首页 / 国际专利分类库 / 作业;运输 / 一般车辆 / 车轮 / 其他类目不包含的或具有本组中某一小组特点的车轮 / .滚柱型车轮 / ..车轮的径向外表面具有螺旋发射装置使车轮旋转形成沿轮轴方向移动
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 一种多排辊轮结构的麦克纳姆轮 CN201610049517.9 2016-01-25 CN106994864A 2017-08-01 韩飞; 曹月奎
发明涉及一种多排辊轮结构的麦克纳姆轮,具有轮毂、辊轮、轴承以及辊轮芯轴,所述辊轮为多排,每排布置多个,每个辊轮通过轴承支持在轮毂之间和辊轮芯轴上,能够自由转动;辊轮芯轴固定安装在轮毂上,辊轮芯轴的轴线与轮毂1的轴线成45°;多排辊轮在麦克纳姆轮的轮轴方向上相隔规定距离,在圆周方向上交错排列,与地面的理论接触点在麦克纳姆轮的轮径圆周上。本发明采用多排(两排或者更多排)辊轮结构的麦克纳姆轮,可以在麦克纳姆轮轮径不变的前提下,增大辊轮的小径,改善了辊轮受情况,在相同轮径条件下,载重能力可提高到现有麦克纳姆轮的3倍以上。
2 单轨车辆转向架和单轨车辆 CN201611250098.1 2016-12-29 CN106985864A 2017-07-28 杨怡; 谭志成
发明公开了一种单轨车辆转向架和单轨车辆,所述转向架包括:转向架本体,所述转向架本体限定出安装腔;走行轮,所述走行轮设置在所述安装腔内,所述走行轮为麦克纳姆轮且所述走行轮与所述转向架本体相连;驱动电机,所述驱动电机设置在所述转向架本体上且用于驱动所述走行轮转动。根据本发明的转向架大大降低了走行轮与轨道面的摩擦,有效减小了车辆在通过较小转弯半径梁面时的阻力,转弯更加容易,有效减小了轮胎的磨损。
3 化的低架运输系统 CN201510846733.1 2015-11-27 CN105644410A 2016-06-08 马丁·里德尔; C·朔伊范斯
一种模化低架运输系统,具有至少一个驱动模块,所述驱动模块具有驱动基座(100)和与该驱动基座相连接的驱动底盘,驱动底盘包括至少一个与驱动器耦合的驱动轮(101),该模块化低架运输系统还具有至少一个承载模块,该承载模块具有承载基座(200)和与承载基座相连接的承载底盘,该承载底盘包括至少一个无驱动的承载轮(201),其中,驱动基座和承载基座关于上升方向(H)固定地彼此连接,并且驱动底盘在上升方向(H)上可移动地支承(112、113)在驱动基座上。
4 车轮 CN200680026134.4 2006-08-08 CN101223039A 2008-07-16 沃尔夫冈·京特
发明涉及一种带有从动轮体(2)的车轮(1),该从动轮体(2)具有两个支撑构件(21,22),在支撑构件之间可转动地设置有多个具有鼓形表面的滚轮体(3),所述滚轮体至少部分突出支撑构件(21,22)的周边,并且其转轴与轮体(2)的转轴(23)倾斜布置,其中,车轮(1)的外径(DU)和滚轮体(3)的最大半径(Ra)的比值介于1.08到1.13之间,优选介于1.09到1.12之间。
5 万向传输滚轮 CN200410075778.5 2004-12-28 CN100345738C 2007-10-31 李光太; 郝绍银; 孟岩
发明属于货物中转传输设备领域,由滚子轴架、滚轮旋转轴、滚子组成,滚子轴架的中部设有一个轴孔,滚子轴架为一回转体,由并排设置的45°滚子轴架及90°滚子轴架组成,45°滚子轴架为环绕主轴线均匀设置的多个45°滚子轴架段,45°滚子轴架段与主轴线夹为45°,90°滚子轴架为环绕主轴线均匀设置的至少三个与主轴线夹角为90°的90°滚子轴架段,45°滚子经45°滚轮旋转轴定位于45°滚子轴架段上并与主轴线呈45°角,45°滚子可绕45°滚轮旋转轴转动,90°滚子经90°滚轮旋转轴定位于90°滚子轴架段上并与主轴线呈90°角,90°滚子可绕90°滚轮旋转轴转动。
6 麦克纳姆电动轮及全方位移动平台 CN201610603210.9 2016-07-27 CN106026504A 2016-10-12 邓佳; 刘小青; 李程宇; 吴正斌
发明涉及车辆工程技术领域,提供一种麦克纳姆电动路及全方位移动平台,麦克纳姆电动轮,包括转动机构以及多个麦克纳姆组件,转动机构包括定子部和可相对定子部同轴转动动子部,各麦克纳姆组件以定子部的转动轴为中心等间距呈周向围设于动子部的侧壁外,各麦克纳姆组件固定连接于动子部。本发明提供的麦克纳姆电动轮,整体结构简单,并利用转动机构取代传统的轮毂结构,减少了整个电动轮部件数量,并且,定子部和动子部所要求的配合精度低,更适合于生产加工。
7 化的低架运输系统、其驱动和承载模块以及组装方法 CN201510846733.1 2015-11-27 CN105644410B 2017-09-26 马丁·里德尔; C·朔伊范斯
一种模化低架运输系统,具有至少一个驱动模块,所述驱动模块具有驱动基座(100)和与该驱动基座相连接的驱动底盘,驱动底盘包括至少一个与驱动器耦合的驱动轮(101),该模块化低架运输系统还具有至少一个承载模块,该承载模块具有承载基座(200)和与承载基座相连接的承载底盘,该承载底盘包括至少一个无驱动的承载轮(201),其中,驱动基座和承载基座关于上升方向(H)固定地彼此连接,并且驱动底盘在上升方向(H)上可移动地支承(112、113)在驱动基座上。
8 一种智能全向搬运机器人 CN201710082337.5 2017-02-10 CN106828662A 2017-06-13 徐志峰
发明涉及一种智能全向搬运机器人,具有机架和全向轮;所述全向轮安装在机架上;所述机架包括基准底板和上层机架;所述基准底板上基准定位加工有定位连接孔;所述上层机架固定连接在基准底板上。本发明制造精度高,装配高效快捷,结构强度高,使用寿命长,后期维修方便。
9 全方向驱动装置及使用其的全方向移动车 CN200880012720.2 2008-04-08 CN101663194B 2012-10-10 竹中透; 平野允; 和泉秀治; 桑原和也; 小山泰司; 小桥慎一郎
发明提供一种全方向驱动装置及使用该全方向驱动装置的全方向移动车,不会使相对于电动达等驱动源的电源供给的处理变得复杂,能够使全方向驱动装置具有良好的耐久性、维护性。全方向驱动装置具有:由能够围绕与切线正交的截面的中心旋转的环形环状体构成的主轮(2);电动马达(5R、5L),其用于产生围绕主轮(2)的中心轴的旋转及围绕与切线正交的截面的中心的旋转力;驱动力转换机构(具有自由辊(3R、3L)的旋转部件(4R、4L)),其用于分别将电动马达(5R、5L)的旋转力转换成主轮(2)围绕中心轴线(B)的旋转力和围绕截面中心(C)的旋转力。
10 全方向驱动装置及使用其的全方向移动车 CN200880012720.2 2008-04-08 CN101663194A 2010-03-03 竹中透; 平野允; 和泉秀治; 桑原和也; 小山泰司; 小桥慎一郎
发明提供一种全方向驱动装置及使用该全方向驱动装置的全方向移动车,不会使相对于电动达等驱动源的电源供给的处理变得复杂,能够使全方向驱动装置具有良好的耐久性、维护性。全方向驱动装置具有:由能够围绕与切线正交的截面的中心旋转的环形环状体构成的主轮(2);电动马达(5R、5L),其用于产生围绕主轮(2)的中心轴的旋转及围绕与切线正交的截面的中心的旋转力;驱动力转换机构(具有自由辊(3R、3L)的旋转部件(4R、4L)),其用于分别将电动马达(5R、5L)的旋转力转换成主轮(2)围绕中心轴线(B)的旋转力和围绕截面中心(C)的旋转力。
11 万向传输滚轮 CN200410075778.5 2004-12-28 CN1631754A 2005-06-29 李光太; 郝绍银
发明属于货物中转传输设备领域,由滚子轴架、滚轮旋转轴、滚子组成,滚子轴架的中部设有一个轴孔,滚子轴架为一回转体,由并排设置的45°滚子轴架及90°滚子轴架组成,45°滚子轴架为环绕主轴线均匀设置的多个45°滚子轴架段,45°滚子轴架段与主轴线夹为45°,90°滚子轴架为环绕主轴线均匀设置的至少三个与主轴线夹角为90°的90°滚子轴架段,45°滚子经45°滚轮旋转轴定位于45°滚子轴架段上并与主轴线呈45°角,45°滚子可绕45°滚轮旋转轴转动,90°滚子经90°滚轮旋转轴定位于90°滚子轴架段上并与主轴线呈90°角,90°滚子可绕90°滚轮旋转轴转动。
12 TOOL SYSTEM AND METHOD OF OPERATION OF SAID TOOL SYSTEM US15982421 2018-05-17 US20180333816A1 2018-11-22 Alessandro TRIFONI; Davide CEVOLI; Lorenzo FRANGI
Provided is a tool system for including a machine tool configured for machining by the removal of material an object defining a machining surface.
13 Wheel US11995056 2006-08-08 US08833862B2 2014-09-16 Wolfgang Günther
The invention relates to a wheel (1) with a driven wheel body (2), comprising two support elements (21, 22), between which a number of roller bodies (3) with a spherical surface are arrange to rotate, which at least partly extend beyond the circumference of the support elements (21, 22) the rotational axes of which are arranged at an angle to the rotational axis (23) of the wheel body (2). The ratio of the outer diameter (Du) of the wheel (1) to the maximum radius (Ra) of the roller body (3) is between 1.08 and 1.13, in particular, between 1.09 and 1.12.
14 Frictional drive device and inverted pendulum type vehicle using the same US12884328 2010-09-17 US08460154B2 2013-06-11 Hiroshi Gomi; Toru Takenaka; Kazuya Kuwabara
In a frictional drive device comprising a pair of drive disks (48) rotatably supported by a frame (10) around a central axial line (A) in a mutually opposing relationship, a pair of motors (64) supported by the frame for individually rotatively actuating the drive disks, a plurality of drive rollers (56) arranged along an outer periphery of each drive disk at a regular interval and each having a rotational center line so as to be rotatable along a plane which is neither parallel nor perpendicular to the central axial line, and an annular main wheel (84, 110) disposed approximately coaxially with respect to the central axial line and engaged by the drive rollers of the drive disks, the main wheel comprising an annular member (86, 111) and a plurality of driven rollers (92) supported along the annular member so as to be rotatable around a tangential line of the annular member, a resiliency is incorporated either in the main wheel or in the drive rollers so that a relatively large number of driven rollers can be simultaneously engaged by the drive rollers and, hence, a relative high drive efficiency can be maintained even when the axial center of the annular member and the axial center of the drive disks are offset from each other.
15 Friction drive vehicle US12633300 2009-12-08 US08162092B2 2012-04-24 Toru Takenaka; Makoto Hirano; Hideharu Izumi; Kazuya Kuwabara; Taiji Koyama; Masao Sasaki; Hiroshi Gomi; Shinichiro Kobashi
In a frictional drive vehicle, a load acting on the vehicle such as the weight of a rider is converted into a force that urges two frictionally engaging parts (3L, 3R, 25) toward each other. Thereby, the contact pressure between the two frictionally engaging parts is maintained at an optimum level under all conditions. A weight of a rider may be transmitted to a drive member that frictionally engages a main wheel via a four-link parallel link mechanism (40, 50).
16 FRICTIONAL DRIVE DEVICE AND INVERTED PENDULUM TYPE VEHICLE USING THE SAME US12902377 2010-10-12 US20120086262A1 2012-04-12 Hiroyuki MAKINO
In a frictional drive device comprising a pair of drive disks (54) each rotatably supported by a frame (10) around a central axial line (A) in a mutually opposing relationship and configured to be individually rotatively actuated by a pair of second actuators (64), a plurality of drive rollers (58) arranged along an outer periphery of each drive disk so as to be rotatable along a prescribed plane of rotation, and an annular main wheel (84) disposed at least approximately coaxially with respect to the central axial line and engaged by the drive rollers of the drive disks, the main wheel comprising an annular member (86) and a plurality of driven rollers (92) supported along the annular member so as to be rotatable around a tangential line of the annular member, each drive roller includes at least a pair of individually rotatable disk members (61) coaxially disposed to each other and having different diameters, the diameters being selected so that the disk members engage the corresponding driven roller at outer peripheral parts thereof. Typically, each drive roller include a plurality of disk members coaxially stacked upon one another in a mutually freely rotatable manner so as to jointly define a substantially hourglass shaped outer profile. Thereby, the slippage in the frictional engagement between the drive rollers and driven rollers can be minimized so that the drive efficiency can be improved and the drive force capacity can be maximized.
17 FRICTION DRIVE DEVICE AND OMNI-DIRECTIONAL VEHICLE USING THE SAME US13127347 2009-11-02 US20110260523A1 2011-10-27 Toru Takenaka; Makoto Hirano; Hideharu Izumi; Kazuya Kuwabara; Taiji Koyama; Shinichiro Kobashi; Hiroshi Gomi; Masao Sasaki
In a friction drive device comprising first free rollers and second free rollers contacting each other at the outer circumferential surfaces thereof to frictionally transmit power from the second free rollers to the first free rollers, in order to minimize the slippage between the first and second free rollers, minimize the power loss and cause the first free rollers to move as designed, an outer peripheral part of each first free roller defining an outer circumferential surface thereof has a different stiffness from that of an outer peripheral part of each second free roller defining an outer circumferential surface thereof.
18 WHEEL, AND FRICTION DRIVE DEVICE AND OMNI-DIRECTIONAL VEHICLE USING THE SAME US13132681 2009-12-01 US20110233989A1 2011-09-29 Toru Takenaka; Makoto Hirano; Hideharu Izumi; Kazuya Kuwabara; Taiji Koyama; Masao Sasaki; Hiroshi Gomi; Shinichiro Kobashi
In a wheel for use in an omni-directional vehicle, gravel and other foreign matters are prevented from being trapped between free rollers forming the wheel, and traveling vibrations and noises are minimized at the same time. The wheel includes an annular member and a plurality of free rollers each rotatably supported by the annular member around a corresponding tangential line of the annular member, and a gap member is placed between each adjacent pair of the free rollers to fill a gap defined between the free rollers.
19 Omni-directional wheel US12321903 2009-01-26 US07980335B2 2011-07-19 Steven D. Potter
An omni-directional wheel includes a hub rotatable about a wheel axis and a first row of angled rollers about the hub each rotatably supported by the hub. There is at least a second row of angled rollers about the hub each also rotatably supported by the hub. The rollers of the second row are axially offset along the wheel axis from the first row, and rotationally offset from the first row about the wheel axis, and not coaxial with the rollers of the first row.
20 DRIVE UNIT US12882468 2010-09-15 US20110070998A1 2011-03-24 Toru TAKENAKA; Hiroshi GOMI; Shinichiro KOBASHI; Taiji KOYAMA; Masao SASAKI; Hideharu IZUMI; Kazuya KUWABARA
A drive unit includes a main wheel having an annular member, and a plurality of driven rollers that are rotatably attached to the annular member, a plurality of first drive rollers and a plurality of second drive rollers, which are provided with the annular member between them and arranged such that they make contact with the outer peripheral faces of the driven rollers, a first holder and a second holder, which are arranged with the annular shaft between them and respectively hold the plurality of first drive rollers and the plurality of second drive rollers while allowing them to rotate, and a first drive unit and a second drive unit that rotationally drive the first holder and the second holder respectively; grooves are formed in the outer peripheral faces of the driven rollers at an angle to the circumferential direction thereof.
QQ群二维码
意见反馈