合而得到的技术方案已经在本发明公开内容中具体记载一样。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈