序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
101 Aircraft With Modular Structure US12086958 2006-12-15 US20100012782A1 2010-01-21 Claus Hoffjann; Hans-Georg Schuldzig
An aircraft includes a module carrier for accommodating a plurality of module elements in which in each case at least one system element is integrated. The module elements and system elements are networked among each other such that a desired aircraft model is implemented.
102 BOUNDARY LAYER CONTROL SYSTEM AND METHODS THEREOF US12471991 2009-05-26 US20090289150A1 2009-11-26 David Birkenstock
An airfoil boundary layer control system may be provided. The airfoil boundary layer control system may include at least one airfoil that may include a first surface and a second surface coupled together at a leading edge and a trailing edge; at least one hollow chamber defined within the at least one airfoil; and an aperture defined in the airfoil and positioned substantially near the trailing edge, the aperture coupled in flow communication with the at least one hollow chamber; a pressure source coupled in flow communication with the at least one hollow chamber.
103 Aircraft with forward opening inlay spoilers for yaw control US11023949 2004-12-28 US07448578B2 2008-11-11 Walter Dennis Clark
An aircraft comprises first and second wings positioned on opposite sides of a longitudinal axis with each of the first and second wings including an upper surface and a lower surface, wherein no control surfaces are attached to the lower surface of the wings. A first forward opening control surface is attached by a first hinge to an upper surface of the first wing and a second forward opening control surface being attached by a second hinge to an upper surface of the second wing. Each of the first and second hinges is canted with respect to a direction perpendicular to the longitudinal axis. A method of yaw control performed by the aircraft is also included.
104 Fuel range for an aircraft US11644854 2006-12-22 US20080149767A1 2008-06-26 Calvin Burgess
An apparatus and method for improving the fuel range of an aircraft are provided. The aircraft includes a fuselage with a front windshield, and an external skin providing a top cover for a cockpit of the aircraft. The apparatus includes an aerodynamic fairing secured adjacent the windshield and enclosing the external skin covering the cockpit for a reduction in an abrupt change in area encountered by air flowing along the length of the fuselage. An enclosure is formed between the aerodynamic fairing and the external skin in which a fuel bladder, configured with a reticulated polyurethane foam insert, may be disposed for added fuel capacity of the aircraft. The method includes steps of providing an aerodynamic fairing configured to balance the flow of fluid over the aircraft during flight, and securing the aerodynamic fairing atop the aircraft and adjacent the front windshield.
105 Fuselage design for sonic boom suppression of supersonic aircraft US11592546 2006-11-03 US20080105783A1 2008-05-08 Kelly Laflin
Disclosed is an aircraft configured to reduce the effects of a sonic boom when flown at supersonic speed. The aircraft has a tapered fuselage. The fuselage has a first predetermined cross-section at a first longitudinal position. The cross section has a horizontal dimension which is greater than the vertical dimension of the cross section. This maximizes off-body pressures to the sides of the aircraft, but mitigates the off-body pressures above and below. This enables the suppression of sonic boom.
106 Movable nose cap and control strut assembly for supersonic aircraft US11198498 2005-08-05 US07278609B2 2007-10-09 Allen A. Arata
A nose cap and control strut assembly for supersonic aircraft is disclosed. In one embodiment, the nose cap extends forward from the nose of the aircraft to deflect shock waves and decrease draft during supersonic flight. In another embodiment, control struts extending from the nose of the aircraft have control surfaces which provide yaw and pitch control for the aircraft. The control struts may be rotatable around axes substantially parallel with the longitudinal axis of the aircraft. The control struts may also be retractable into the aircraft. The nose cap may be mounted at the forward ends of the control struts in such a manner that the nose cap remains in a stationary position with respect to the aircraft when the control struts are rotated.
107 Aircraft with topside only spoilers US10456176 2003-06-06 US07108230B2 2006-09-19 Walter D. Clark
An aircraft with swept back wings and spoilers inlaid into the top surface near the tips of the wings. The aircraft also includes an elevator formed in the center back portion of the aircraft, which is also aft of the spoilers. It is aft to allow an auxiliary control in the elevator signal to cancel the unwanted pitch up moment caused by the spoilers only going up and being aft of the center of gravity of the aircraft. Roll is achieved with these spoilers by the direct action of the lift dumping on one side or the other and by taking advantage of the transformation of yaw into roll by the sweep back of the wings.
108 Cross section for a supersonic airplane US10668823 2003-09-22 US07000869B2 2006-02-21 Mithra M. K. V. Sankrithi
A fuselage for an airplane comprising a first side of the fuselage having a first curvature; and a second side of the fuselage having a second curvature; wherein the first curvature is different from the second curvature at a substantially vertical cross section of the fuselage. The invention can also be characterized as a cross section of an airplane comprising a first side of a fuselage with a first curvature; a second side of the fuselage with a second curvature that is coupled to the first side of the fuselage; a storage compartment within the fuselage; a seat within the fuselage; and an aisle within the fuselage; wherein the first curvature is different from the second curvature. The invention can reduce or eliminate sonic boom when applied to a supersonic airplane such as a supersonic business jet with a long slender fuselage.
109 Lifting arrangement for aircraft fuselages US10606096 2003-06-25 US06957792B2 2005-10-25 Manuel Munoz Saiz
A lifting arrangement for aircraft fuselages that consists of placing longitudinal vertical or slanted fins or plates on the lower and lateral lower part of the whole fuselage, said fins forming a channel with the underside of the fuselage, including nose, fuselage and tail, open on their lower area. Further adding longitudinal horizontal or laterally slanted fins on the lateral middle or middle-to-low area of the fuselage and with a positive slope up to the nose with said fins arranged in such a way that the upper fins are projected increasingly laterally, and because of this arrangement and their slope up to the nose, the air flow is directed downward and backward.
110 Integrated and/or modular high-speed aircraft US10394550 2003-03-21 US06938854B2 2005-09-06 Chester P. Nelson
An integrated and/or modular high-speed aircraft and method of design and manufacture. The aircraft can have a supersonic or near-sonic cruise Mach number. In one embodiment, the aircraft can include an aft body integrated with a delta wing and a rearwardly tapering fuselage to define a smooth forward-to-rear area distribution. A propulsion system, including an engine, inlet, and exhaust nozzle can be integrated into the aft body to be at least partially hidden behind the wing. In one embodiment, the entrance of the inlet can be positioned beneath the wing, and the exit of the nozzle can be positioned at or above the wing. An S-shaped inlet duct can deliver air to the aft-mounted, integrated engine. The aircraft can include aft-mounted elevators, wing-mounted elevons, and forward-mounted canards for pitch control. The construction of the aircraft can be modular to take advantage of commonalties between near-sonic and supersonic structures.
111 Transformable airplane US10769125 2004-01-30 US20050178912A1 2005-08-18 David Whelan; Robert Liebeck; Derrell Brown
A transformable airplane may be reconfigured easily and rapidly to perform any one or a combination of tanking, transport, bombing, or command and control missions as desired for a tactical situation by installing or replacing mission-specific modules as desired. A reconfigurable aircraft includes a pair of wings and an aircraft body having at least one bay defined in an interior of the aircraft body. The at least one bay is configured to accept a plurality of removably replaceable modules that configure the aircraft to perform a plurality of missions. Transport mission modules may include space and tie-downs for cargo pallets and/or palletized seating. A roll-on/roll-off ramp may be provided. Tanking mission modules may include a remote aerial refueling operator station. Bombing mission modules may include a bomb rack and a bomb ejector. ISR mission modules may include command and control stations in signal communication with phased array antennas.
112 Flight device with a lift-generating fuselage US10839758 2004-05-06 US20050178884A1 2005-08-18 Konrad Schafroth
The invention relates to an aircraft comprising a lift-producing fuselage (1) whose largest span (11) lies in the middle third (14) of the total length and whose horizontal projection progressively diminishes in the front third (13) and in the rear third (15). The aircraft also comprises two wings (2), whereby the surface of the projection of both wings represents, in a horizontal plane, less than thirty percent of the total lift surface, and the wings are located in the middle third (14) of the total length of the fuselage. The aircraft additionally comprises a horizontal tail unit (4) situated in the rear third of the fuseable. The aircraft has a shape similar to that of a fish.
113 Aircraft converts drag to lift US10460275 2003-06-11 US20050116087A1 2005-06-02 John Page
An aircraft that has a fuselage that has a majority of its frontal surface areas that strike air angled to deflect air down and cause an upward lift on said fuselage and a propulsion means attached to the fuselage on a different angle than the angle of the fuselage thereby causing the bottom of the fuselage to have an angle of attack into the wind like a conventional wing thereby contributing to the lift of the aircraft.
114 Aircraft with forward opening inlay spoilers for yaw control US10353660 2003-01-29 US06892982B2 2005-05-17 Walter Dennis Clark
An aircraft comprises first and second wings positioned on opposite sides of a longitudinal axis, a first forward opening control surface attached to an upper surface of the first wing, and a second forward opening control surface attached to an upper surface of the second wing, wherein each of the first and second hinges is canted with respect to a direction perpendicular to a longitudinal axis of the aircraft. A method of providing yaw control of an aircraft is also provided. The method comprises the steps of providing a first forward opening, canted spoiler in a top surface of a first wing of the aircraft, providing a second forward opening, canted spoiler in a top surface of a second wing of the aircraft, and operating the first and second spoilers differentially to create a yaw moment. The creation of yaw moments without any down force has application in sweptback wings where the tips are behind the center of gravity of the aircraft. The advantage is in reducing radar cross section over traditional (forward hinged, rearward opening) spoilers where there must be a spoiler on the bottom side to counter the down force created by the top spoiler.
115 Wing gull integration nacelle clearance, compact landing gear stowage, and sonic boom reduction US10655707 2003-09-05 US20050067526A1 2005-03-31 Brian Quayle; John Morgenstern; Alan Arslan
A supersonic cruise configuration aircraft comprises a fuselage extending on a longitudinal axis from a forward nose to an aft tail, and a wing coupled at an inboard section to the fuselage and extending to an outboard tip, and having a leading edge and a trailing edge. The aircraft further comprises a landing gear that is coupled to the wing and capable of stowing into the wing and fuselage on retraction. The landing gear has a landing gear strut. The wing is gulled with a dihedral at an angle that is increased inboard and aligns with the retracted landing gear. The wing has a minimum thickness sufficient to enclose the landing gear.
116 Cross section for a supersonic airplane US10668823 2003-09-22 US20050061916A1 2005-03-24 Mithra Sankrithi
A fuselage for an airplane comprising a first side of the fuselage having a first curvature; and a second side of the fuselage having a second curvature; wherein the first curvature is different from the second curvature at a substantially vertical cross section of the fuselage. The invention can also be characterized as a cross section of an airplane comprising a first side of a fuselage with a first curvature; a second side of the fuselage with a second curvature that is coupled to the first side of the fuselage; a storage compartment within the fuselage; a seat within the fuselage; and an aisle within the fuselage; wherein the first curvature is different from the second curvature. The invention can reduce or eliminate sonic boom when applied to a supersonic airplane such as a supersonic business jet with a long slender fuselage.
117 Ground effect airplane US10055411 2001-10-29 US06848650B2 2005-02-01 Zachary C. Hoisignton; Blaine K. Rawdon
An extremely large aircraft which is suitable for overseas cargo transport and which includes a fuselage defining a central storage cavity, a wing assembly defining a pair of wing storage cavities, an altitude control system, and a plurality of independently steerable landing gear units. The central storage cavity has a length, height and width of at least 100 feet, at least 16 feet and at least 24 feet, respectively. The wing assembly has a wingspan of at least 300 feet and is configured with a moderate aspect ratio to permit both ground-effect and high altitude operation. The altitude control system controls the aircraft in ground effect such that the aircraft is maintained at about a predetermined altitude. The landing gear units are coupled to the fuselage and are arranged in at least two discrete columns and at least ten discrete rows. The central storage cavity and the wing storage cavities are configured to receive cargo including intermodal re-usable cargo containers.
118 METHOD AND APPARATUS FOR INDUCING CONTROLLED VORTICES TO REDUCE AFTERBODY DRAG US10236726 2002-09-06 US20040046086A1 2004-03-11 Charles J. Dixon; Arthur C. Hughes
A method and apparatus of creating vortices via vortex controllers, wherein the vortices are capable of entraining high-energy surrounding flow to induce a series of powerful longitudinal vortices that reattach separated flow by merging into single vortices along the undersurface of the afterbody to reenergize the fuselage boundary layer, thus preventing undersurface flow separation and reducing overall afterbody drag.
119 Integrated and/or modular high-speed aircraft US10394550 2003-03-21 US20040016845A1 2004-01-29 Chester P. Nelson
An integrated and/or modular high-speed aircraft and method of design and manufacture. The aircraft can have a supersonic or near-sonic cruise Mach number. In one embodiment, the aircraft can include an aft body integrated with a delta wing and a rearwardly tapering fuselage to define a smooth forward-to-rear area distribution. A propulsion system, including an engine, inlet, and exhaust nozzle can be integrated into the aft body to be at least partially hidden behind the wing. In one embodiment, the entrance of the inlet can be positioned beneath the wing, and the exit of the nozzle can be positioned at or above the wing. An S-shaped inlet duct can deliver air to the aft-mounted, integrated engine. The aircraft can include aft-mounted elevators, wing-mounted elevons, and forward-mounted canards for pitch control. The construction of the aircraft can be modular to take advantage of commonalties between near-sonic and supersonic structures.
120 Variable size blended wing body aircraft US10437763 2003-05-14 US20030192986A1 2003-10-16 Mark A. Page; Jennifer P. Whitlock; Matthew W. Wilks
A blended wing body aircraft having a modular body having a body that includes a plurality of laterally-extending body structures. Changes to the cargo capacity of the aircraft is accomplished through the employment of body structures that are wider or narrower. Configuration in this manner provides the aircraft with a structure that is relatively strong and efficient. While the body structures of this embodiment are not shared across a family of variously sized aircraft, the base design of the body structures is readily modifiable to adjust for an increase or decrease in width associated with a desired change to the aircraft's cargo capacity.
QQ群二维码
意见反馈