首页 / 国际专利分类库 / 电学 / 基本电气元件 / 磁体;电感;变压器;磁性材料的选择 / 信号类型的可变电感器或变压器(H01F36/00优先)
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
21 VOLTAGE-CONTROLLED SEMICONDUCTOR INDUCTOR AND METHOD US13100963 2011-05-04 US20110204473A1 2011-08-25 Krupakar M. Subramanian
A voltage-controlled semiconductor inductor and method is provided. According to various embodiments, the voltage-controlled inductor includes a conductor configured with a number of inductive coils. The inductor also includes a semiconductor material having a contact with at least a portion of at least one of the coils. The semiconductor material is doped to form a diode with a first doped region of first conductivity type, a second doped region of second conductivity type, and a depletion region. A voltage across the diode changes lengths of the first doped region, the second doped region and the depletion region, and adjacent coils in contact with at least one of the doped regions are electrically shorted, thereby varying the inductance of the inductor. In various embodiments, the inductor is electrically connected to a resistor and a capacitor to provide a tunable RLC circuit. Other aspects and embodiments are provided herein.
22 Voltage-controlled semiconductor inductor and method US12395254 2009-02-27 US07944019B2 2011-05-17 Krupakar M. Subramanian
A voltage-controlled semiconductor inductor and method is provided. According to various embodiments, the voltage-controlled inductor includes a conductor configured with a number of inductive coils. The inductor also includes a semiconductor material having a contact with at least a portion of at least one of the coils. The semiconductor material is doped to form a diode with a first doped region of first conductivity type, a second doped region of second conductivity type, and a depletion region. A voltage across the diode changes lengths of the first doped region, the second doped region and the depletion region, and adjacent coils in contact with at least one of the doped regions are electrically shorted, thereby varying the inductance of the inductor. In various embodiments, the inductor is electrically connected to a resistor and a capacitor to provide a tunable RLC circuit. Other aspects and embodiments are provided herein.
23 Use of Superconductor Components in Thin Layers as Variable Inductance and Devices Including Said Components and Corresponding Control Method US11795422 2006-01-13 US20080119363A1 2008-05-22 Pierre Bernstein; Jean-Francois Hamet; Laurence Mechin; Nabil Touitou; Severine Mouchel
Use, as a component with variable inductance which is a function of the current passing through it, of an inductive superconductive component having at least two terminals and comprising at least one line segment working with said terminals and integrating at least one of these terminals, this line segment constituting a conductive or superconductive layer within a stack of films alternately superconductive and insulating.
24 Voltage-controlled semiconductor inductor inductor and method US11216644 2005-08-31 US20070046412A1 2007-03-01 Krupakar Subramanian
A voltage-controlled semiconductor inductor and method is provided. According to various embodiments, the voltage-controlled inductor includes a conductor configured with a number of inductive coils. The inductor also includes a semiconductor material having a contact with at least a portion of at least one of the coils. The semiconductor material is doped to form a diode with a first doped region of first conductivity type, a second doped region of second conductivity type, and a depletion region. A voltage across the diode changes lengths of the first doped region, the second doped region and the depletion region, and adjacent coils in contact with at least one of the doped regions are electrically shorted, thereby varying the inductance of the inductor. In various embodiments, the inductor is electrically connected to a resistor and a capacitor to provide a tunable RLC circuit. Other aspects and embodiments are provided herein.
25 SOLID-STATE INDUCTOR AND METHOD FOR SAME US10131411 2002-04-22 US20030197587A1 2003-10-23 Wei Pan; Sheng Teng Hsu; Wei-Wei Zhuang
A solid-state inductor and a method for forming a solid-state inductor are provided. The method comprises: forming a bottom electrode; forming a colossal magnetoresistance (CMR) thin film overlying the bottom electrode; forming a top electrode overlying the CMR thin film; applying an electrical field treatment to the CMR thin film in the range of 0.4 to 1 megavolts per centimeter (MV/cm) with a pulse width in the range of 100 nanoseconds (ns) to 1 millisecond (ms); in response to the electrical field treatment, converting the CMR thin film into a CMR thin film inductor; applying a bias voltage between the top and bottom electrodes; and, in response to the applied bias voltage, creating an inductance between the top and bottom electrodes. When the applied bias voltage is varied, the inductance varies in response.
26 Variable inductance element US09648161 2000-08-25 US06404319B1 2002-06-11 Naoki Iida; Masahiko Kawaguchi
A variable inductance element includes an inductor pattern provided on the upper surface of an insulating substrate. The inductor pattern is a ladder-shaped electrode including a substantially V-shaped frame portion and a plurality of lateral bars extending across two arms of the substantially V-shaped frame portion to be trimmed for adjustment of the inductance. The plurality of lateral bars are arranged at substantially equal intervals. The two arms of the substantially V-shaped frame portion have an angle of about 45° relative to the lateral bars.
27 センサ装置 JP2013184208 2013-09-05 JP6294034B2 2018-03-14 根本 敬継; 中柴 康隆; 橋本 隆介; 内田 慎一; 呉 一憲; 大江 寛; 吉川 法子
28 基板を貫通するビアによって設けられたインダクタ JP2015537704 2013-09-09 JP2016502261A 2016-01-21 ラヴィンドラ・ヴィ・シェノイ; ジテ・キム; クワン−ユ・ライ; ジョン・ブラッドリー・ラシター; フィリップ・ジェーソン・ステファノー; ドナルド・ウィリアム・キッドウェル; エフゲニー・ペトロヴィッチ・グーセフ
本開示は、貫通基板ビアインダクタのためのシステム、方法、および装置を提供する。一態様では、キャビティがガラス基板において画定される。少なくとも2つの金属棒がキャビティの中にある。各金属棒の第1の端は基板の第1の面に近接し、各金属棒の第2の端は基板の第2の面に近接する。金属配線が、第1の金属棒と第2の金属棒を接続する。いくつかの例では、1つまたは複数の誘電体層が基板の表面に配置され得る。いくつかの例では、金属棒および金属配線はインダクタを画定する。インダクタは、可変インダクタンスに対応する、ある程度の可塑性を有し得る。金属巻線は、ソレノイダル構成またはトロイダル構成で構成され得る。トロイダルインダクタは、先細りの配線および/または熱接地面を有し得る。変圧器および共振器回路が実現され得る。
29 半導体デバイス上のハイブリッド変圧器構造 JP2015543162 2013-11-21 JP2015536572A 2015-12-21 チィ・シュン・ロ; ジェ−シュン・ラン; マリオ・フランシスコ・ヴェレツ; ジョンヘ・キム
いくつかの新規の特徴は、複数の層を有する半導体ダイ内に形成されたハイブリッド変圧器に関する。ハイブリッド変圧器は、ダイの第1の層上に位置する巻線の第1の組を含む。第1の層は、ダイの基板よりも上に位置する。巻線の第1の組は、第1のポートおよび第2のポートを含む。巻線の第1の組は、第1のインダクタとして動作するように構成される。ハイブリッド変圧器は、ダイの第2の層上に位置する巻線の第2の組を含む。第2の層は、基板よりも上に位置する。巻線の第2の組は、第3のポート、第4のポート、および第5のポートを含む。巻線の第2の組は、第2のインダクタおよび第3のインダクタとして動作するように構成される。巻線の第1の組および巻線の第2の組は、垂直結合ハイブリッド変圧器として動作するように構成される。
30 センサ装置 JP2013184208 2013-09-05 JP2015052470A 2015-03-19 NEMOTO TAKATSUGU; NAKASHIBA YASUTAKA; HASHIMOTO RYUSUKE; UCHIDA SHINICHI; GO KAZUNORI; OE HIROSHI; YOSHIKAWA NORIKO
【課題】センサ装置のコストを低くする。【解決手段】センサ装置SNDは、電線PL及び半導体装置SDを有している。半導体装置SDは、インダクタINDを有している。インダクタINDは、配線層(図3を用いて後述)を用いて形成されている。そして、半導体装置SDに垂直な方向で見た場合において、電力線PLと半導体装置SDは重なっている。半導体装置SDは、インダクタINDを2つ有している。そして半導体装置SDに垂直な方向から見た場合において、電力線PLは2つのインダクタINDの間を延在している。【選択図】図1
31 無線電伝送システム JP2011536219 2011-03-29 JPWO2011122003A1 2013-07-04 菅野 浩; 浩 菅野
無線電伝送システムは、送電共振器105および受電共振器107を備え、共振磁界を介して非接触で電力を伝送する。送電共振器105および受電共振器107の少なくとも一方は直列共振回路である。この直列共振回路は、スパイラル配線201と、スパイラル配線201の点203を給電構造に接続するための引き出し線213と、スパイラル配線201の他の複数点を給電構造に接続するための引き出し線207a、207b、207cとを含むインダクタを有している。引き出し線207a、207b、207cには、それぞれ複数の容量209a、209b、209cと複数のスイッチ211a、211b、211cとが接続され、選択的に導通したスイッチによって選択される電流経路に応じて異なるインダクタンスを有することができる。スパイラル配線201の配線部分201aは、共振周波数における単位長さ当たりの配線抵抗がスパイラル配線の他の配線部分の少なくとも一部分よりも低く設定された低抵抗部分2010を有している。
32 Passive fault current limiter for wind power applications US14613390 2015-02-04 US09899829B2 2018-02-20 Arwyn Thomas
A device for limiting a fault current for a generator, in particular of a wind turbine is provided. A first frame is made of a ferromagnetic material, wherein the first frame comprises a first frame section and a further first frame section, wherein a first gap is formed between the first frame section and the further first frame section. A first coil is wound around the first frame section, wherein the first coil is connectable to a first stator winding of a stator of the generator. A further first coil is wound around the further first frame section, wherein the further first coil is connectable to an electronic device. A first permanent magnet element is arranged inside the first gap. The first frame section and the further first frame section are formed with respect to each other such that an electromagnetic interaction between the first coil and the first permanent magnet element and the further first coil and the first permanent magnet element is provided.
33 SENSOR DEVICE US15456976 2017-03-13 US20170186689A1 2017-06-29 Takatsugu NEMOTO; Yasutaka NAKASHIBA; Takasuke HASHIMOTO; Shinichi UCHIDA; Kazunori GO; Hiroshi OE; Noriko YOSHIKAWA
A sensor device includes a power line and a semiconductor device. The semiconductor device includes an inductor. The inductor is formed using an interconnect layer (to be described later using FIG. 3). The power line and the semiconductor device overlap each other when viewed from a direction perpendicular to the semiconductor device. The semiconductor device includes two inductors. The power line extends between the two inductors when viewed from a direction perpendicular to the semiconductor device.
34 Sensor device having inductors for detecting power flowing through a power line US14475623 2014-09-03 US09632119B2 2017-04-25 Takatsugu Nemoto; Yasutaka Nakashiba; Takasuke Hashimoto; Shinichi Uchida; Kazunori Go; Hiroshi Oe; Noriko Yoshikawa
A sensor device includes a printed circuit board, a power line, a first semiconductor device, and a second semiconductor device. The first semiconductor device includes a first inductor, and the second semiconductor device includes a second inductor. Each inductor is formed using an interconnect layer. The power line extends between the two inductors without overlapping the first and second inductor, when viewed from a direction perpendicular to a main surface of the printed circuit board.
35 MULTILAYER INDUCTOR US14898587 2014-05-16 US20160141089A1 2016-05-19 Kiyohisa YAMAUCHI; Daisuke MATSUBAYASHI; Juji KATO; Mikio KITAOKA; Shigenori SUZUKI
A multilayer inductor providing improved DC superposition characteristics by a permanent magnet that emits a bias magnetic flux, and having a low-loss material as a magnetic body to improve converter conversion efficiency. The multilayer inductor has a plurality of laminated electrically insulating magnetic layers; and laminated conductive patterns, each of the conductive patterns being connected in sequence in the lamination direction forming a spiral coil inside the magnetic layer. An magnetized annular permanent magnet layer emits a magnetic flux whose direction is opposite that of a magnetic flux excited by the coil is between an outer peripheral edge of the inductor and an outer peripheral edge of the coil so as not to overlap an inner peripheral part of the magnet layer with the conductive patterns and so as to block a space between the conductive patterns and the magnet layer, in axial view of the coil.
36 THROUGH SUBSTRATE VIA INDUCTORS US13682337 2012-11-20 US20140104288A1 2014-04-17 Ravindra V. Shenoy; Jitae Kim; Kwan-yu Lai; Jon Bradley Lasiter; Philip Jason Stephanou; Donald William Kidwell; Evgeni Petrovich Gousev
This disclosure provides systems, methods, and apparatus for through substrate via inductors. In one aspect, a cavity is defined in a glass substrate. At least two metal bars are in the cavity. A first end of each metal bar is proximate a first surface of the substrate, and a second end of each metal bar is proximate a second surface of the substrate. A metal trace connects a first metal bar and a second metal bar. In some instances, one or more dielectric layers can be disposed on surfaces of the substrate. In some instances, the metal bars and the metal trace define an inductor. The inductor can have a degree of flexibility corresponding to a variable inductance. Metal turns can be arranged in a solenoidal or toroidal configuration. The toroidal inductor can have tapered traces and/or thermal ground planes. Transformers and resonator circuitry can be realized.
37 THROUGH SUBSTRATE VIA INDUCTORS US13653132 2012-10-16 US20140104284A1 2014-04-17 Ravindra V. Shenoy; Jitae Kim; Kwan-yu Lai; Jon Bradley Lasiter; Philip Jason Stephanou; Donald William Kidwell; Evgeni Petrovich Gousev
This disclosure provides systems, methods, and apparatus for through substrate via inductors. In one aspect, a cavity is defined in a glass substrate. At least two metal bars are in the cavity. A first end of each metal bar is proximate a first surface of the substrate, and a second end of each metal bar is proximate a second surface of the substrate. A metal trace connects a first metal bar and a second metal bar. In some instances, one or more dielectric layers can be disposed on surfaces of the substrate. In some instances, the metal bars and the metal trace define an inductor. The inductor can have a degree of flexibility corresponding to a variable inductance. Metal turns can be arranged in a solenoidal or toroidal configuration. The toroidal inductor can have tapered traces and/or thermal ground planes. Transformers and resonator circuitry can be realized.
38 WIRELESS POWER TRANSMISSION SYSTEM US13075096 2011-03-29 US20110241437A1 2011-10-06 Hiroshi KANNO
The wireless power transmission system of this invention transmits power over a resonant magnetic field. The system includes a power-transmitting resonator 105 and a power-receiving resonator 107, at least one of which is a series resonant circuit with an inductor including spiral wiring 201 and extended wires 213, 207a, 207b and 207c. The extended wire 213 connects a point 203 of the spiral wiring 201 to a power supplying structure, while the extended wires 207a, 207b and 207c connect other points of the spiral wiring 201 to the power supplying structure. Capacitors 209a, 209b and 209c and switches 211a, 211b and 211c are connected to the extended wires 207a, 207b and 207c, respectively. The series resonant circuit has its inductance varied according to which current path has been chosen by selectively turning ON one of the switches. A wiring portion 201a of the spiral wiring 201 has a low-resistance portion 2010, of which the wiring resistance per unit length at a resonant frequency is set to be lower than in at least a part of the rest of the spiral wiring.
39 VOLTAGE-CONTROLLED SEMICONDUCTOR INDUCTOR AND METHOD US12395254 2009-02-27 US20090189680A1 2009-07-30 Krupakar M. Subramanian
A voltage-controlled semiconductor inductor and method is provided. According to various embodiments, the voltage-controlled inductor includes a conductor configured with a number of inductive coils. The inductor also includes a semiconductor material having a contact with at least a portion of at least one of the coils. The semiconductor material is doped to form a diode with a first doped region of first conductivity type, a second doped region of second conductivity type, and a depletion region. A voltage across the diode changes lengths of the first doped region, the second doped region and the depletion region, and adjacent coils in contact with at least one of the doped regions are electrically shorted, thereby varying the inductance of the inductor. In various embodiments, the inductor is electrically connected to a resistor and a capacitor to provide a tunable RLC circuit. Other aspects and embodiments are provided herein.
40 Q-factor with electrically controllable resistivity of silicon substrate layer US10851021 2004-05-21 US20050258507A1 2005-11-24 Bor-Min Tseng; Chih-Sheng Chang
A microelectronic device including, in one embodiment, a plurality of active devices located at least partially in a substrate, at least one dielectric layer located over the plurality of active devices, and an inductor located over the dielectric layer. At least one of the plurality of active devices is located within a columnar region having a cross-sectional shape substantially conforming to a perimeter of the inductor. The at least one of the plurality of active devices may be biased based on a desired Q factor of the inductor or and/or an operating frequency of the microelectronic device.
QQ群二维码
意见反馈