序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 固化的全氟聚醚用作微流体器件中的新材料 CN200480034620.1 2004-09-23 CN1997691A 2007-07-11 约瑟夫·M.·德西蒙; 贾森·P.·罗兰; 斯蒂芬·R.·夸克; 德里克·A.·绍兹曼; 贾森·亚伯勒; 迈克尔·范达姆
发明公开了一种用作制造耐溶剂流体器件的材料的官能化的光固化的全氟聚醚。这些耐溶剂的微流体器件可以用来控制少量流体(例如有机溶剂)的流动,并且进行在其它聚合物基微流体器件内不能进行的微尺度化学反应。
2 形成衬底开口的方法 CN201480028217.1 2014-04-24 CN105229775A 2016-01-06 马克·基尔鲍赫
发明涉及一种形成衬底开口的方法,所述方法包含在衬底中形成多个并排开口。紧邻并排开口中的至少一些开口在所述衬底中形成到相对于彼此不同的深度。移除横向介于所述并排开口之间的壁以形成较大开口,所述较大开口具有非垂直侧壁表面,其中在至少一个直线垂直横截面中移除所述壁,所述至少一个直线垂直横截面正交于所述经移除壁通过所述侧壁表面。
3 微芯片和用于制造微芯片的方法 CN201380035497.4 2013-05-09 CN104412110A 2015-03-11 渡边英俊; 濑川雄司; 加藤义明
提供了用于增加构造微芯片的多个基板层的各基本层之间的接合强度的技术。提供了微芯片,该微芯片包括多个基板层,以及接合层,该接合层设置在基板层之间的界面处并且被配置为包括化合物,接合层的至少一个被配置为包括有机硅化合物。在该微芯片,即使结合不同材料的多个基板层,也可以增强多个基板层的各基板层之间的接合强度。
4 固化的全氟聚醚用作微流体器件中的新材料 CN200480034620.1 2004-09-23 CN1997691B 2011-07-20 约瑟夫·M.·德西蒙; 贾森·P.·罗兰; 斯蒂芬·R.·夸克; 德里克·A.·绍兹曼; 贾森·亚伯勒; 迈克尔·范达姆
发明公开了一种用作制造耐溶剂流体器件的材料的官能化的光固化的全氟聚醚。这些耐溶剂的微流体器件可以用来控制少量流体(例如有机溶剂)的流动,并且进行在其它聚合物基微流体器件内不能进行的微尺度化学反应。
5 用于制造微机电器件的方法和由该方法获得的微机电器件 CN200380102053.4 2003-10-17 CN1708450A 2005-12-14 J·T·M·范比克; M·范格鲁特
发明涉及一种制造微机电器件(10)的方法,在该方法中,在衬底(1)上依序地沉积其中形成第一电极(2A)的第一导电层(2)、由第一材料构成的第一电绝缘层(3)、由不同于第一材料的第二材料构成的第二电绝缘层(4)、以及其中形成与第一电极相对的第二电极(5A)的第二导电层(5),第二电极(5A)与第一电极(2A)以及第一绝缘层(3)一起形成器件(10),其中在沉积第二导电层(5)之后,借助于相对于第二导电层(5)的材料具有选择性的蚀刻剂除去第二绝缘层(4)。根据本发明,对于第一材料和第二材料,选择相对于彼此仅有有限的选择蚀刻性的材料;且在沉积第二绝缘层(4)之前,在第一绝缘层(3)的顶部上提供由另一材料构成的另一层(6),该另一材料相对于第一材料可被选择蚀刻。这样,将和氮化硅用于绝缘层(3、4),且因此根据本发明的方法与当前的IC工艺非常兼容。优选地,通过蚀刻局部地除去第二绝缘层(4),然后通过蚀刻完全除去另一层(6),且最后通过蚀刻完全除去第二绝缘层(4)。
6 PHOTOCURABLE PERFLUOROPOLYETHERS FOR USE AS NOVEL MATERIALS IN MICROFLUIDIC DEVICES EP04784924.5 2004-09-23 EP1694731A2 2006-08-30 DESIMONE, Joseph M.; ROLLAND, Jason P.; QUAKE, Stephen R.; SCHORZMAN, Derek A.; YARBROUGH, Jason; VAN DAM, Michael
A solvent-resistant microfluidio device (MD) is fabricated from a functionalized, photo-curable perfluoropolyether (PFPE). In one embodiment, a polymeric precursor (PP), comprising PFPE, is disposed on a patterned surface (PS) of a substrate (S), having raised protrusions (P). Ultraviolet light (UV) is applied to yield a patterned layer (PL) of photo-cured PFPE having recesses (R) comprising at least one channel (CH). Patterned layer (PL) is removed from patterned surface (PS) of substrate (S) to yield microfluidic device (MD).
7 マイクロチップ及びマイクロチップの製造方法 JP2014524677 2013-05-09 JP6361503B2 2018-07-25 渡辺 英俊; 瀬川 雄司; 加藤 義明
8 マイクロチップ及びマイクロチップの製造方法 JP2014524677 2013-05-09 JPWO2014010299A1 2016-06-20 英俊 渡辺; 瀬川 雄司; 雄司 瀬川; 加藤 義明; 義明 加藤
マイクロチップを構成する複数の基板層の、各々の基板層間の接合強度を高めるための技術の提供。複数の基板層と、前記基板層の界面に設けられた、ケイ素化合物からなる接合層とからなり、前記接合層のうち少なくとも1つは有機ケイ素化合物からなる、マイクロチップを提供する。このマイクロチップにおいては、材質の異なる複数の基板層が組み合わされた場合であっても、複数の基板層の各々の基板層間の接合強度が高められ得る。
9 基板開口を形成する方法 JP2016516657 2014-04-24 JP6259909B2 2018-01-10 キールバウチ,マーク
10 光補助および/または熱補助された印刷によるマイクロ流体ポリマーデバイスの製造 JP2009520008 2007-07-16 JP5684985B2 2015-03-18 ステュダー,ヴィンセント; バルトロ,デニス; デグレ,ジュラーム
11 Manufacturing microfluidic polymer device by light auxiliary and / or heat assisted printed JP2009520008 2007-07-16 JP2009543702A 2009-12-10 ステュダー,ヴィンセント; デグレ,ジュラーム; バルトロ,デニス
エラストマー材料で製造されるスタンプが、支持体上に置かれる光硬化性および/または熱硬化性の液体を印刷するために用いられる工程を含む、マイクロ流体デバイスの製作方法。
【選択図】なし
12 MICROCHIP AND METHOD FOR MANUFACTURING THE SAME US14408498 2013-05-09 US20150239217A1 2015-08-27 Hidetoshi Watanabe; Yuji Segawa; Yoshiaki Kato
There is provided a microchip including a plurality of substrate layers, and bonding layers provided at boundary surfaces between the substrate layers and configured to include a silicon compound. At least one of the bonding layers is configured to include an organic silicon compound.
13 Methods of forming a substrate opening US13904933 2013-05-29 US09005463B2 2015-04-14 Mark Kiehlbauch
A method of forming a substrate opening includes forming a plurality of side-by-side openings in a substrate. At least some of immediately adjacent side-by-side openings are formed in the substrate to different depths relative one another. Walls that are laterally between the side-by-side openings are removed to form a larger opening having a non-vertical sidewall surface where the walls were removed in at least one straight-line vertical cross-section that passes through the sidewall surface orthogonally to the removed walls.
14 Process of making a microtube and microfluidic devices formed therewith US12397197 2009-03-03 US08585910B2 2013-11-19 Douglas Ray Sparks; Nader Najafi
A process for producing a micromachined tube (microtube) suitable for microfluidic devices. The process entails isotropically etching a surface of a first substrate to define therein a channel having an arcuate cross-sectional profile, and forming a substrate structure by bonding the first substrate to a second substrate so that the second substrate overlies and encloses the channel to define a passage having a cross-sectional profile of which at least half is arcuate. The substrate structure can optionally then be thinned to define a microtube and walls thereof that surround the passage.
15 Photocurable perfluoropolyethers for use as novel materials in microfluidic devices US10572764 2004-09-23 US08268446B2 2012-09-18 Joseph M. DeSimone; Jason P. Rolland; Stephen R. Quake; Derek A. Schorzman; Jason Yarbrough; Michael Van Dam
The use of a photocurable perfluoropolyether (PFPE) material for fabricating a solvent-resistant PFPE-based microfluidic device, methods of flowing a material and performing a chemical reaction in a solvent-resistant PFPE-based microfluidic device, and the solvent-resistant PFPE-based microfluidic devices themselves are described. In an embodiment, a method is described for preparing a patterned layer of a photocured perfluoropolyether, the method comprising: (a) providing a substrate, wherein the substrate comprises a patterned surface; (b) contacting a perfluoropolvether precursor with the patterned surface of the substrate; and (c) photocuring the perfluoropolyether precursor to form a patterned layer of a photocured perfluoropolyether.
16 PRODUCTION OF MICROFLUIDIC POLYMERIC DEVICES BY PHOTO-ASSISTED AND/OR THERMALLY ASSISTED PRINTING US12374180 2007-07-16 US20090250130A1 2009-10-08 Vincent Studer; Denis Bartolo; Guillaume Degre
Method for producing a microfluidic device comprising a step in which a stamp made of elastomeric material is used for printing a photo-curable and/or heat-curable liquid disposed on a support.
17 Method for manufacturing a micro-electromechanical device and micro-electromechanical device obtained therewith US10531934 2003-10-17 US07303934B2 2007-12-04 Jozef Thomas Martinus Van Beek; Margot Van Grootel
The invention relates to a method of manufacturing a micro-electromechanical device (10), in which are consecutively deposited on a substrate (1) a first electroconductive layer (2) in which an electrode (2A) is formed, a first electroinsulating layer (3) of a first material, a second electroinsulating layer (4) of a second material different from the first material, and a second electroconductive layer (5) in which a second electrode (5A) lying opposite the first electrode is formed which together with the first electrode (2A) and the first insulating layer (3) forms the device (10), in which after the second conductive layer (5) deposited, the second insulating layer (4) is removed by means of an etching agent which is selective with respect to the material of the second conductive layer (5). According to the invention for the first material and the second material materials are selected which are only limitedly selectively etchable with respect to each other and before depositing the second insulating layer (4) a further layer (6) is provided on top of the first insulating layer (3) of a further material that is selectively etchable with respect to the first material. In this way a silicon oxide and a silicon nitride may be applied for the insulating layers (3, 4) and thus the method according to the invention is very compatible with current IC processes. The second insulating layer (4) is preferably removed locally by etching, then the further layer (6) is completely removed by etching and, finally, the second insulating layer (4) is completely removed by etching.
18 PROCESS OF MAKING A MICROTUBE AND MICROFLUIDIC DEVICES FORMED THEREWITH US11276233 2006-02-20 US20060175303A1 2006-08-10 Douglas Sparks; Nader Najafi
A process for producing a tube suitable for microfluidic devices. The process uses first and second wafers, each having a substantially uniform doping level. The first wafer has a first portion into which a channel is etched partially therethrough between second and third portions of the first wafer. The first wafer is then bonded to the second wafer so that a first portion of the second wafer overlies the first portion of the first wafer and encloses the channel to define a passage. The second wafer is then thinned so that the first portion thereof defines a thinned wall of the passage. Second and third portions of the second wafer and part of the second and third portions of the first wafer are then removed, and the thinned wall defined by the second wafer is bonded to a substrate such that the passage projects over a recess in the substrate surface. The second and third portions of the first wafer are then removed to define a tube with a freestanding portion.
19 PROCESS OF MAKING A MICROTUBE AND MICROFLUIDIC DEVICES FORMED THEREWITH US11161901 2005-08-22 US20060037187A1 2006-02-23 Douglas Sparks; Nader Najafi
A process for producing a tube suitable for microfluidic devices. The process uses a uniformly-doped first material having a first portion into which a channel is etched partially through the first material between second and third portions of the first material. The first material is then bonded to a second material so that a first portion of the second material overlies the first portion of the first material and encloses the channel to define a passage. The second and third portions of the second material and part of the second and third portions of the first material are then removed, and the first portion of the second material is bonded to a substrate such that the passage projects over a recess in the substrate surface. The second and third portions of the first material are then removed to define a tube with a freestanding portion.
20 Chemical sensor US10977177 2004-10-29 US20050070802A1 2005-03-31 Kevin Peters; James Stasiak
This disclosure relates to chemical sensors. These sensors may have a dimension of less than 100 nanometers. In addition, these sensors may comprise field-effect chemical sensors functionalized to sense a chemical.
QQ群二维码
意见反馈