序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
21 带电粒子癌症疗法患者定位的方法和装置 CN200980122397.9 2009-05-21 CN102119585A 2011-07-06 弗拉迪米尔·叶戈罗维奇·巴拉金
发明包含结合多轴带电粒子辐射疗法使用的患者定位和/或重新定位系统,诸如躺式、半垂直或坐式患者定位、对准和/或控制的方法和装置。患者定位约束任选地包括以下中的一个或多个:座位支架、背部支架、头部支架、臂部支架、膝部支架和脚部支架。所述定位约束中的一个或多个优选为可移动的和/或在计算机控制之下,以便快速定位、重新定位和/或固定患者。所述系统任选地使用与粒子束癌症疗法系统的质子束路径处于大体相同路径的X射线束。产生的图像可用于:相对于所述质子束路径精调身体对准,控制所述带电粒子束路径以准确且精确地靶向肿瘤,和/或系统验证和证实。
22 离子注入机磁中的电子注入 CN200580046588.3 2005-11-18 CN101103432A 2008-01-09 安东尼·雷诺; 唐纳·L·史麦特雷克; 詹姆士·贝福; 艾立克·赫尔曼森
发明是用一或多个电子源,将电子(18)注入即将在磁的磁极片(130,132)之间传送的一离子束(122)。在本发明部分实施例中,该些电子源是位于磁铁的磁极片的其中之一或两者的凹穴(160)中。在本发明其他实施例中,无线电频率微波等离子流枪是位于磁极片之间,或配置在磁极片的至少其中之一的凹穴中。
23 偏转和分裂束的切隔电磁、电磁铁、及偏转束的方法 CN02106911.5 2002-03-07 CN1374664A 2002-10-16 酒井泉
制备一种由其切隔电磁划分成一个第一束偏转磁极空间和一个第二束偏转磁极空间的切隔电磁铁。然后,使电流在包括谱电磁铁的线圈中流动,并因而在第一束偏转磁极空间和第二束偏转磁极空间中分别产生一个第一磁场和一个第二磁场。第一磁场的方向与第二磁场的方向相反,并且使穿过第一束偏转磁极空间的束,在对于穿过第二束偏转磁极空间的束的相反方向上偏转一个给定度。
24 이온 주입기 자석들에서의 전자 주입 KR1020077013566 2005-11-18 KR1020070099561A 2007-10-09 리나우,안소니; 스마트라크,다나엘.; 버프,제임스; 헤르만손,에릭
One or more electron sources are utilized to inject electrons (18) into an ion beam (122) being transported between the polepieces (130, 132) of a magnet. In some embodiments, the electron sources are located in cavities (160) in one or both polepieces of the magnet. In other embodiments, a radio frequency or microwave plasma flood gun is located in a cavity in at least one of the polepieces or between the polepieces.
25 광음극 고주파 전자총 공동 장치 KR1020137007450 2011-09-26 KR101828864B1 2018-02-14 우라카와쥰지; 테루누마노부히로; 타카토미토시카즈
본발명의광음극고주파전자총공동장치는, 고주파가속공동(1), 광음극(8;15), 레이저입사포트(9), 고주파전력입력커플러포트(10), 및고주파공진튜너(16)를구비하며, 방전방지·고주파전계의고강도화·고주파의공진안정성의향상을위해서, 그내면에있어서예각부를가지지않으면서평활한곡면만으로형성된공동(空洞) 셀을내부에가지는초소형의고주파가속공동을이용하는것을특징으로한다. 또한, 광음극면에서의전계(電界) 강도를최대로하기위해서광음극을고주파가속공동의하프셀(5)의단부에마련하고, 쇼트번치광전자의품질을최선으로하기위해서레이저입사포트를고주파가속공동의전자빔출구의후방에있어서광음극과대향되는위치에마련하여레이저수직입사를확보하고, 고주파의전계강도를높이기위해서고주파전력입력커플러포트를고주파가속공동의셀의측부에마련하였다. 이에의해, 대강도고품질의전자빔을발생할수 있는소형의광음극고주파전자총공동장치가제공가능해졌다.
26 전자 주입기 및 자유 전자 레이저 KR1020167018046 2014-11-27 KR1020160095094A 2016-08-10 니키펠로브앤드리알렉산드로비치; 버나인배딤이브겐예비치; 드자게르피에테르윌렘헤르만; 드브리즈고스찰스; 프리즌스올라브왈데마르블라디미르; 그리민크레오나르두스아드리아누스게라두스; 카탈레딕안델코; 아케르만스요한스안토니우스게라두스; 룹스트라에릭로엘로프; 엔겔렌워우테르조엡; 바르트라이즈페트러스루트게러스; 코에넨테이스요한; 옵'트루트윌헬무스패트릭엘리자베스마리아
전자빔을제공하기위한주입기장치가제시된다. 주입기장치는전자다발을제공하기위한제 1 주입기, 및전자다발을제공하기위한제 2 주입기를포함한다. 주입기장치는전자빔이제 1 주입기에의해서만제공된전자다발을포함하는제 1 모드및 전자빔이제 2 주입기에의해서만제공된전자다발을포함하는제 2 모드에서동작가능하다.
27 가속기 및 사이클로트론 KR1020110049858 2011-05-26 KR1020110129830A 2011-12-02 츠츠이히로시
PURPOSE: An accelerator and a cyclotron are provided to control the spreading out of the beam introduced to an acceleration orbit by reducing the beam colliding into the inner wall of an acceleration space. CONSTITUTION: An inflator(21) is composed of a metal lump. The inflator includes a positive electrode(23) and a negative electrode(27) which face each other. A positive electrode side(23a) has the curved surface of a twisted strip shape and is formed in the surface of the positive electrode. A negative electrode side(27a) has the curved surface of the twisted strip shape and is formed in the surface of the negative electrode. The positive electrode side and the negative electrode side face each other at a predetermined gap. An incident beam is affected by not only an electrical field due to the electric potential difference of the positive electrode and the negative electrode but also a magnetic field due to a magnetic pole. The beam is horizontally emitted from the gap of the negative electrode side and the positive electrode side in the top part of the inflator.
28 EUV 범위의 계측 애플리케이션들을 위한 콤팩트 광원 KR20187005434 2016-08-22 KR20180033563A 2018-04-03
본발명의목적은, 코히어런트산란방법들을사용하는 EUV 범위의계측방법들에대해충분한전력, 우수한안정성및 높은코히어런스를전달할수 있는저장링에기초한콤팩트하고비용효율적인광원을제공하는것이다. 이목적은, 본발명에따라 13.5nm에서의화학선마스크검사를위한특성들을갖는광을제공하기위해저장링(SR), 부스터링(BR), 선형가속기, 및언듈레이터(UN)를포함하는, 전자빔 가속기기술에기초한콤팩트광원(LS)에의해달성되고, 여기서: a) 전자빔의강도는 10의레벨아래로유지되고; b) 콤팩트멀티-벤드자석구조가작은이미턴스를발생시키도록저장링(SR)에대해사용되어광의높은휘도및 큰코히어런트콘텐트를이끌어내고; c) 부스터링(BR)과저장링(SR)은, 요구되는바닥공간을작게유지하고간섭효과들을감소시키기위해동심원적인상면도배열로상이한레벨들에위치하고; d) 준-연속주입, 각각향상된탑-업주입이, 높은강도안정성에도달하기위해그리고탄성빔 가스산란및 토우셰크산란으로인한수명감소들을막기위해구현되고; e) 저장링(SR)으로의주입및 부스터링(BR)으로부터의추출은, 부스터링(BR) 및저장링(SR)의평행한직선구간궤도들에의해정의되는평면에서대각선으로수행되고; f) 부스터링(BR)으로부터저장링(SR)으로의탑-업주입에대해 2개의반대칭으로배열된램버슨셉타가사용된다. 이러한조치들을통해, 종래의실험실들또는그 유지관리영역들에맞고, 유지관리요구사항들이상당히낮고소유비용이낮아진매우콤팩트한소스가얻어진다. 언듈레이터에의해방출되는광의파장은 6nm부터 30nm까지의범위이다. 광빔은 10의범위에서의극적인강도안정성을가지며, 10mW보다큰 마스크상의충분한전력을갖고, 10kW/mm/sr보다큰 높은밝기를갖는다. 언듈레이터주기길이, 언듈레이터주기들의수, 전자빔 에너지의파라미터공간은, 코히어런트산란방법들및 렌즈가없는계측애플리케이션들에대해요구되는파장, 광자플럭스및 코히어런스를제공하도록최적화된다. 동심원적인링들의개념은소스의최소풋프린트를가능하게한다. 낮은갭 언듈레이터와저장링으로의향상된탑-업주입의조합은, 극히높은강도안정성을제공하고, 코히어런트산란방법들의특정애플리케이션에필요한코히어런스를충족시킨다.
29 광음극 고주파 전자총 공동 장치 KR1020137007450 2011-09-26 KR1020130127432A 2013-11-22 우라카와쥰지; 테루누마노부히로; 타카토미토시카즈
본 발명의 광음극 고주파 전자총 공동 장치는, 고주파 가속 공동(1), 광음극(8;15), 레이저 입사 포트(9), 고주파 전력 입력 커플러 포트(10), 및 고주파 공진 튜너(16)를 구비하며, 방전 방지·고주파 전계의 고강도화·고주파의 공진 안정성의 향상을 위해서, 그 내면에 있어서 예각부를 가지지 않으면서 평활한 곡면만으로 형성된 공동(空洞) 셀을 내부에 가지는 초소형의 고주파 가속 공동을 이용하는 것을 특징으로 한다. 또한, 광음극면에서의 전계(電界) 강도를 최대로 하기 위해서 광음극을 고주파 가속 공동의 하프 셀(5)의 단부에 마련하고, 쇼트 번치 광전자의 품질을 최선으로 하기 위해서 레이저 입사 포트를 고주파 가속 공동의 전자빔 출구의 후방에 있어서 광음극과 대향되는 위치에 마련하여 레이저 수직 입사를 확보하고, 고주파의 전계 강도를 높이기 위해서 고주파 전력 입력 커플러 포트를 고주파 가속 공동의 셀의 측부에 마련하였다. 이에 의해, 대강도 고품질의 전자빔을 발생할 수 있는 소형의 광음극 고주파 전자총 공동 장치가 제공 가능해졌다.
30 가속기 및 사이클로트론 KR1020110049858 2011-05-26 KR101231570B1 2013-02-08 츠츠이히로시
[과제] 본 발명은, 가속궤도에 도입되는 빔의 퍼짐을 억제할 수 있는 가속기 및 사이클로트론을 제공하는 것을 목적으로 한다.
[해결수단] 본 발명의 사이클로트론은, 이온원으로부터 입사되는 빔을 통과시켜서 가속궤도(T)에 도입하는 스파이럴 인플렉터(21)를 구비하고, 스파이럴 인플렉터(21)는, 통과하는 빔(B)을 수속시키는 빔 수속수단으로서, 빔의 통과궤도(S)에 직교하는 단면에 있어서 갭을 불균일하게 한 플러스전극(23) 및 마이너스전극(27)을 가진다.
31 Accelerator and particle beam irradiation system US15513584 2014-12-08 US10117320B2 2018-10-30 Takamichi Aoki; Futaro Ebina; Hideaki Nishiuchi; Shigemitsu Hara; Masumi Umezawa; Takayoshi Seki
The accelerator includes a circular vacuum container which contains a circular return yoke. With respect to the central axis of the vacuum container, an incidence electrode is arranged towards the entrance of a beam emission path inside of the return yoke. Inside of the return yoke, electrodes are arranged radially from the incidence electrode in the periphery of the incidence electrode. Recesses are arranged alternately with the electrodes in the circumferential direction of the return yoke. In the vacuum container, an orbit-concentric region is formed in which multiple beam orbits centered on the incidence electrode are present, and, in the periphery of said region, an orbit-eccentric area is formed in which multiple beam orbits eccentric to the incidence electrode are present. In the orbit-eccentric region, the beam orbits between the incidence electrode and the entrance to the beam emission path are denser.
32 Electron injector and free electron laser US15600149 2017-05-19 US10103508B2 2018-10-16 Andrey Alexandrovich Nikipelov; Vadim Yevgenyevich Banine; Pieter Willem Herman De Jager; Gosse Charles De Vries; Olav Waldemar Vladimir Frijns; Leonardus Adrianus Gerardus Grimminck; Andelko Katalenic; Johannes Antonius Gerardus Akkermans; Erik Loopstra; Wouter Joep Engelen; Petrus Rutgerus Bartraij; Teis Johan Coenen; Wilhelmus Patrick Elisabeth Maria Op 'T Root
A photocathode comprises a substrate in which a cavity is formed and a film of material disposed on the substrate. The film of material comprises an electron emitting surface configured to emit electrons when illuminated by a beam of radiation. The electron emitting surface is on an opposite side of the film of material from the cavity.
33 A COMPACT LIGHT SOURCE FOR METROLOGY APPLICATIONS IN THE EUV RANGE US15755885 2016-08-22 US20180249568A1 2018-08-30 YASIN EKINCI; LEONID RIVKIN; ALBIN WRULICH; ANDREAS STREUN
A compact light source based on electron beam accelerator technology includes a storage ring, a booster ring, a linear accelerator and an undulator for providing light having the characteristics for actinic mask inspection at 13.5 nm. The booster ring and the storage ring are located at different levels in a concentric top view arrangement in order to keep the required floor space small and to reduce interference effects. Quasi-continuous injection by enhanced top-up injection leads to high intensity stability and combats lifetime reductions due to elastic beam gas scattering and Touschek scattering. Injection into the storage ring and extraction from the booster ring are performed diagonal in the plane which is defined by the parallel straight section orbits of the booster ring and the storage ring. For the top-up injection from the booster ring into the storage ring two antisymmetrically arranged Lambertson septa are used.
34 Source for intra-pulse multi-energy X-ray cargo inspection US15307463 2015-05-14 US09867271B2 2018-01-09 Aleksandr Saverskiy
Methods for generating a multiple-energy X-ray pulse. A beam of electrons is generated with an electron gun and modulated prior to injection into an accelerating structure to achieve at least a first and specified beam current amplitude over the course of respective beam current temporal profiles. A radio frequency field is applied to the accelerating structure with a specified RF field amplitude and a specified RF temporal profile. The first and second specified beam current amplitudes are injected serially, each after a specified delay, in such a manner as to achieve at least two distinct endpoint energies of electrons accelerated within the accelerating structure during a course of a single RF-pulse. The beam of electrons is accelerated by the radio frequency field within the accelerating structure to produce accelerated electrons which impinge upon a target for generating Bremsstrahlung X-rays.
35 ACCELERATOR AND PARTICLE BEAM IRRADIATION SYSTEM US15531806 2014-12-08 US20170318657A1 2017-11-02 Takamichi AOKI; Fuutarou EBINA; Hideaki NISHIUCHI; Shigemitsu HARA; Masumi UMEZAWA; Takayoshi SEKI
An accelerator 4 includes a circular vacuum container including circular return yokes 5A, 5B. An injection electrode 18 is disposed closer to an inlet of a beam extraction path 20 in the return yoke 5B than a central axis C of the vacuum container. Magnetic poles 7A to 7F are radially disposed from the injection electrode 18 at the periphery of the injection electrode 18 in the return yoke 5B. Recessions 29A to 29F are disposed alternately with the magnetic poles 7A to 7F in the circumferential direction of the return yoke 5B. In the vacuum container, a concentric trajectory region, in which multiple beam turning trajectories centered around the injection electrode 18 are present, is formed, and an eccentric trajectory region, in which multiple beam turning trajectories eccentric from the injection electrode 18 are present, is formed around the region.
36 ACCELERATOR AND PARTICLE BEAM IRRADIATION SYSTEM US15513584 2014-12-08 US20170303384A1 2017-10-19 Takamichi AOKI; Futaro EBINA; Hideaki NISHIUCHI; Shigemitsu HARA; Masumi UMEZAWA; Takayoshi SEKI
The accelerator includes a circular vacuum container which contains a circular return yoke. With respect to the central axis of the vacuum container, an incidence electrode is arranged towards the entrance of a beam emission path inside of the return yoke. Inside of the return yoke, electrodes are arranged radially from the incidence electrode in the periphery of the incidence electrode. Recesses are arranged alternately with the electrodes in the circumferential direction of the return yoke. In the vacuum container, an orbit-concentric region is formed in which multiple beam orbits centered on the incidence electrode are present, and, in the periphery of said region, an orbit-eccentric area is formed in which multiple beam orbits eccentric to the incidence electrode are present. In the orbit-eccentric region, the beam orbits between the incidence electrode and the entrance to the beam emission path are denser.
37 Electron injector and free electron laser US15035674 2014-11-27 US09728931B2 2017-08-08 Andrey Alexandrovich Nikipelov; Vadim Yevgenyevich Banine; Pieter Willem Herman De Jager; Gosse Charles De Vries; Olav Waldemar Vladimir Frijns; Leonardus Adrianus Gerardus Grimminck; Andelko Katalenic; Johannes Antonius Gerardus Akkermans; Erik Loopstra; Wouter Joep Engelen; Petrus Rutgerus Bartraij; Teis Johan Coenen; Wilhelmus Patrick Elisabeth Maria Op'T Root
An injector arrangement for providing an electron beam. The injector arrangement comprises a first injector for providing electron bunches, and a second injector for providing electrons bunches. The injector arrangement is operable in a first mode in which the electron beam comprises electron bunches provided by the first injector only and a second mode in which the electron beam comprises electron bunches provided by the second injector only.
38 Dielectric wall accelerator utilizing diamond or diamond like carbon US14890304 2014-05-16 US09728280B2 2017-08-08 Martin A. Stuart
Provided are a plurality of embodiments, including, but not limited to, a device for generating efficient low and high average power output Gamma Rays via relativistic particle bombardment of element targets using an efficient particle injector and accelerator at low and high average power levels suitable for element transmutation and power generation with an option for efficient remediation of radioisotope release into any environment. The devices utilize diamond or diamond-like carbon materials and active cooling for improved performance.
39 Method and system of beam injection to charged particle storage ring US15033740 2013-11-07 US09655226B2 2017-05-16 Hironari Yamada
The charged particle storage system includes: a storage ring circulating, by a perturbating device, charged particles injected from outside; a power source supplying an electric current to the perturbating device; and a charged particle beam generating device. The charged particle beam generating device includes a DC accelerator that generates a constant voltage to accelerate electrons and thereby generates a beam of the electrons. While a current having its current intensity changing in a sinusoidal wave is caused to flow through the perturbating device continuously for at least 10 μs by a power source, an electron beam output from the charged particle beam generating device is injected to the storage ring continuously for at least 10 μs. Thus, a current larger than that stored by the conventional resonance injection method can be stored in the storage ring, and an X-ray having higher intensity can be generated.
40 SOLID MEDIA WAKEFIELD ACCELERATORS US14658648 2015-03-16 US20170099724A1 2017-04-06 Toshiki Tajima; Gerard Mourou
Systems and methods for that utilize a compressed coherent high intensity X-ray pulse to drive acceleration of particles in a solid medium laser wakefield accelerator (LWFA).
QQ群二维码
意见反馈