序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 下游开放扇螺旋桨位置的优化 CN201080055478.4 2010-11-18 CN102652093B 2015-09-02 M·D·莫尔; K·L·鲍伦; R·B·朗特雷
发明涉及控制飞机反转开放扇引擎,即CROF引擎,的方法和设备。螺旋桨的直径在飞机第一飞行状况的至少一部分期间被设定为第一直径。螺旋桨的直径在飞机第二飞行状况的至少一部分期间被设定为不同于第一直径的第二直径。
2 盘式转子收缩系统 CN201210032548.5 2012-02-14 CN102649476B 2016-05-25 D·M·波德古尔斯基
发明涉及一种盘式转子叶片收缩系统,它包括主叶片翼梁,主叶片翼梁结合液压汽缸并且具有螺纹。滚珠螺杆被同心地支承在主叶片翼梁内并且被可操作地连接至滚珠螺母,滚珠螺母具有与中间翼梁连接的外侧末端,其中液压活塞被接收成用于在液压汽缸内往复运动。第一齿轮致动器接合滚珠螺杆并且第二齿轮致动器接合主叶片翼梁螺纹。提供加压液体流动的液压流体聚积器被连接至液压汽缸的外侧末端并且控制器致动所述第一齿轮致动器和第二齿轮致动器。
3 具有两个无涵道的螺旋桨的涡轮发动机 CN201180035512.6 2011-07-13 CN103003573A 2013-03-27 亚历山大·阿尔佛雷德·加斯顿·维勒敏
发明涉及一种涡轮发动机,包括两个外部的同轴对转的无涵道的螺旋桨,即,分别为上游螺旋桨和下游螺旋桨。所述发动机的特征在于:下游被螺旋桨(124)的叶片在纵向上是可伸缩的,以减小螺旋桨的直径。所述下游螺旋桨直径的减小使得减少上游螺旋桨所产生的涡流而导致的噪音成为可能。
4 下游开放扇螺旋桨位置的优化 CN201080055478.4 2010-11-18 CN102652093A 2012-08-29 M·D·莫尔; K·L·鲍伦; R·B·朗特雷
发明涉及控制飞机反转开放扇引擎,即CROF引擎,的方法和设备。螺旋桨的直径在飞机第一飞行状况的至少一部分期间被设定为第一直径。螺旋桨的直径在飞机第二飞行状况的至少一部分期间被设定为不同于第一直径的第二直径。
5 盘式转子收缩系统 CN201210032548.5 2012-02-14 CN102649476A 2012-08-29 D·M·波德古尔斯基
发明涉及一种盘式转子叶片收缩系统,它包括主叶片翼梁,主叶片翼梁结合液压汽缸并且具有螺纹。滚珠螺杆被同心地支承在主叶片翼梁内并且被可操作地连接至滚珠螺母,滚珠螺母具有与中间翼梁连接的外侧末端,其中液压活塞被接收成用于在液压汽缸内往复运动。第一齿轮致动器接合滚珠螺杆并且第二齿轮致动器接合主叶片翼梁螺纹。提供加压液体流动的液压流体聚积器被连接至液压汽缸的外侧末端并且控制器致动所述第一齿轮致动器和第二齿轮致动器。
6 JPS5097100A - JP415975 1974-12-25 JPS5097100A 1975-08-01
7 Disc rotor retraction system JP2011288557 2011-12-28 JP2012180083A 2012-09-20 PODGURSKI DANIEL MICHAEL
PROBLEM TO BE SOLVED: To provide a safety mechanism designed to prevent failures, in a disc rotor system which allows partial or full retraction of rotor blades to allow a helicopter as a vertical takeoff or landing aircraft to convert to wing supported flight for high speed cruise.SOLUTION: A disc rotor retraction system includes a main blade spar 22 incorporating a hydraulic cylinder 54 and having a screw thread 34. A ball screw 24 is concentrically carried within the main blade spar and is operably connected to a ball nut 60 which has an outboard end connected to an intermediate spar 26 with a hydraulic piston received for reciprocation in the hydraulic cylinder. A first geared actuator engages the ball screw and a second geared actuator engages a main blade spar screw thread.
8 Method and system for starting a device that is driven by a propeller JP2006539590 2004-11-01 JP2007510591A 2007-04-26 エイチ.フォンフロトー アンドリアス; エム.スリワ スティーブン; ディー.デニス ブライアン
Methods and systems for starting propeller driven aircraft and other devices are disclosed. A system in accordance with one embodiment of the invention includes a removable fixture that is coupled to the propeller and has at least one portion exposed to a flowstream to rotate the propeller during engine start-up. The fixture is configured to separate from the propeller after the engine begins to turn over (e.g., after the engine starts and/or rotates above a threshold rate). Accordingly, the system can include a releasable link between the fixture and the propeller.
9 TURBOMOTEUR A DEUX HELICES CONTRAROTATIVES NON CARENEES EP11741673.5 2011-07-13 EP2596247B1 2015-09-02 VUILLEMIN, Alexandre, Alfred, Gaston
10 TURBOMOTEUR A DOUBLE HELICE NON CARENEE EP11741673.5 2011-07-13 EP2596247A1 2013-05-29 VUILLEMIN, Alexandre, Alfred, Gaston
The present invention relates to a turbine engine including two outer coaxial counter-rotating unducted propellers, i.e. an upstream propeller and a downstream propeller, respectively. Said engine is characterized in that the blades of the downstream propeller (124) are retractable in the lengthwise direction thereof so as to reduce the diameter of the propeller. Said reduction in the diameter of the downstream propeller makes it possible to reduce the noise caused by the vortices generated by the upstream propeller.
11 Optimization of downstream open fan propeller position JP2012544543 2010-11-18 JP2013514923A 2013-05-02 マシュー ディー. ムーア,; ケリー エル. ボレン,; ロビン ビー. ラントリー,
航空機の反対回転オープンファン(CROF)エンジンのプロペラを制御するための方法および装置である。 航空機の第1飛行状態の少なくとも一部の間に、プロペラの直径を第1直径に設定する。 航空機の第2飛行状態の少なくとも一部の間に、プロペラの直径を第1直径とは異なる第2直径に設定する。
12 Variable diameter shaped rotor blade actuation system JP2000589399 1999-12-14 JP2002532340A 2002-10-02 シー. フィッツパトリック,ポウル; エヌ. ヘイガー,リー
(57)【要約】 主ロータ軸(22)とブレード作動軸(48)の間の回転速度および回転方向を変えることによってロータブレード(14)の機外ブレード部(18)の伸張および後退を制御するロータブレード作動システム(100)が開示される。 ロータブレード作動システム(100)は、主ロータ軸(22)上の駆動歯車(102)と、ブレード作動駆動軸(48)上のブレード作動駆動歯車(134)を含む。 主駆動装置(140)は、主ロータ軸(22)と係合して、主ロータ軸(22)からブレード作動軸(48)まで回転運動を伝達する。 主駆動装置(108)は、駆動歯車(102)と係合する入歯車(106)を含む。 主ドライブ(112)は、入力歯車(106)および主クラッチ(110)を介して駆動歯車(102)と係合する。 出力駆動装置(128)は、ブレード作動駆動歯車(134)と係合する。 順方向クラッチ(122)は、主ドライブ(112)および出力ドライブ(128)との順方向遊星歯車組(124)の係合を制御する。 順方向遊星歯車組(124)の係合により、ブレード作動軸(148)が主ロータ軸(122)の回転と同じ方向に回転する。 逆方向クラッチ(130)は、主ドライブ(112)および出力ドライブ(128)との逆方向遊星歯車組(118)の係合を制御する。 主ドライブ(112)および出力ドライブ(128)との逆方向遊星歯車組(118)の係合により、ブレード作動軸(48)が主ロータ軸(22)の回転と反対方向に回転する。 ロータブレード作動制御装置(136)は、順方向および逆方向クラッチ(122、130)の係合および解放を制御する。
13 Blade - vortex action noise (bvi noise) rotor system with a reduction for alternating length rotor blade JP52205997 1996-11-27 JP2000501676A 2000-02-15 エイ. ヴィシンタイナー,ジョセフ; シー. モフィット,ロバート
(57)【要約】 ロータハブアセンブリー(6)に固定されこれと共に回転する奇数及び偶数ブレードアセンブリー(O b ,E b )を有するロータシステム(4)が開示されている。 ここで、奇数ブレードアセンブリー(O b )が半径方向長さR Oを規定し、偶数ブレードアセンブリー(E b )が半径方向長さR Eを規定し、半径方向長さR Eが半径方向長さR Oの約70%と約95%の間にある。 本発明の他の実施形態は、空動及び音響性能に最適になるように形成され得る直径可変ロータシステム(4)に関する。 直径可変ロータシステム(4)は、内側及び外側ブレード部(10,12)を有する奇数及び偶数ブレードアセンブリー(O b ,E b )を含み、ここで、外側ブレード部(12)は内側ブレード部(10)に伸縮可能に設けられている。 位置決め手段(70)は、偶数ブレードアセンブリー(E b )の半径方向長さR Eが第1作動モードで奇数ブレードアセンブリー(O b )の半径方向長さR Oに等しくなるように、かつ、半径方向長さR Eが第2作動モードで長さR Oの約70%と約95%との間になるように、外側ブレード部(12)を内側部ブレード部(10)に対して配置する。
14 OPTIMIZATION OF DOWNSTREAM OPEN FAN PROPELLER POSITION EP10782158.9 2010-11-18 EP2516262B1 2018-03-14 MOORE, Matthew D.; BOREN, Kelly L.; LANGTRY, Robin B.
A method and apparatus for controlling a propeller of a contra-rotation open fan (CROF) engine of an aircraft. A diameter of the propeller is set to be at a first diameter during at least a portion of a first flight condition of the aircraft. The diameter of the propeller is set to be at a second diameter, different from the first diameter, during at least a portion of a second flight condition of the aircraft.
15 Propeller arrangement EP11154441.7 2011-02-15 EP2368795A3 2014-04-02 Lavrenko, Alexander

A propeller arrangement has a first propeller assembly providing a row of first propellers, and a second propeller assembly, rearward of the first propeller assembly, providing a row of second propellers. The first and second propellers are radially extendable and retractable. The propeller arrangement further has a control system for controlling the extension and retraction of the first and second propellers. The control system is arranged such that when the propellers of one of the first and second propeller assemblies extend, the propellers of the other of the first and second assemblies retract.

16 Propeller arrangement EP11154441.7 2011-02-15 EP2368795A2 2011-09-28 Lavrenko, Alexander

A propeller arrangement has a first propeller assembly providing a row of first propellers, and a second propeller assembly, rearward of the first propeller assembly, providing a row of second propellers. The first and second propellers are radially extendable and retractable. The propeller arrangement further has a control system for controlling the extension and retraction of the first and second propellers. The control system is arranged such that when the propellers of one of the first and second propeller assemblies extend, the propellers of the other of the first and second assemblies retract.

17 VARIABLE DIAMETER ROTOR BLADE ACTUATION SYSTEM EP99967305.6 1999-12-14 EP1140622A1 2001-10-10 HAGER, Lee, N.; FITZPATRICK, Paul, C.
A rotor blade actuation system (100) is disclosed for controlling extension and retraction of an outboard blade section (18) of a rotor blade (14) by varying the speed and direction of rotation between a main rotor shaft (22) and a blade actuation shaft (48). The rotor blade actuation system (100) includes a drive gear (102) on the main rotor shaft (22) and a blade actuation drive gear (134) on the blade actuation drive shaft (48). A primary drive unit (140) is engaged with and transmits rotary motion from the main rotor shaft (22) to the blade actuation shaft (48). The primary drive unit (108) includes an input gear (106) engaged with the drive gear (102). A primary drive is engaged (112) with the drive gear (102) through an input gear (106) and a master clutch (110). An output drive (128) is engaged with the blade actuation drive gear (134). A forward clutch (122) controls engagement of a forward planetary gearset (124) with the primary drive (112) and the output drive (128). The engagement of the forward planetary gearset (124) causes the blade actuation shaft (148) to rotate in the same direction as the rotation of the main rotor shaft (122). A reverse clutch (130) controls engagement of a reverse planetary gearset (118) with the primary drive (112) and the output drive (128). The engagement of the reverse planetary gearset (118) with the primary drive (112) and the output drive (128) causes the blade actuation shaft (48) to rotate in the opposite direction from the rotation of the main rotor shaft (22). A rotor blade actuation control unit (136) controls engagement and disengagement of the forward and reverse clutches (122, 130).
18 VARIABLE DIAMETER ROTOR DRIVE SYSTEM EP93919838.8 1993-07-27 EP0651713B1 2000-05-17 FRADENBURGH, Evan, A.; MILLER, Gordon, Glenn
A drive system for varying the diameter of a variable diameter rotor has a gear assembly associated with a single coaxial shaft (13) lower end which includes a gear set for increasing the speed of rotation of the central shaft (13) relative to the rotor drive shaft (2) to change the diameter of the variable diameter blades. A pair of brakes are used, one (37) to slow the coaxial shaft relative to the drive shaft and another (25) to lock the rotor shaft (2) and coaxial shaft (13) together for corotation during constant diameter flight conditions. Utilizing a lower gear assembly reduces hub complexity and allows the variable diameter rotor drive system to be adapted to gimballed rotors which require shaft flexibility. Since only a single shaft extends through the rotor drive shaft, hub complexity is reduced.
19 TORQUE TUBE/SPAR ASSEMBLY FOR VARIABLE DIAMETER HELICOPTER ROTORS EP96920285.0 1996-05-17 EP0839104A1 1998-05-06 MATUSKA, David, G.; GRONENTHAL, Edward, W.; JEPSON, William, J.
A torque tube/spar assembly (100) is provided for transferring the operational loads of a Variable Diameter Rotor blade assembly (16) to a rotor hub assembly (18). The torque tube/spar assembly (100) includes a torque tube member (24), a spar member (30) and a bearing assembly (40a, 40b) for telescopically mounting the spar member (30) to the torque tube member (24). The torque tube/spar assembly (100) furthermore defines an internal channel (62) for housing a retraction/extension mechanism (64) which mounts to an internally formed restraint surface (86) of the spar member (30) and is operative to vary the length of the rotor blade assembly (18). The torque tube member (30) has a substantially constant external geometry along the length of bearing assembly engagement and defines a root end region (102), a tip end region (106) and an intermediate transition region (104) disposed therebetween. The spar member (30) has a substantially constant internal geometry and defines a root end region (110), a first transition (112), an intermediate region (114), a second transition region (116), a restraint region (118) and a tip end region (120). Each of the various regions of the torque tube and spar members (24, 30) have a characteristic stiffness value wherein the characteristic values (104m, 106m) of the intermediate transition and tip end regions (104, 106) of the torque tube member (24) are less than the characteristic stiffness value (102m) of the root end region (102) thereof, and wherein the characteristic stiffness value (118m) of the restraint region (118) of the spar member (30) is greater than said characteristic stiffness values (114m, 120m) of the intermediate and tip end regions (114, 120) thereof, and wherein the characteristic stiffness value (114m) of the intermediate region (114) is less than the characteristic stiffness values (110m, 112m, 116m, 118m) of the root end, first transition, second transition and restraint regions (110, 112, 116, 118).
20 VARIABLE DIAMETER ROTOR DRIVE SYSTEM EP93919838.0 1993-07-27 EP0651713A1 1995-05-10 FRADENBURGH, Evan, A.; MILLER, Gordon, Glenn
A drive system for varying the diameter of a variable diameter rotor has a gear assembly associated with a single coaxial shaft (13) lower end which includes a gear set for increasing the speed of rotation of the central shaft (13) relative to the rotor drive shaft (2) to change the diameter of the variable diameter blades. A pair of brakes are used, one (37) to slow the coaxial shaft relative to the drive shaft and another (25) to lock the rotor shaft (2) and coaxial shaft (13) together for corotation during constant diameter flight conditions. Utilizing a lower gear assembly reduces hub complexity and allows the variable diameter rotor drive system to be adapted to gimballed rotors which require shaft flexibility. Since only a single shaft extends through the rotor drive shaft, hub complexity is reduced.
QQ群二维码
意见反馈