序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
61 MAGNETIC GRAPHENE-LIKE NANOPARTICLES OR GRAPHITIC NANO- OR MICROPARTICLES AND METHOD OF PRODUCTION AND USES THEREOF US14116102 2012-05-07 US20140161730A1 2014-06-12 Balaji Sitharaman; Bhavna S. Paratala
A magnetic graphene-like nanoparticle or graphitic nano- or microparticle exhibits a high relaxivity, and is useful as a MRI contrast agent. A composition for use with MRI imaging, comprising a sufficient amount of the magnetic graphene-like nanoparticles or graphitic nano- or microparticles and one or more physiologically acceptable carriers or excipients. Methods of using the magnetic graphene-like nanoparticles or graphitic nano- or microparticles as MRI contrast agents. Methods of producing the magnetic graphene-like nanoparticle or graphitic nano- or microparticle.
62 GRAPHENE POWDER, PRODUCTION METHOD THEREOF, AND ELECTROCHEMICAL DEVICE COMPRISING SAME US13992937 2011-12-09 US20130302693A1 2013-11-14 Peiyu Sun; Zhenqi Wu; Gangqiao Liu; Eiichiro Tamaki; Yasuo Kubota; Gang Wu
Provided are a graphene powder, a production method thereof, and an electrochemical device comprising the same. The graphene powder has an elemental ratio of oxygen atoms to carbon atoms of not less than 0.07 and not more than 0.13 and an elemental ratio of nitrogen atoms to carbon atoms of not more than 0.01. In the production method, the graphene powder is produced by using a dithionous acid salt as a reducing agent. Since the graphene has a low content of nitrogen atoms and a proper amount of oxygen atoms and a proper defect, the graphene is provided with good performance of both dispersibility and conductive property, and is usable as a good conductive additive, such as the one for a lithium ion battery electrode. The production method has the advantages of low cost, high efficiency and low toxicity.
63 LARGE-SCALE GRAPHENE SHEET: ARTICLES, COMPOSITIONS, METHODS AND DEVICES INCORPORATING SAME US13814888 2011-08-11 US20130217222A1 2013-08-22 Alan T. Johnson; Zhengtang Luo
Provided are methods for growing large-size, uniform graphene layers on planarized substrates using Chemical Vapor Deposition (CVD) at atmospheric pressure; graphene produced according to these methods may have a single layer content exceeding 95%. Field effect transistors fabricated by the inventive process have room temperature hole mobilities that are a factor of 2-5 larger than those measured for samples grown on commercially-available copper foil substrates.
64 NITROGEN-CONTAINING GRAPHENE STRUCTURE AND PHOSPHOR DISPERSION US13824851 2011-08-24 US20130181165A1 2013-07-18 Hiroyuki Tetsuka; Kazuo Okamoto
A nitrogen-containing graphene structure has a graphene structure including a monolayer or multilayer graphene nanosheet and nitrogen introduced into the graphene structure. The nitrogen-containing graphene structure preferably includes the above-described graphene structure having a sheet portion comprised of a monolayer or multilayer graphene nanosheet and containing, at an edge portion thereof, an armchair edge-face portion and a terminal six-membered ring bound to the armchair edge-face portion while sharing only one side therewith; and a nitrogen-containing functional group bound to any one or more carbon atoms selected from (a) the carbon atoms constituting the terminal six-membered ring but not bound to the armchair edge-face portion, and (b) the carbon atoms constituting the sheet portion (including the carbon atom on the side shared by the terminal six-membered ring). A phosphor dispersion is a dispersion of such a nitrogen-containing graphene structure in a solvent.
65 METHOD FOR MANUFACTURING MONOCRYSTALLINE GRAPHENE EP14877483.9 2014-12-26 EP3091106A1 2016-11-09 HWANG, Chanyong

The present invention provides a method for manufacturing a monocrystalline graphene layer, comprising the steps of: forming polycrystalline graphene on a substrate by using a hydrocarbon gas to grow a graphene layer aligned on a wafer-scale insulator substrate in one direction like a monocrystal; forming a catalyst on the polycrystalline graphene; and recrystallizing the polycrystalline graphene to monocrystalline graphene by heat-treating the polycrystalline graphene and the catalyst.

66 GRAPHENE DISPERSIONS EP14797957.9 2014-05-14 EP2996985A1 2016-03-23 AKSAY, Ilhan; KORKUT, Sibel; KACZMARCZYK, Jeffrey; GURDAG, Sezen; KORKMAZ, Deniz
Method of making a composition comprising graphene sheets and at least one solvent, comprising dispersing a mixture of graphene sheets and graphite particles in a solvent, wherein the graphite particles have more than about 50 layers, separating the graphene sheets and the graphite particles to obtain a dispersion of graphene sheets that contains no more than 25% of graphite particles having more than about 50 layers, based on the total number of graphite particles and graphene sheets, and flocculating the dispersion of graphene sheets. The flocculated dispersion can be added to a polymer matrix to make a composite. The composite can be formed into articles.
67 CARBON-BASED MATERIAL, ELECTRODE CATALYST, OXYGEN REDUCTION ELECTRODE CATALYST, GAS DIFFUSION ELECTRODE, AQUEOUS SOLUTION ELECTROLYTIC DEVICE, AND PRODUCTION METHOD FOR CARBON-BASED MATERIAL EP12857394 2012-12-07 EP2792639A4 2015-08-12 NAKANISHI SHUJI; KAMAI RYO; SUZUKI YUYA; HASHIMOTO KAZUHITO; KAMIYA KAZUHIDE
The present invention provides a carbon-based material with high catalytic activity. The carbon-based material in accordance with the present invention includes graphene doped with metal atoms and at least one type of non-metal atoms selected from a group consisting of nitrogen atoms, boron atoms, sulfur atoms, and phosphorus atoms. A diffraction pattern obtained by X-ray diffraction measurement of the carbon-based material by use of CuK± radiation shows that a proportion of the highest of intensities of peaks derived from an inactive metal compound and a metal crystal to an intensity of a (002) peak is 0.1 or less.
68 LARGE-SCALE GRAPHENE SHEET: ARTICLES, COMPOSITIONS, METHODS AND DEVICES INCORPORATING SAME EP11817021.6 2011-08-11 EP2603453A2 2013-06-19 JOHNSON, Alan, T.; LUO, Zhengtang
Provided are methods for growing large-size, uniform graphene layers on planarized substrates using Chemical Vapor Deposition (CVD) at atmospheric pressure; graphene produced according to these methods may have a single layer content exceeding 95%. Field effect transistors fabricated by the inventive process have room temperature hole mobilities that are a factor of 2-5 larger than those measured for samples grown on commercially-available copper foil substrates.
69 磁性グラフェン様ナノ粒子あるいは黒鉛ナノまたは微小粒子、およびそれらの生産および使用方法 JP2014510397 2012-05-07 JP6139511B2 2017-05-31 バラジ・シタラマン; バヴナ・エス・パラタラ
70 グラフェン粉末、グラフェン粉末の製造方法およびグラフェン粉末を含むリチウム二次電池用電気化学素子 JP2013542363 2011-12-09 JP5874736B2 2016-03-02 孫 培育; 呉 禎▲き▼; 劉 剛橋; 玉木 栄一郎; 久保田 泰生; 呉 剛
71 大規模グラフェンシート、それを組み込んだ物、組成物、方法および装置 JP2013524223 2011-08-11 JP5872557B2 2016-03-01 ジョンソン、アラン、ティー.; ルオ、ツェンタン
72 炭素系材料、電極触媒、酸素還元電極触媒、ガス拡散電極、溶液電解装置、並びに炭素系材料の製造方法 JP2013549232 2012-12-07 JPWO2013089026A1 2015-04-27 周次 中西; 亮 釜井; 雄也 鈴木; 橋本 和仁; 和仁 橋本; 和秀 神谷
本発明は、触媒活性の高い炭素系材料を提供する。本発明に係る炭素系材料は、金属原子と、窒素原子、ホウ素原子、硫黄原子、及びリン原子から選択される少なくとも一種の非金属原子とがドープされているグラフェンから成る。炭素系材料の、CuKα線を用いるX線回折測定により得られる回折強度曲線における、(002)面のピークの強度に対する、不活性金属化合物及び金属結晶に由来する最大のピークの強度の比が、0.1以下である。
73 Magnetic graphene-like nano-particles or graphite nano or micro particles, and their production and use JP2014510397 2012-05-07 JP2014516206A 2014-07-07 バラジ・シタラマン; バヴナ・エス・パラタラ
磁性グラフェン様ナノ粒子あるいは黒鉛ナノまたは微小粒子は、高い緩和能を呈し、MRI造影剤として有用である。 十分な量の磁性グラフェン様ナノ粒子あるいは黒鉛ナノまたは微小粒子と、1つ以上の生理学的に容認可能な担体または賦形剤とを含む、MRI撮像とともに使用するための組成物。 MRI造影剤として磁性グラフェン様ナノ粒子あるいは黒鉛ナノまたは微小粒子を使用する方法。 磁性グラフェン様ナノ粒子あるいは黒鉛ナノまたは微小粒子を生産する方法。
74 Graphene powder, a lithium secondary battery for an electrochemical device including the manufacturing method and the graphene powder graphene powder JP2013542363 2011-12-09 JP2014505002A 2014-02-27 培育 孫; 禎▲き▼ 呉; 剛橋 劉; 栄一郎 玉木; 泰生 久保田; 剛 呉
グラフェン粉末、グラフェン粉末の製造方法およびグラフェン粉末を含むリチウム二次電池用電気化学素子が提供されるものである。 本発明のグラフェン粉末は酸素原子の炭素原子に対する元素組成比が0.07以上0.13以下であり、窒素原子の炭素原子に対する元素組成比が0.01以下である。 本発明のグラフェン粉末の製造方法においては、グラフェン粉末は還元剤として亜ジチオン酸塩を使用して製造される。 本発明のグラフェンは窒素原子含有量が少なく適度な酸素原子を含有し、適度な欠陥をもつため、分散性・導電性ともに良好な性能を持つ。 本発明のグラフェン粉末は良好な導電助剤として、例えばリチウムイオン電池電極用の導電助剤として用いることができる。 本発明の製造方法によれば低コスト、高効率、低毒性という優位性を持つ。
75 Large graphene sheets, those incorporating the same, compositions, methods and devices JP2013524223 2011-08-11 JP2013535407A 2013-09-12 ジョンソン、アラン、ティー.; ルオ、ツェンタン
【解決手段】 本発明が提供するのは大規模で均一的なグラフェン層を常圧で化学蒸着(Chemical Vapor Deposition(CVD))を使用して平坦化された基板上に成長させるための方法である。 上記方法にしたがって生成されたグラフェンは容積95%を超える単層にすることもできる。 本発明の工程により調製された電界効果トランジスタは室温正孔移動度を有し、商業的に入手可能な銅箔基板上で作製されたサンプルを測定したときの室温正孔移動度の2〜5倍大規模である。
【選択図】 図1
76 Method for producing graphene/carbon nanotube composite structure JP2011190456 2011-09-01 JP2012246209A 2012-12-13 JIANG KAILI; LIN XIAO-YANG; XIAO LIN; FAN FENG-YAN
PROBLEM TO BE SOLVED: To provide a method for producing a graphene composite structure.SOLUTION: This production method of the graphene/carbon nanotube composite structure comprises: a first step of providing a substrate having a first surface and a second surface facing the first surface; a second step of providing a graphene structure, and forming or arranging the graphene structure on the first surface of the substrate; a third step of providing at least one carbon nanotube structure, and making the carbon nanotube structure adjoin the surface opposite to the surface adjoining the substrate to arrange the graphene structure between the substrate and the carbon nanotube structure so as to form the substrate/graphene/carbon nanotube composite structure; and a fourth step of removing the substrate to form the graphene/carbon nanotube composite structure.
77 METHOD OF USING CHEMICAL REACTION TRANSPARENCY OF GRAPHENE US15532666 2015-12-04 US20180055976A1 2018-03-01 Won Jin Choi; Jeong O Lee; Hyun Ju Chang; Ki Jeong Kong; Ki Seok An
The present invention relates to a method using chemical reaction transparency of graphene, and more specifically to a method capable of forming a desired material by a catalytic reaction on a graphene surface using the graphene which inhibits oxygen diffusion without blocking electron delivery, and an applied method thereof.
78 PREPARATION METHOD OF GRAPHENE US15730751 2017-10-12 US20180029889A1 2018-02-01 Linde ZHANG; Mingdong ZHANG
The invention relates to a preparation method of graphene using graphene oxide. The method consists of the following steps. (1). Preparation of graphene oxide-dispersant solution; (2). Reduction of graphene oxide; (3). Obtaining graphene by suction filtration and drying process. Based on the preparation of anthracite, the invention could reduce production costs effectively comparing to traditional preparation methods of graphene, and make the reaction more fast and complete, facilitating the achievement of large scale industrial production.
79 Method for manufacturing monocrystalline graphene US15103368 2014-12-26 US09834855B2 2017-12-05 Chanyong Hwang
The present invention provides a method for manufacturing a monocrystalline graphene layer, comprising the steps of: forming polycrystalline graphene on a substrate by using a hydrocarbon gas to grow a graphene layer aligned on a wafer-scale insulator substrate in one direction like a monocrystal; forming a catalyst on the polycrystalline graphene; and recrystallizing the polycrystalline graphene to monocrystalline graphene by heat-treating the polycrystalline graphene and the catalyst.
80 Magnetic graphene-like nanoparticles or graphitic nano- or microparticles and method of production and uses thereof US14116102 2012-05-07 US09713650B2 2017-07-25 Balaji Sitharaman; Bhavna S. Paratala
A magnetic graphene-like nanoparticle or graphitic nano- or microparticle exhibits a high relaxivity, and is useful as a MRI contrast agent. A composition for use with MRI imaging, comprising a sufficient amount of the magnetic graphene-like nanoparticles or graphitic nano- or microparticles and one or more physiologically acceptable carriers or excipients. Methods of using the magnetic graphene-like nanoparticles or graphitic nano- or microparticles as MRI contrast agents. Methods of producing the magnetic graphene-like nanoparticle or graphitic nano- or microparticle.
QQ群二维码
意见反馈