序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
21 用于制备石墨纳米带的低聚亚苯基单体聚合物前体 CN201280064361.1 2012-10-24 CN104039743B 2016-06-29 S·伊娃诺维茨; M·G·施瓦布; 冯新良; K·米伦
提供了用于合成石墨纳米带制备用聚合物前体的低聚亚苯基单体、所述聚合物前体及其制备方法,以及由所述聚合物前体和所述单体制备石墨烯纳米带的方法。
22 h-BN上石墨纳米带的制备方法 CN201510098675.9 2015-03-05 CN104726845A 2015-06-24 王浩敏; 贺立; 陈令修; 谢红; 王慧山; 唐述杰; 李蕾; 张道礼; 谢晓明; 江绵恒
发明提供一种h-BN上石墨纳米带的制备方法,包括:1)采用金属催化刻蚀方法于h-BN上形成具有纳米带状沟槽结构的h-BN沟槽模板;2)采用化学气相沉积方法于所述h-BN沟槽模板中的生长石墨烯纳米带。本发明采用CVD方法直接在h-BN上制备形貌可控的石墨烯纳米带,解决了长期以来石墨烯难以在绝缘衬底上形核生长的关键问题,避免了石墨烯转移及裁剪加工成纳米带等复杂工艺将引入的一系列问题。另外,本发明还具有以下优点:一方面可以提高石墨烯质量实现载流子高迁移率,另一方面通过控制石墨烯形貌如宽度、边缘结构实现调控石墨烯的电子结构,在提高石墨烯性能的同时,简化了石墨烯制备工艺,降低生产成本,以便于石墨烯更广泛地应用于电子器件的制备。
23 石墨纳米带制作方法 CN201110360884.8 2011-11-15 CN102616768B 2015-04-15 孙嘉良; 张景棠
发明公开了一种石墨纳米带制作方法,包括(a)将纳米管分散至一溶液,得到一混合液,(b)将化剂加入该混合液,得到一反应液,(c)利用微波加热该反应液,令纳米碳管在微波过程中吸收微波能量,而让纳米碳管沿长轴方向断键,形成石墨烯纳米带,不仅制程简单容易控制,且可有效减少制程时间,快速制得石墨烯纳米带。
24 石墨纳米带前体和适于制备其的单体 CN201280064363.0 2012-10-24 CN104080758A 2014-10-01 M·G·施瓦布; K·米伦; 冯新良; L·杜塞尔
提供了包含通式(I)重复单元的石墨纳米带前体。其中R1,R2各自为H;卤素;-OH;-NH2;-CN;-NO2;或基,其具有1-40个原子且可为直链或支化的、饱和或不饱和的且被卤素(F、Cl、Br、I)、-OH、-NH2、-CN和/或-NO2单取代或多取代,其中一个或多个CH2基团也可被-O-、-S-、-C(O)O-、-O-C(O)-、-C(O)-、-NH-或-NR-替代,其中R为任选取代的C1-C40烃基;或任选取代的芳基、烷芳基或烷基芳基。(I)
25 用于制备石墨纳米带的低聚亚苯基单体聚合物前体 CN201280064361.1 2012-10-24 CN104039743A 2014-09-10 S·伊娃诺维茨; M·G·施瓦布; 冯新良; K·米伦
提供了用于合成石墨纳米带制备用聚合物前体的低聚亚苯基单体、所述聚合物前体及其制备方法,以及由所述聚合物前体和所述单体制备石墨烯纳米带的方法。
26 分段式石墨纳米带 CN201280054201.9 2012-11-13 CN104039694A 2014-09-10 R·法泽尔; P·吕菲克斯; K·米伦; S·布兰肯堡; J·蔡; 冯新良; C·皮涅多利; D·帕斯隆
发明涉及一种分段式石墨纳米带,其包含至少两个彼此共价连接的不同石墨烯段,各石墨烯段具有单分散的段宽度,其中至少一个所述石墨烯段的段宽度为4nm或更小;还涉及其制备方法,包括聚合至少一种多环芳族单体化合物和/或至少一种低聚亚苯基芳单体化合物以形成至少一种聚合物,和使一种或多种聚合物至少部分环化脱氢。
27 石墨纳米带及其制备方法和用途 CN201280031850.7 2012-04-27 CN103635423A 2014-03-12 W·R·迪希特尔; H·阿斯兰; F·J·乌里贝-罗莫
申请提供一种石墨纳米带(GNR)、GNR的制备方法和GNR的用途。所述方法能够控制GNR的参数,例如长度、宽度和边缘组成(例如,边缘的官能团)。所述方法基于聚苯撑乙炔聚合物碳三键在金属催化下的环加成反应。所述GNR能够用于设备中,例如微电子设备中。
28 纳米管通过接触金属制备的石墨纳米带 CN201080034953.X 2010-06-11 CN102666378A 2012-09-12 J·M·图尔; D·V·科森金
在多个实施方式中,本发明描述了用纳米管制备官能化石墨纳米带的方法。一般地,所述方法包括使多根碳纳米管在不存在溶剂的情况下接触金属源,然后加入亲电试剂,形成官能化石墨烯纳米带。在不存在溶剂的情况下使碳纳米管接触碱金属源一般在加热下进行,导致碳纳米管基本上沿平行于其纵轴的方向打开,在一个实施方式中可按螺旋方式打开。本发明的石墨烯纳米带至少在其边缘上官能化,并且基本上没有缺陷。因此,本文所述的官能化石墨烯纳米带具有非常高的导电性,其导电性与机械剥离的石墨烯相当。
29 获取石墨烯纳米片和衍生产品的工艺及由其获得的氧化石墨烯纳米片 CN201210033661.5 2012-02-15 CN102642826A 2012-08-22 恺撒·麦利诺·桑切斯; 伊格纳西奥·马丁·古利翁; 海伦娜·瓦雷拉·里佐; 玛丽亚·德·皮乐·麦利诺·奥玛叶拉斯
一种获取石墨烯纳米片和衍生物以及获取氧化石墨烯纳米片的工艺,通过一个分为两个阶段的工艺过程,获取由具有包括较少石墨烯层互相堆叠围绕并沿着所述纳米丝的主轴盘绕的石墨材料连续带结构的纳米丝组成的中间材料的第一阶段,和一个第二阶段其中所述碳纳米丝经过高温热处理净化所述丝并增加其结晶度。一旦这些纳米丝经过处理,在其上实施化学蚀刻包括氧化以致使所述碳纳米丝分离并开始由物理手段完成的以获得氧化石墨烯纳米片的劈开工艺。
30 Solvent-based methods for production of graphene nanoribbons US14345016 2012-09-14 US09493355B2 2016-11-15 James M. Tour; Wei Lu; Bostjan Genorio
The present invention provides methods of preparing functionalized graphene nanoribbons. Such methods include: (1) exposing a plurality of carbon nanotubes (CNTs) to an alkali metal source in the presence of an aprotic solvent to open them; and (2) exposing the opened CNTs to an electrophile to form functionalized graphene nanoribbons (GNRs). The methods may also include a step of exposing the opened CNTs to a protic solvent to quench any reactive species on them. Additional methods include preparing unfunctionalized GNRs by: (1) exposing a plurality of CNTs to an alkali metal source in the presence of an aprotic solvent to open them; and (2) exposing the opened CNTs to a protic solvent to form unfunctionalized GNRs.
31 Graphene nanoribbon precursors and monomers suitable for preparation thereof US14354430 2012-10-24 US09434619B2 2016-09-06 Matthias Georg Schwab; Klaus Muellen; Xinliang Feng; Lukas Doessel
Provided are graphene nanoribbon precursors comprising repeated units of the general formula (I) in which R1, R2 are each H, halogen, —OH, —NH2, —CN, —NO2 or a hydrocarbyl radical which has 1 to 40 carbon atoms and may be linear or branched, saturated or unsaturated and mono- or poly-substituted by halogen (F, Cl, Br, I), —OH, —NH2, —CN, and/or —NO2, where one or more CH2 groups may also be replaced by —O—, —S—, —C(O)O—, —O—C(O)—, —C(O)—, —NH— or —NR—, in which R is an optionally substituted C1C40-hydrocarbyl radical, or an optionally substituted aryl, alkylaryl or alkoxyaryl radical.
32 Graphene nanoribbons and methods US14329926 2014-07-12 US09365428B2 2016-06-14 Mei Zhang; Okenwa O. I. Okoli; Hai Hoang Van
Methods are provided for fabricating graphene nanoribbons. The methods rely on laser irradiation that is applied to a carbon nanotube film to unzip one or more carbon nanotubes of the carbon nanotube film. Graphene nanoribbons can be cross-linked via laser irradiation to form a graphene nanoribbon network.
33 GRAPHENE NANORIBBONS AS SEMICONDUCTORS FOR ORGANIC THIN FILM TRANSISTORS US14785323 2013-04-17 US20160087212A1 2016-03-24 Josef Peter KLEIN
Disclosed herein are graphene nanoribbons, controllable and reproducible methods of synthesizing graphene nanoribbons, and uses thereof. Transistors containing graphene nanoribbons are also disclosed.
34 Graphene solutions US14128808 2012-06-26 US09255008B2 2016-02-09 Christopher Howard; Neal Skipper; Milo Shaffer; Emily Milner
A method for producing a solution of dispersed graphenes comprising contacting graphite having a dimension in the a-b plane of 10 μm or less with an electronic liquid comprising a metal and a polar aprotic solvent, and solutions of dispersed graphenes which may be obtained by such a method are described.
35 PRODUCTION OF GRAPHENE NANORIBBONS BY OXIDATIVE ANHYDROUS ACIDIC MEDIA US14333104 2014-07-16 US20150307357A1 2015-10-29 James M. Tour; Ayrat Dimiev
In some embodiments, the present disclosure pertains to methods of producing graphene nanoribbons by exposing carbon nanotubes to a medium to result in formation of the graphene nanoribbons from the carbon nanotubes. In some embodiments, the carbon nanotubes include multi-walled carbon nanotubes. In some embodiments, the medium comprises: (a) an acid, (b) a dehydrating agent, and (c) an oxidizing agent. In some embodiments, the acid comprises sulfuric acid, the dehydrating agent comprises oleum (e.g., with a free sulfur trioxide (SO3) content of about 20% by weight of the oleum), and the oxidizing agent comprises ammonium persulfate. In some embodiments, the exposing opens the carbon nanotubes parallel to their longitudinal axis to form graphene nanoribbons. Additional embodiments of the present disclosure pertain to the graphene nanoribbons that are formed by the methods of the present disclosure. In some embodiments, the graphene nanoribbons are non-oxidized, un-functionalized and substantially free of defects.
36 Sorting two-dimensional nanomaterials by thickness US14507240 2014-10-06 US09114405B2 2015-08-25 Alexander A. Green; Mark C. Hersam
The Present teachings provide, in part, methods of separating two-dimensional nanomaterials by atomic layer thickness. In certain embodiments, the present teachings provide methods of generating graphene nanomaterials having a controlled number of atomic layer(s).
37 METHOD FOR PROCESSING GRAPHENE, METHOD FOR PRODUCING GRAPHENE NANORIBBONS, AND GRAPHENE NANORIBBONS US14390402 2013-03-27 US20150179451A1 2015-06-25 Takashi Matsumoto
A gas comprising H2O molecules is introduced into a cluster-generating unit through a nozzle of a gas cluster ion beam device. The introduced water vapor is aggregated by cooling by adiabatic expansion, and beam-shaped H2O clusters are formed. The H2O clusters, having been introduced into an irradiation unit, are ionized by an ionization device. The H2O clusters, having been ionized and positively charged, are drawn out by a plurality of electrodes to which a lower voltage than that of the ionization device is applied; after acceleration, focusing of the beams, and separation of cluster sizes by the electrodes, a substrate on which a sheet of graphene has been formed is irradiated to etch the graphene into nanoribbons having edges of an armchair shape.
38 Methods of fabrication of graphene nanoribbons US13910327 2013-06-05 US09061912B2 2015-06-23 Yuegang Zhang
Methods of fabricating graphene nanoribbons include depositing a catalyst layer on a substrate. A masking layer is deposited on the catalyst layer. The masking layer and the catalyst layer are etched to form a structure on the substrate, the structure comprising a portion of the catalyst layer and a portion of the masking layer disposed on the catalyst layer, with sidewalls of the catalyst layer being exposed. A graphene layer is formed on a sidewall of the catalyst layer with a carbon-containing gas.
39 Method of manufacturing graphene nanomesh and method of manufacturing semiconductor device US14164694 2014-01-27 US09034687B2 2015-05-19 Shintaro Sato; Taisuke Iwai
Particles having a property of absorbing carbon at a particular temperature or higher are deposited on a graphene. The particles are heated to a temperature equal to the particular temperature or higher to make the particles absorb carbon from portions of the graphene under the particles. The particles are removed. Consequently, a graphene nanomesh is obtained.
40 CYLINDRICAL GRAPHENE NANORIBBON ON METAL US13944695 2013-07-17 US20150024201A1 2015-01-22 Danielle Williams; Rebecca Schwartz
Three-dimensional (3D) graphene nanoribbons and methods for fabricating 3D graphene nanoribbons that may readily function as solenoid windings and the like. In one embodiment, a method of fabricating a 3D graphene nanoribbon (100) may include coating a side surface (102A) of a 3D insert (102) with a metal (104) appropriate for graphene growth thereon. The method may also include growing a layer (106) of graphene directly on the metal coating. The method may also include removing a strip of the graphene layer and metal coating (106/104) to expose the side surface (102A) of the insert (102) while leaving a line (108) of graphene on metal winding around the insert (102) and extending continuously from a first end (108A) of the line (108) to a second end (108B) of the line (108).
QQ群二维码
意见反馈