序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
81 基衬底的涂层系统 CN200610068252.3 2006-03-22 CN1868973A 2006-11-29 T·巴蒂亚; W·R·施密德特; W·K·特雷维; V·R·韦杜拉
发明提供了用于基衬底的粘合层系统,其中在所述硅基衬底和含硅金属的吸层之间提供了弹性模量为30-130GPa的柔性层。
82 调湿功能材料及其制造方法 CN98814089.6 1998-09-18 CN1278759C 2006-10-11 龟岛顺次; 小林秀纪
首先,准备作为骨架材料具有特定细孔(细孔直径为约3~8nm,细孔容积为约0.4cc/g)的粒状多孔体,将此氧化铝粒状多孔体70wt%、作为胶粘剂的玻璃釉20wt%和作为塑性成分的粘土10wt%混合。然后,将在此混合之际进行适当的份调整等到的泥浆压延成型作成砖形状的成型品。于是,将这种成型品在比氧化铝熔融温度低并比上述胶粘剂(玻璃釉)的熔融温度高的温度(约850℃)烧结。经过这样的工序,制造以具有特定细孔的氧化铝粒状多孔体为骨架材料,用使这种骨架相互熔融的玻璃釉固定的调湿砖。对于这种调湿砖,具有上述特定细孔的粒状物氧化铝粒状多孔体与邻接的氧化铝粒状多孔体通过玻璃釉被相互固定。这样,提供一种具有高调湿性能的调湿功能材料。
83 多层陶瓷复合物 CN200380109361.X 2003-11-19 CN1744941A 2006-03-08 F·埃伦; O·宾克利; R·诺宁格
在一种制造多孔陶瓷复合物的方法中,向先前已经烧结的陶瓷衬底上应用未烧结层,并在500-1300℃的温度下,将其和先前已烧结的衬底一起烧结,其中,该未烧结层中专包含有颗粒尺寸x≤100nm的陶瓷颗粒,并且该未烧结层在烧结后作为功能层所具有的层厚为s≤2.5μm。依据这种方法制得的功能层是无缺陷的,含有微细气孔,所以特别适合于用在过滤工艺中。
84 耐热产品 CN03813499.3 2003-06-03 CN1659116A 2005-08-24 J·A·费尼; A·泰勒; P·杰克逊
提供了一种组合物,其包括热解时形成尖晶石的基体和具有空心或层状结构的无机颗料填料,其中,基体含有液态的陶瓷前体粘结剂和至少一种选自于金属粉末、金属化物粉末以及它们的混合物的其他组分。还提供了一种通过热解所述组合物获得的耐热产品。所获得的耐热产品能够承受高于1600℃,例如高达并且高于1850℃的温度,可以以热障涂层的形式涂覆或者附着在基体表面上,构成例如飞机、发电装备、炉内衬热交换器或者反应器的一部分。
85 C-5修饰的吲唑基吡咯并三嗪类化合物 CN02827065.7 2002-11-12 CN1615306A 2005-05-11 H·马斯塔莱尔兹; 张桂芬; J·G·塔兰特; G·D·维特
发明提供了式I化合物及其可药用盐。式I化合物能够抑制生长因子受体例如HER1、HER2和HER4的酪酸激酶活性,由此可用作抗增殖剂。式I化合物还可用于治疗与经由生长因子受体运转的信号传导途径有关的其它疾病
86 适用于烘箱的自清洁陶瓷层和制造自清洁陶瓷层的方法 CN02818869.1 2002-07-29 CN1558963A 2004-12-29 R·诺宁格; O·宾克莱; S·法贝尔; M·约斯特
发明涉及一种制造高度多孔的陶瓷层的方法以及将该层涂覆于金属,陶瓷,瓷釉和/或玻璃基底的方法,该方法使用多孔陶瓷颗粒,优选,氧化和氧化锆,以及一种无机粘合剂体系。所述无机粘合剂体系包含至少一种具有低于100nm的颗粒尺寸的陶瓷纳米颗粒,优选低于50nm且理想地低于25nm,使用作为溶剂。如此制造的层适合用于自清洁催化活性层,例如,在烘箱,内燃机等等中,且通常用于材料的涂覆,以便极大地增加其比表面,例如用于催化剂载体。
87 用结晶纳米颗粒在支撑层上制造的功能陶瓷层 CN02808537.X 2002-04-19 CN1503767A 2004-06-09 R·诺宁格; O·宾科尔
发明涉及一种通过湿-化学工艺用颗粒尺寸在3nm到100nm之间的结晶纳米颗粒在金属、陶瓷、搪瓷或者玻璃衬底上制造多孔陶瓷层的方法,还涉及通过向用作多孔陶瓷层的支撑层的孔中引入第二组分实现的该多孔陶瓷层的功能化。多孔陶瓷层可以用疏的、亲水的、防尘的和防腐的试剂进行填充,这些试剂是保留在衬底内的或者是依据需要后续提供的;或者,该多孔陶瓷层装有以特定剂量的方式释放到空调空气中的杀菌剂香味剂、香水或者吸入剂。
88 制造中孔的方法 CN98811642.1 1998-12-10 CN1146469C 2004-04-21 K·P·加德卡埃; D·L·希克曼; Y·L·彭; T·陶
中孔和其制造方法,该方法先形成以固化后重量为基准的碳化产率大于约40%碳的高碳产率的碳前体和添加剂的混合物,所述添加剂可以是催化剂金属和/或以固化后重量为基准的碳化产率不大于约40%碳的低碳产率的碳前体。当使用催化剂金属时,以碳为基准,在随后碳化步骤后的催化剂金属的量不大于约1重量%。将混合物固化,将其中的碳前体碳化,再活化制成中孔活性炭
89 用于制造隔热耐火材料的含组合物及其制备的方法和用途 CN99807428.4 1999-06-07 CN1143838C 2004-03-31 G·布兰迪
发明涉及用于制造一种隔热耐火材料的含组合物,含有20-70重量%的陶瓷基质、5-40重量%的隔热微球、0.5-20重量%的一种或多种粘合剂和5-25重量%的水。所述陶瓷基质包括玻璃态颗粒,特别是雾化的。它还含有0.5-4重量%的反絮凝剂和0.5-4重量%的胶体二氧化硅。所述隔热微球是基于二氧化硅和氧化的材料的空心球。它们含有55-65重量%的二氧化硅和27-33重量%的氧化铝。
90 泥底材上防化涂层的制备方法 CN96110588.7 1996-07-18 CN1141274A 1997-01-29 徐贤祥; R·B·马特
发明涉及在泥底材(如瓦片)上形成防化封闭层的方法。防风化涂料组合物的泡沫层优选涂敷在湿的水泥底材表面上,然后对湿水泥底材进行水化作用以形成具有防风化层的水泥底材。根据需要,防风化涂料组合物可含颜料以在水泥底材上形成着色的防风化涂层。或在着色的水泥底材上涂敷本发明的透明防风化涂层。根据本发明方法形成的防风化涂层实际上减少了在水泥底材表面上不美观的风化层的形成。
91 形成多孔耐火材料体的方法及其在此方法中使用的组合物 CN90103302.2 1990-06-29 CN1029735C 1995-09-13 比里·罗宾; 里昂-菲利浦·莫泰特; 阿列克桑德勒·兹乌考菲思
一种在一个表面上形成多孔耐火材料体的方法,其特征在于使一种化气体与一种粉末混合物一同喷到所说的表面上,所说的粉末混合物包括:耐火材料颗粒;燃料颗粒,所说的燃料与所说的氧化气体发生放热反应形成耐火材料氧化物,并且放出足够的热量以至少熔化所说的耐火材料颗粒的表面,使它们粘结在一起形成所说的耐火材料体;和材料颗粒;该材料颗粒的组成和/或颗粒的选择使得在喷射混合物中混入这种材料会在形成的耐火材料体内形成孔隙,所说的孔隙引入材料可以是例如燃烧可以释放出气体燃烧产物的,也可以是分解出气体分解产物的,或者它本身为空心或多孔的。
92 热气体或液体中分离固体的过滤器 CN89103817.5 1989-06-03 CN1021201C 1993-06-16 瓦尔特·赫汀
发明涉及一种从热气态或液态介质中分离出固体成分的过滤器,它具有一种带较大细孔的耐热机体材料和一种同样耐热的带有较小细孔的作为机体材料覆盖层的物质。机体材料如可以由陶瓷构成,而覆盖层可用无数颗粒的由一种与机体材料相同形式的或同族的材料构成,同时,在随后的加热过程中,在覆盖层和机体材料之间生成一种相同或大致相同材料的连结或一种由混合材料生成的低共晶物。
93 形成多孔耐火材料体的方法及其在此方法中使用的组合物 CN90103302.2 1990-06-29 CN1048377A 1991-01-09 比里·罗宾; 里昂-菲利浦·莫泰特; 阿列克桑德勒·兹乌考菲思
一种在一个表面上形成多孔耐火材料体的方法,其特征在于使一种化气体与一种粉末混合物一同喷到所说的表面上,所说的粉末混合物包括:耐火材料颗粒;燃料颗粒,所说的燃料与所说的氧化气体发生放热反应形成耐火材料氧化物,并且放出足够的热量以至少熔化所说的耐火材料颗粒的表面,使它们粘结在一起形成所说的耐火材料体;和材料颗粒,该材料颗粒的组成和/或颗粒的选择使得在喷射混合物中混入这种材料会在形成的耐火材料体内形成孔隙。
94 METHODS FOR FABRICATING PROTECTIVE COATING SYSTEMS FOR GAS TURBINE ENGINE APPLICATIONS US16056060 2018-08-06 US20180346388A1 2018-12-06 Reza Oboodi; Eric Passman; Bahram Jadidian
Methods for fabricating protective coating systems for gas turbine engine applications are provided. An exemplary method of applying a protective coating to a substrate includes the steps of providing a substrate formed of a ceramic matrix composite material, forming a first coating layer directly on to the substrate and comprising an oxygen barrier material, a compliance material, or a bonding material and forming a second coating layer directly on to the first coating layer and comprising a thermal barrier material. The method optionally includes forming a third coating layer partially directly on to the second coating layer and partially within at least some of the plurality of pores of the second coating layer.
95 Composite body and method for producing same US15328723 2015-07-24 US10081055B2 2018-09-25 Takeshi Miyakawa; Hideki Hirotsuru
A composite production method includes impregnating a plate-shaped porous inorganic structure and a fibrous inorganic material with a metal while the fibrous inorganic material is arranged to be adjacent to the porous inorganic structure. In the composite structure, first and second phases are adjacent to each other by using a porous inorganic structure having a porous silicon carbide ceramic sintered body and the fibrous inorganic material, the first phase being a phase in which the porous silicon carbide ceramic sintered body is impregnated with the metal, the second phase being a phase in which the fibrous inorganic material is impregnated with the metal, a percentage of the porous silicon carbide ceramic sintered body in the first phase is 50 to 80 volume percent, and a percentage of the fibrous inorganic material in the second phase is 3 to 20 volume percent. A composite is produced by the method.
96 Substrate for solidifying a silicon ingot US15022440 2014-09-12 US10023972B2 2018-07-17 Jean-Paul Garandet; Denis Camel; Béatrice Drevet; Nicolas Eustathopoulos; Charles Huguet; Johann Testard; Rayisa Voytovych
A substrate, in particular intended for contact with liquid silicon, wherein it is at least partially surface-coated with a multilayer coating formed by: at least one layer, known as the adhesion layer, contiguous with the substrate, having an open porosity of at least 30%, and formed of a material comprising silica and silicon nitride, said material having a silica content of between 10 wt.-% and 55 wt.-% in relation to the total weight thereof; and a layer different from the adhesion layer, known as the release layer, located on the surface of the adhesion layer and formed of a material including silica and silicon nitride, said material having a silica content of between 2 wt.-% and 10 wt.-% in relation to the total weight thereof.
97 PLASMA SPRAY PHYSICAL VAPOR DEPOSITION DEPOSITED ENVIRONMENTAL BARRIER COATING INCLUDING A LAYER THAT INCLUDES A RARE EARTH SILICATE AND CLOSED POROSITY US15418431 2017-01-27 US20170218506A1 2017-08-03 Kang N. Lee; Matthew R. Gold; Stephanie Gong
An article may include a substrate defining at least one at least partially obstructed surface. The substrate includes at least one of a ceramic or a ceramic matrix composite. The article also may include an environmental barrier coating on the at least partially obstructed substrate. The environmental barrier coating includes a layer including a rare earth disilicate and a microstructure comprising closed porosity.
98 Features for mitigating thermal or mechanical stress on an environmental barrier coating US13521647 2011-01-11 US09713912B2 2017-07-25 Kang N. Lee
An article may include a substrate comprising a matrix material and a reinforcement material, a layer formed on the substrate, an array of features formed on the layer, and a coating formed on the layer and the array of features. The article may have improved thermal and/or mechanical stress tolerance compared to an article not including the array of features formed on the layer.
99 RARE EARTH SILICATE ENVIRONMENTAL BARRIER COATINGS US15408062 2017-01-17 US20170122116A1 2017-05-04 Kang N. Lee
A vapor deposition method may include applying a first electron beam to vaporize a portion of a first target material comprising a rare earth oxide, where the first electron beam delivers a first amount of energy. The method also may include applying a second electron beam to vaporize a portion of a second target material comprising silica, where the second electron beam delivers a second amount of energy different from the first amount of energy. In some examples, the second target material is separate from the first target material. Additionally, the portion of the first target material and the portion of the second target material may be deposited substantially simultaneously over a substrate to form a layer over the substrate. A system for practicing vapor deposition methods and articles formed using vapor deposition methods are also described.
100 DENSE ENVIRONMENTAL BARRIER COATINGS US15265134 2016-09-14 US20170073278A1 2017-03-16 Sean E. Landwehr; Adam Lee Chamberlain; Ann Bolcavage
In some examples, method including forming an EBC layer on a substrate, wherein the EBC layer exhibits an initial porosity; forming a layer of silicate glass on a surface of the EBC layer; and melting the silicate glass on the surface of the EBC layer to infiltrate the EBC layer with the molten silicate glass to decrease the porosity of the EBC layer from the initial porosity to a final porosity.
QQ群二维码
意见反馈