序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
41 用于制造耐热震性陶瓷蜂窝结构体的含多模纤维的胶接剂 CN201080029339.4 2010-06-24 CN102470359B 2014-06-25 蔡军; 亚历山大·约瑟夫·皮茨克; 迈克尔·T·马兰加; 梁宽昊
一种陶瓷蜂窝结构体,包含至少两个单独的已通过包含无机纤维和粘结相的胶接剂粘附在一起的较小陶瓷蜂窝,其中所述较小蜂窝和纤维通过包含酸盐,酸盐或硅铝酸盐的粘结相粘合在一起。所述纤维具有多模尺寸分布,其中一些纤维具有高达1000微米的长度并且其他纤维具有超过1mm的长度。胶接剂组合物可在没有其他无机和有机添加剂的情况下制成,同时获得一种剪切稀化胶接剂,例如,通过如下获得:将带相反电荷的无机粘结剂中混合在一起,这样制成一种可用于涂敷到所要胶接的较小蜂窝上的胶接剂组合物。
42 生产胶结并具有表皮的陶瓷蜂窝结构的方法 CN201280036125.9 2012-06-27 CN103702960A 2014-04-02 P·C·沃塞杰普卡; 蔡军; A·科蒂施
在用于向陶瓷蜂窝施加表皮、或将所述陶瓷蜂窝与另外的蜂窝或另一种材料粘合的胶结剂组合物中提供有机聚合物粒子。所述有机聚合物粒子的存在减少了所述胶结剂组合物渗透过所述蜂窝的多孔壁。以这种方式,看到蜂窝巢室堵塞较少,并且减少了当胶结剂组合物施加于陶瓷蜂窝时经常看到的热冲击性能降低。
43 尤其是用于过滤内燃机的废气的过滤元件 CN200780034632.8 2007-07-27 CN101517205B 2013-03-06 R·米勒; T·小森; L·蒂纳
发明涉及一种过滤元件(18),尤其是用于过滤内燃机(10)的废气,该过滤元件具有彼此平行的流动通道(28,30),其中,设置有至少两个过滤区段(36~42,60~62),这些过滤区段各具有流动通道(28,30)的一个分量,其中,这些过滤区段(36~42,60~62)彼此间具有距离(52)并且通过与这些过滤区段(36~42,60~62)构造成一体的连接装置(48)彼此相连接。
44 无机纤维质耐火成形体、无机纤维质耐火成形体的制造方法以及无机纤维质不定形耐火组合物 CN201080060891.X 2010-12-24 CN102741197A 2012-10-17 岩田耕治; 米内山贤
发明提供一种即使不含高价的陶瓷纤维粉末、二氧化粉末也可以表现所希望的耐热性,并且降低制造成本和产品价格,生物可溶性高的无机纤维质耐火成形体。本发明的无机纤维质耐火成形体,其特征在于,由含有岩2~95质量%、具有针状结晶结构的无机粉末2~95质量%和粘结剂3~32质量%的材料构成。优选上述具有针状结晶结构的无机粉末的平均长度为1~3000μm,并且长宽比为1~1000的无机纤维质耐火成形体。更加优选上述具有针状结晶结构的无机粉末为硅灰石粉末或者海泡石粉末的无机纤维质耐火成形体。
45 热还原法炼镁联产硬性胶凝材料的方法 CN200610200738.8 2006-07-25 CN101113081B 2012-07-25 张继强; 陈黔
发明公开的是热还原法炼镁联产硬性胶凝材料的方法。本发明以合金和硅合金、或硅铁合金和金属铝配制还原剂,按常规的炼镁工艺步骤获得炼镁还原渣,将还原渣快速冷却,得到以硅酸和铝酸钙为主的水硬性胶凝材料,相当于国家标准32.5(R)等级强度以上水泥。本发明通过改进炼镁方法和对废渣的处理方法,可利用热还原法炼镁产生的还原渣直接生成能用于建筑使用的水硬性胶凝材料,做到了废物利用,也减少了对环境的污染和处理废渣的成本。
46 用于制造耐热震性陶瓷蜂窝结构体的含多模纤维的胶接剂 CN201080029339.4 2010-06-24 CN102470359A 2012-05-23 蔡军; 亚历山大·约瑟夫·皮茨克; 迈克尔·T·马兰加; 梁宽昊
一种陶瓷蜂窝结构体,包含至少两个单独的已通过包含无机纤维和粘结相的胶接剂粘附在一起的较小陶瓷蜂窝,其中所述较小蜂窝和纤维通过包含酸盐,酸盐或硅铝酸盐的粘结相粘合在一起。所述纤维具有多模尺寸分布,其中一些纤维具有高达1000微米的长度并且其他纤维具有超过1mm的长度。胶接剂组合物可在没有其他无机和有机添加剂的情况下制成,同时获得一种剪切稀化胶接剂,例如,通过如下获得:将带相反电荷的无机粘结剂中混合在一起,这样制成一种可用于涂敷到所要胶接的较小蜂窝上的胶接剂组合物。
47 一种耐高温封孔剂的制备及封孔工艺 CN200910063903.3 2009-09-08 CN101654348B 2012-02-08 程旭东; 孟令娟; 张琦; 肖巍; 闵捷; 叶菲; 王珂; 万倩
发明是耐高温封孔剂的制备方法,具体是:所述封孔剂由溶胶-凝胶法制备的SiO2-Al2O3溶胶基相和填料组成;所述基相是以正酸乙酯和硝酸为前驱体,无乙醇和去离子水为溶剂盐酸为催化剂,制备而成,其中:按摩尔比计,TEOS∶Al(NO3)3=(1~3)∶3;按体积比计,TEOS∶EtOH∶H2O=1∶(2~4)∶(1~2);用盐酸调节pH值为3~4;填料为母鳞片、晶须硅或六方氮化。本发明提供的封孔工艺是:将表面处理后的试样放入所述封孔剂中,再采用真空浸渍法或超声浸渍提拉法进行封孔。本发明提供的封孔剂具有良好的渗透性和稳定性,用其封孔处理后的涂层孔隙率大大降低,而且耐高温腐蚀性显著提高。
48 一种提高芯型绿化砖抗压强度的方法 CN200910068041.3 2009-03-06 CN101492307B 2010-11-10 邓湘云; 陈平; 董磊; 焦永恒; 李德军; 李建保
发明公开一种提高芯型绿化砖抗压强度的方法,其特征在于将胶凝剂与沙漠沙粒以1∶2-6份的重量份数比充分混合,模压成型后喷洒0.1-2mol固化剂溶液,然后将其全部浸泡到固化剂中进行固化5-10min,室温养护7-10天。本发明选用的主要固化剂为AlCl3溶液,当将成型好的试样进行固化时,固化剂会与玻璃发生反应,生成无定形酸凝胶。实验中固化剂的浓度为0.5mol/L,0.75mol/L,1mol/L,1.25ml/L,1.5mol/L,1.75mol/L,2mol/L,2.25mol/L或2.5mol/L,结果固化剂浓度为2mol/L时其抗压强度最大,固化时间短、抗压强度高。
49 应用于陶瓷蜂窝体的组合物 CN200880107029.2 2008-07-22 CN101801879A 2010-08-11 D·C·布克班德; J·A·小格里芬; D·L·坦南特; L·-M·吴
揭示了可应用于蜂窝体的组合物。该组合物可以用作形成陶瓷壁流式过滤器用的堵塞混合物。或者,该组合物可用来在蜂窝体的外部形成外皮涂层。揭示的组合物包含无机粉末批料组合物;有机粘结剂;液体载剂和流变改进剂。该组合物显示改进的流变性质,包括提高屈服强度和减小剪切下的粘度,在各种实施方式中,该组合物能够制备烧结相端部堵塞物,减少在最终干燥和烧制的端部堵塞物中小凹陷和针孔的形成,并且使端部堵塞物具有相对均匀和要求的深度。还揭示由本文所述的堵塞混合物形成端部堵塞的陶瓷壁流式过滤器的方法。
50 蜂窝结构体 CN200910128850.9 2009-03-17 CN101543792A 2009-09-30 大野一茂; 井户贵彦
发明提供一种蜂窝结构体,该蜂窝结构体包含一个或多个柱状蜂窝单元,该蜂窝单元包含无机颗粒和无机结合剂,并具有多个由孔壁隔开的、沿着蜂窝单元的长度方向从蜂窝单元的一个端面延伸至另一个端面的孔,所述蜂窝结构体在每个孔壁担载贵金属催化剂和NOx吸附催化剂,所述孔壁表面的所述贵金属催化剂的量大于所述孔壁的厚度方向的中心部的所述贵金属催化剂的量。
51 尤其是用于过滤内燃机的废气的过滤元件 CN200780034632.8 2007-07-27 CN101517205A 2009-08-26 R·米勒; T·小森; L·蒂纳
发明涉及一种过滤元件(18),尤其是用于过滤内燃机(10)的废气,该过滤元件具有彼此平行的流动通道(28,30),其中,设置有至少两个过滤区段(36~42,60~62),这些过滤区段各具有流动通道(28,30)的一个分量,其中,这些过滤区段(36~42,60~62)彼此间具有距离(52)并且通过与这些过滤区段(36~42,60~62)构造成一体的连接装置(48)彼此相连接。
52 一种提高芯型绿化砖抗压强度的方法 CN200910068041.3 2009-03-06 CN101492307A 2009-07-29 邓湘云; 陈平; 董磊; 焦永恒; 李德军; 李建保
发明公开一种提高芯型绿化砖抗压强度的方法,其特征在于将胶凝剂与沙漠沙粒以1∶2-6份的重量份数比充分混合,模压成型后喷洒0.1-2mol固化剂溶液,然后将其全部浸泡到固化剂中进行固化5-10min,室温养护7-10天。本发明选用的主要固化剂为AlCl3溶液,当将成型好的试样进行固化时,固化剂会与玻璃发生反应,生成无定形酸凝胶。实验中固化剂的浓度为0.5mol/L,0.75mol/L,1mol/L,1.25ml/L,1.5mol/L,1.75mol/L,2mol/L,2.25mol/L或2.5mol/L,结果固化剂浓度为2mol/L时其抗压强度最大,固化时间短、抗压强度高。
53 Metal Oxide Activated Cement US15845857 2017-12-18 US20180105464A1 2018-04-19 Trevor Cyril Waters
A process for making a cement, the cement containing a naturally occurring silicate bound in an organic binder, and a metal oxide. An example process includes dissolving the organic binder at least in part, using an effective amount of a chemical activator. An example process also includes providing the silicate to react with other components of the cement. An example process also includes providing the silicate to participate in crystal growth. An example process also includes providing the silicate so that the cement is a structural load bearing cement.
54 Gravel Packing Fluids with Enhanced Thermal Stability US15553108 2016-02-24 US20180037807A1 2018-02-08 Mallikarjuna Shroff Rama; Chetan Prakash; Anant Kanhoba Ghumare; Sunil Narsingrao Garaje
Systems and methods for using gellable gravel packing fluids that may comprise polysaccharide gelling agents and gel stabilizers to extend the working temperature range for the polysaccharide gelling agents. A method for placing a gravel pack in a subterranean formation comprising: providing a gravel packing fluid in the form of a linear gel and comprising an aqueous base fluid, a polysaccharide gelling agent, a thermal stabilizer, and a gravel; placing the gravel packing fluid into the subterranean formation; and allowing the gravel packing fluid to form a gravel pack in the subterranean formation.
55 Zeolite, method for manufacturing zeolite, honeycomb catalyst, and exhaust gas purifying apparatus US14578495 2014-12-22 US09878315B2 2018-01-30 Toyohiro Usui; Takunari Murakami; Hirokazu Igarashi
A zeolite has a CHA structure, a SiO2/Al2O3 composition ratio less than 15, and potassium in an amount of about 0.1% by mass to about 1% by mass in terms of K2O.
56 Method of making nanoporous structures US14912278 2014-08-13 US09725571B2 2017-08-08 John Aikens; John C. Parker
A method of making a nanoporous structure comprising a matrix and at least one nanosized pore within the matrix, wherein the method comprises contacting at least a portion of a templated matrix with an acid solution, wherein the templated matrix comprises a matrix that selected from the group consisting of an organic polymer, a sol-based ceramic, an inorganic salt, an organoaluminate, and combinations thereof, and one or more nanosized templates within the matrix, wherein each nanosized template comprises a core that comprises an inorganic oxide, to dissolve at least a portion of the inorganic oxide of at least one of the cores and form the at least one nanosized pore within the matrix thereby forming the nanoporous structure.
57 Process for manufacturing xerogels US14351446 2012-10-15 US09605427B2 2017-03-28 Elodie Besselievre; Emilie Darrigues; Sophie Chausson; Gilbert Pouleyn
The present invention is related to a process for manufacturing xerogels optionally containing a fibrous reinforcement material, to an insulating, self-supporting single-layer composite panel of thickness between 30 mm and 70 mm of xerogel comprising a fibrous reinforcement material comprising a nonwoven fibrous batting obtainable by this process and to the use thereof for the manufacture of building materials and thermal insulations.
58 Glass fiberboard and production method therefor US14112166 2012-05-11 US09476198B2 2016-10-25 Myung Lee; Seong-Moon Jung; Suk Jang; Eun-Joo Kim
The present invention relates to a glass fiberboard and to a production method therefor, and more specifically, to technology for providing a glass fiberboard for vacuum heat insulation and a production method therefor, which have outstanding initial heat insulation performance and economic advantages through application of an optimized inorganic binder.
59 ROBUST BINDER, WHICH IS INDEPENDENT FROM THE INFLUENCE OF CATALYTICALLY ACTIVE SUBSTANCES, FOR USE IN THE CRUDE OIL AND NATURAL GAS INDUSTRY US14429521 2013-09-26 US20150232737A1 2015-08-20 Helmut Schmidt; Christian Schmidt
The invention relates to a method of stabilizing the bonding agent gelation time in the consolidation of a geological formation in the presence of one or more catalytically active substances, in which method a bonding agent is infiltrated into the formation, a portion of the infiltrated bonding agent is optionally expelled by flushing with a gas or a liquid, and the bonding agent remaining in the formation is cured. The bonding agent comprises a mixture of A) a heterocondensate, obtainable by hydrolysis and condensation of at least one hydrolyzable silicon compound and at least one metal, phosphorus or boron compound, the metal being selected from Al, Ge, Sn, Pb, Ti, Mg, Li, V, Nb, Ta, Zr and Hf, B) at least one organic polymerizable monomer or oligomer comprising a C—C double bond, and C) at least one thermal polymerization initiator without peroxide function.
60 METHOD OF MAKING FIRE RESISTANT SUSTAINABLE AIRCRAFT INTERIOR PANELS US14591875 2015-01-07 US20150190973A1 2015-07-09 Pedro P. Martin; Ana Gonzalez-Garcia; Nieves Lapena
The present invention relates to method of manufacturing an aircraft interior panel comprising a core sandwiched between first and second skins, wherein both of the first and second skins are formed from natural fibres containing non-halogenated fire-retardant and set within an inorganic thermoset resin, thereby forming a fire-resistant sustainable aircraft interior panel. The method comprises impregnating the natural fibres with non-halogenated fire retardant and an inorganic thermoset resin, and laying up the resin-impregnated natural fibres to sandwich the core. This stack is then cured by raising the temperature of the stack sufficient to initiate curing but without reaching the boiling point of water in the stack, holding the stack at that first temperature before raising the temperature again to reach the boiling point of water in the stack, before cooling the stack.
QQ群二维码
意见反馈