序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
101 Production of nitride film JP30292193 1993-12-02 JPH07150337A 1995-06-13 NISHIYAMA SATORU; EBE AKINORI; OGATA KIYOSHI
PURPOSE: To coat the substrate with a nitride film excellent in general corrosion resistance at a high temp., hardness and adhesion by specifying the ratios of numbers of atoms of Cr:B:N in the nitride film. CONSTITUTION: A film consisting of CrN and BN is formed on the substrate by using the vacuum deposition or sputtering together with the N ion irradiation. At this time, the substrate is irradiated with N ions having 0.1 to 40KeV acceleration energy and the ratios of the numbers of atoms of N:Cr:B are adjusted to 1:(1 to 40):(1 to 40) to form c-BN and also to form a mixture layer consisting of the constituent atoms of both the substrate and the film at the interface between them. Thus, the substrate is coated with the nitride film provided with the alkali resistance due to CrN, the oxidation resistance at a high temp. due to BN, the high hardness due to c-BN and the adhesion due to the formation of the mixture layer. COPYRIGHT: (C)1995,JPO
102 Formation of chromium nitride film JP12076992 1992-05-13 JPH05311396A 1993-11-22 KURATANI NAOTO; OGATA KIYOSHI; NISHIYAMA SATORU; EBE AKINORI
PURPOSE: To form a chromium nitride film even on a substrate low in heat resistance and to increase the kinds of substrate capable of being coated with a chromium nitride film. CONSTITUTION: A chromium nitride film 12 is formed on the surface of a substrate 11 by the vacuum deposition of a substance contg. chromium and the irradiation A 1 with nitrogen ion, and hence a mixed layer 13 of the substrate material, chromium and nitrogen is formed at the interface between the substrate 11 and the chromium nitride film 12. In this case, the substrate 11 need not be heated when the film is formed, hence even a substrate 11 low in heat resistance can be used, and the kinds of the substrates 11 capable of being coated with a chromium nitride film are increased. COPYRIGHT: (C)1993,JPO&Japio
103 Production of boron nitride-containing film JP31217091 1991-11-27 JPH05148625A 1993-06-15 NISHIYAMA SATORU; OGATA KIYOSHI; KURATANI NAOTO; EBE AKINORI
PURPOSE: To produce a boron nitride-contg. film excellent in adhesiveness at low temp. by specifying the ion accelerating energy and the compositional ratio of B to N in the film at the time of forming the B-contg. film on a substrate and irradiating the film with N-contg. ion. CONSTITUTION: A B-contg. film is formed on a substrate by vapor deposition, etc., and the substrate is irradiated with an N-contg. ion from its source simultaneously, alternately or thereafter to form a film contg. boron nitride on the substrate. At this time, when the accelerating energy per ion is denoted b X (1V) and the compositional ratio of B to N in the film by Y, 2000≤X≤40000, inequality I has to be fulfilled when 2000<X≤5000, inequality II should be satisfied when 5000<X≤10000, and inequality III must be fulfilled when 10000<X≤40000. X and Y are thus selected, and a first film is formed. X and Y are then selected to satisfy 1≤Y≤2.5×10 -3×X+5 where 0<X≤2000, and a second film is formed. COPYRIGHT: (C)1993,JPO&Japio
104 JPH0250983B2 - JP8252284 1984-04-23 JPH0250983B2 1990-11-06 DOI YOSHIHIKO; TOBIOKA MASAAKI; ISHIDA YOICHI
105 Manufacture of fine superconductive ceramic oxide product JP17482988 1988-07-13 JPS6487548A 1989-03-31 RICHIYAADO ERU RANDEINHAMU
106 Enhancement for silicon carbide ceramic body JP5152285 1985-03-14 JPS61209975A 1986-09-18 UEGAKITO OSAMI; DOI HARUO; NODA MASAHARU
107 JPS4842389B1 - JP4813870 1970-06-05 JPS4842389B1 1973-12-12
108 유리를 이용한 세라믹스의 표면처리 방법 및 제조된 세라믹스 KR1020120127552 2012-11-12 KR1020140060789A 2014-05-21 추민철; 조성재
The present invention relates to a method for treating the surface of ceramics using glass and ceramics manufactured therefrom. The method includes a step of infiltrating glass and first metal ions on the surface of ceramics and a step of exchanging the infiltrated first metal ions with second metal ions on the surface of ceramics, wherein the ionic radius of the second metal ions is larger than the ionic radius of the first metal ions.
109 이온주입과 열처리 공정을 이용한 보석발색방법 KR1020020055177 2002-09-11 KR1020040023447A 2004-03-18 송오성; 홍석배
PURPOSE: A method for developing colors of jewel and single crystal is provided to express various colors without defects in crystal by using thermal treatment in addition to conventional ion implantation. CONSTITUTION: The method comprises the steps of: polishing natural or synthetic jewels such as diamond, sapphire, quartz, etc; setting a jewel in ion implantation equipment; implanting non metal or metal ions into the jewel with 20-180KeV of voltage and 1x10¬15-1x10¬18ions/cm¬2 of the amount of ions; thermal treating ion-implanted jewel in a furnace by raising temperature between 200 and 1800deg.C at a rate of 0.1-0.5deg.C/min, holding it for 3-5hrs and cooling it to room temperature at a rate of 0.1-0.5deg.C/min in inert gas atmosphere(Ar, N2) to increase the depth of ion implantation and recover surface defects of the jewel so as to develop colors or in air or O2 atmosphere to discharge implanted ions or form oxides so as to remove colors; immersing the jewel in liquid such as acetone and acids to remove impurities left in the jewel; and re-polishing to polish and recover surface defects with the powder of diamond, Cs, Al2O3, etc.
110 이식된 정밀 유리 몰딩 기구를 사용한 유리 렌즈 몰딩 기작 KR1020030060358 2003-08-29 KR1020040020810A 2004-03-09 윈터스메리케이; 알론조카를로스에프; 맥러플린폴오; 풀버존씨; 라이신안나엘; 스티븐슨도날드에이
PURPOSE: A mechanism to mold glass lenses using an implanted precision glass molding tool is provided to mold optical elements from eco-glass preforms, to prevent bubble formation on the mold surface/preform interface, and to mold the optical elements from eco-glasses as titania at high temperatures without generating harmful surface chemistry effects. CONSTITUTION: A method for manufacturing a molding mechanism(104) for producing glass optical elements is composed of the steps of figuring the molding mechanism to have a predetermined mold surface; applying an attenuating coating on the predetermined mold surface; implanting metal ions into the predetermined mold surface by the attenuating coating; and removing the attenuating coating and obtaining the predetermined metal ions-implanted mold surface. The molding mechanism formed by the manufacturing method is used for molding optical elements from eco-glasses as titania at high temperatures without generating harmful surface chemistry effects in the molded element.
111 이온물질을 재료로하는 파동에너지 실내 건축방법 KR1020040000786 2004-01-06 KR1020040015771A 2004-02-19 권상학
PURPOSE: A wave energy interior decoration method using ionic matter is provided to promote the residents' health by removing odor, restraining virus and bacteria, absorbing/removing water vein waves and activating the human body by anions. CONSTITUTION: The wave energy interior decoration method using ionic matter comprises the steps of; attaching ion chips on the indoor wall surface using cement, then plastering with cement mortar; leveling up the indoor floor surface, arranging ion chips, then plastering with cement mortar; forming a ceiling by attaching ion chips on the backside of an interior finishing member used for a ceiling; and papering a ceiling and a wall using ion paste containing ion powder.
112 반도체 제조장치 및 반도체 제조방법 KR1019940016242 1994-07-07 KR100162934B1 1999-02-01 가와다히로끼; 다까하시가즈에; 에다무라마나부; 가나이사부로오; 다무라나오유끼
반도체 제조장치의 처리챔버내에 부착 또는 퇴적하는 반응생성물의 양 또는 과학적 조성을 챔버를 대기 개방하는 일 없이 측정하는 장치 및 방법에 있어서, 처리챔버내에 광파이버 등의 광도입수단에 의하여 적외광 등의 광을 광도입부로부터 처리챔버내로 도입하고, 처리챔버내의 특정개소에서 반사한 광, 또는 장소를 특정하지 않으나 처리챔버내에서 반사한 광을 처리챔버밖에 설치한 수광부로 수광하고, 분광 또는 광량측정을 실행함으로써 반응생성물에 의한 용기의 오염이나 프로세스의 상태를 판정한다.
113 高pH値での制御放出特性を有する活性成分のシェラックコーティングされた粒子、その製造方法、及びその使用 JP2014546396 2012-11-22 JP2015505808A 2015-02-26 ザイドル ヴォルフガング; マルシェフスキ ダヴィド; ラスプル ザシャ; ヴァッヘ シュテフェン; ミヒャエル シナベック; シナベック ミヒャエル; フリードリッヒ シュテファン
10から14のpH値で制御放出特性を有する活性成分の新規なコーティングされた粒子であって、前記活性成分は、無機結合剤の制御のための1種又は複数種の建築用化学添加剤から選択され、前記コーティングがシェラックを含むことを特徴とする、コーティングされた粒子、その製造方法、並びにモルタル、ドライモルタル、セメントスラリー及び/又はコンクリート用の添加剤としてのその使用が提案される。
114 Submicron electrolyte thin film formed nanoporous substrate by oxidation of the metal film JP2004508971 2003-05-29 JP4216803B2 2009-01-28 チャ、サク−ウォン; パーク、ヨング−イル; プリンツ、フリッツ・ビー; リー、サン−ジュン・ジョン; 祐司 斉藤
115 Submicron electrolyte thin film formed nanoporous substrate by oxidation of the metal film JP2004508971 2003-05-29 JP2005527370A 2005-09-15 チャ、サク−ウォン; パーク、ヨング−イル; プリンツ、フリッツ・ビー; リー、サン−ジュン・ジョン; 祐司 斉藤
流体不透過性の薄膜(20)が、所定の空間的酸化膨張率を有する材料(4)をデポジットすることにより多孔質基板(10)上に形成される。 デポジットした後、材料(4)は酸化され(5)、それによってデポジットした材料(4)が膨張して多孔質基板(10)上にボイドのない膜を形成する。 ボイドのない膜(5)の粒界(6)を再結合して多孔質基板(20)上に連続膜(20)を形成することができる。
116 Seal or bearing JP12840895 1995-05-26 JP3291552B2 2002-06-10 直樹 土屋; 正人 木内; 芳一 木村; 匡史 片岡; 兼栄 藤井; 浩志 長坂
117 Etching chamber cleaning method JP2000517127 1998-10-14 JP2001520463A 2001-10-30 ジェラルド, ゼヤオ イン,; キュ−イ キアン,; ズィ−ウェン サン,; アーサー, ワイ. チェン,; ウェイチン チョウ,; ブライアン, ケー. ハッチャー,; ジョナサン, ディ. モーン,; パトリック, エル リーヘイ,
(57)【要約】 エッチングチャンバ(30)を処理および調整し、エッチングチャンバ(30)の壁(45)とコンポーネント上の薄く不均一なエッチング残留物を洗浄するための装置(20)およびプロセスである。 エッチング段階において、エッチングチャンバ(30)内で基板(25)がエッチングされて、チャンバ内の壁とコンポーネントの表面上に薄いエッチング残留物層が堆積する。 洗浄段階において、エッチングチャンバ(30)付近のリモートチャンバ(40)内に洗浄ガスが導入され、リモートチャンバ内にマイクロ波または高周波エネルギーが加えられて活性洗浄ガスを形成する。 エッチングチャンバの壁(45)とコンポーネント上のエッチング残留物を洗浄するために、高い流量における活性洗浄ガスの短い噴射がエッチングチャンバ(30)内に導入される。 この方法は、チャンバ内の、窒化アルミニウム、炭化ホウ素、窒化ホウ素、ダイアモンド、酸化シリコン、炭化シリコン、窒化シリコン、酸化チタン、炭化チタン、酸化イットリウム、酸化ジルコニウム、またはこれらの混合物を含むセラミック表面に化学的に堆積したエッチング残留物を洗浄する場合に特に有益である。
118 Nitride reforming method and surface modified nitride by the method of surface JP10202897 1997-04-18 JP3124508B2 2001-01-15 炯 鎭 丁; 容 培 孫; 源 國 崔; 錫 勤 高
119 Modification of surface of nitride and nitride having improved surface by the same JP10202897 1997-04-18 JPH10101459A 1998-04-21 KO SHAKUKIN; CHO KEICHIN; SAI GENKOKU; SON YOBAI
PROBLEM TO BE SOLVED: To obtain the surface of a nitride having preferable interfacial characteristics useful for forming a nitride directly bonded to copper, by irradiating the surface of the nitride with ion particles having energy while directly spraying a reactive gas on the surface of the nitride in a vacuum state. SOLUTION: The surface of a nitride is irradiated with ion particles (an ion gun 2) while spraying a reactive gas 3 on the surface of the nitride in a vacuum state (a vacuum tank 1 and a vacuum pump 4). An oxygen, nitrogen, hydrogen, ammonia, carbon monoxide or their mixed gas is used as the reactive gas. The amount of the reactive gas injected is preferably 1-8ml/min. Argon, oxygen, air, krypton or their mixture can be used as the particles having energy. Preferably, the ion particles have 0.5-2.5KeV energy and 10<14> -5×10<16> ion/cm<2> dose. Aluminum nitride is preferable as the nitride.
120 Ceramic material excellent in liquid sodium corrosion and its production JP15114095 1995-05-26 JPH08325083A 1996-12-10 HAYASHI KAZUNORI; NOSE TETSUO; NAKAYAMA HIDEMI; KANO SHIGEKI; TATE YOSHIAKI; SAITO JUNICHI
PURPOSE: To improve the liq. sodium corrosion resistance by forming a metallic thin film resistant to liq. sodium corrosion on the surface of a silicon-base non-oxide ceramic by ion-beam irradiation and metal vapor deposition. CONSTITUTION: A vacuum chamber 1 is provided with a holder 2 carrying a metal excellent in resistance to sodium corrosion, an ion source 3 and a sample holder 4 on which a silicon-base non-oxide ceramic 5 is placed, and the inside of the chamber 1 is evacuated to 10 -5 to 10 -6Torr. An ion other than an inert gas ion is then emitted from the ion source 3 until the thickness of a metallic thin film from the ceramic 5 surface becomes greater than the maximum range of the inert gas ion used to form the thin film. When the thickness of the thin film becomes greater than the maximum range of the inert gas ion, the ion source 3 is changed to the inert gas ion to form the metallic thin film having 100nm to 10μm thickness and excellent in resitance to sodium corrosion on the ceramic 5 surface. COPYRIGHT: (C)1996,JPO
QQ群二维码
意见反馈