首页 / 国际专利分类库 / 电学 / 基本电气元件 / 磁体;电感;变压器;磁性材料的选择 / 信号类型的可变电感器或变压器(H01F36/00优先)
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 在耦合与解耦状态之间切换的电感器 CN201180073775.6 2011-09-30 CN103827765B 2016-09-07 X.梁
一种设备包括与第二芯间隔开的第一芯。第二芯具有有着第一绕组的第一区段、有着第二绕组的第二区段以及在第一和第二区段之间的第三区段。在第一芯与第二芯的第三区段之间包括至少一个填充物。设备的操作状态基于通过填充物的磁通量的量而改变。当通量处于不饱和平时,第一和第二绕组作为解耦电感器进行操作。当通量处于饱和水平时,第一和第二绕组作为耦合电感器进行操作。可基于通过所述绕组中的一个或多个绕组的电流的大小和/或填充物材料的磁导率来确定通过填充物的磁通量的量。
2 层叠电感器 CN201480034887.4 2014-05-16 CN105308694A 2016-02-03 山内清久; 松林大介; 加藤充次; 北冈干雄; 铃木茂德
提供一种能够通过发出偏置磁通量的永久磁大幅度地改善直流叠加特性并且能够使用低损失的材料来作为磁性体而也能够谋求转换器变换效率的提高的层叠电感器。本发明是一种层叠电感器,在所述层叠电感器中,在通过层叠有多个电绝缘性的磁性层(1)和导电图案(2)并且在层叠方向上依次连接导电图案(2)而在磁性层(1)内形成有呈螺旋状地旋转的线圈(2)的层叠电感器的外周缘部与线圈(2)的外周缘部之间配置有以发出与由线圈(2)励磁的磁通量的方向相反方向的磁通量的方式磁化的环状的永久磁铁层(6),以使在线圈的轴线方向的视下其内周部不与导电图案(2)重复且堵住与导电图案(2)之间。
3 无线电传输系统 CN201180001906.X 2011-03-29 CN102414957A 2012-04-11 菅野浩
无线电传输系统具备送电谐振器(105)及受电谐振器(107),经由谐振磁场以非接触的方式传输电力。送电谐振器(105)及受电谐振器(107)的至少一方为串联谐振电路。该串联谐振电路具备电感器,该电感器包括:螺线布线(201);用于将螺线布线的点(203)连接到供电结构的引线(213);用于将螺线布线的其他多个点连接到供电结构的引线(207a、207b、207c)。引线(207a、207b、207c)上分别连接着多个电容(209a、209b、209c)和多个开关(211a、211b、211c),可以随着通过选择性导通的开关选择的电流路径而具有不同的电感值。螺线布线(201)的布线部分(201a)具有谐振频率下的每单位长度的布线电阻被设定得比螺线布线的其他布线部分的至少一部分还低的低电阻部分(2010)。
4 可变电感元件 CN00123885.X 2000-08-24 CN1291779A 2001-04-18 饭田直树; 川口正彦
一个电感器图案被形成在绝缘基片的上表面上。电感器图案是一个梯形电极,由大体上呈V形的框架部分和与大体上呈V形的框架部分的两个臂相交的多个横向条构成,将被微调,用于调整电感。多个横向条是按大体上相等的间隔安排的。大体上呈V形的框架部分的两个臂与横向条具有大致为45°的
5 由穿过衬底的通孔提供的电感器 CN201380054016.4 2013-09-09 CN104737246A 2015-06-24 拉温德拉·V·社诺伊; 日塔伊·基姆; 赖关余; 乔恩·布拉德利·拉斯特; 菲利普·贾森·斯蒂法诺; 唐纳德·威廉·基德韦尔; 叶夫根尼·彼得罗维奇·古塞夫
发明提供用于穿衬底通孔电感器的系统、方法及设备。在一个方面中,在玻璃衬底中界定腔。至少两个金属条在所述腔中。每一金属条的第一端接近所述衬底的第一表面,且每一金属条的第二端接近所述衬底的第二表面。金属迹线连接第一金属条与第二金属条。在一些情况下,一或多个介电层可安置在所述衬底的表面上。在一些情况下,所述金属条及所述金属迹线界定电感器。所述电感器可具有对应于可变电感的柔性程度。金属可以螺线管或环面配置布置。所述环面电感器可具有锥形迹线及/或热接地平面。可实现变压器谐振器电路
6 传感器设备 CN201410452684.9 2014-09-05 CN104422819A 2015-03-18 根本敬继; 中柴康隆; 桥本隆介; 内田慎一; 吴一宪; 大江宽; 吉川法子
发明涉及一种传感器设备。所述传感器设备包括电线和半导体器件。半导体器件包括电感器。电感器使用互连层(如后续使用图3描述)形成。当从垂直于半导体器件的方向观察时,电力线和半导体器件彼此重叠。半导体器件包括两个电感器。当从垂直于半导体器件的方向观察时,电力线在两个电感器之间延伸。
7 无线电传输系统 CN201180001906.X 2011-03-29 CN102414957B 2014-12-10 菅野浩
无线电传输系统具备送电谐振器(105)及受电谐振器(107),经由谐振磁场以非接触的方式传输电力。送电谐振器(105)及受电谐振器(107)的至少一方为串联谐振电路。该串联谐振电路具备电感器,该电感器包括:螺线布线(201);用于将螺线布线的点(203)连接到供电结构的引线(213);用于将螺线布线的其他多个点连接到供电结构的引线(207a、207b、207c)。引线(207a、207b、207c)上分别连接着多个电容(209a、209b、209c)和多个开关(211a、211b、211c),可以随着通过选择性导通的开关选择的电流路径而具有不同的电感值。螺线布线(201)的布线部分(201a)具有谐振频率下的每单位长度的布线电阻被设定得比螺线布线的其他布线部分的至少一部分还低的低电阻部分(2010)。
8 在耦合与解耦状态之间切换的电感器 CN201180073775.6 2011-09-30 CN103827765A 2014-05-28 X.梁
一种设备包括与第二芯间隔开的第一芯。第二芯具有有着第一绕组的第一区段、有着第二绕组的第二区段以及在第一和第二区段之间的第三区段。在第一芯与第二芯的第三区段之间包括至少一个填充物。设备的操作状态基于通过填充物的磁通量的量而改变。当通量处于不饱和平时,第一和第二绕组作为解耦电感器进行操作。当通量处于饱和水平时,第一和第二绕组作为耦合电感器进行操作。可基于通过所述绕组中的一个或多个绕组的电流的大小和/或填充物材料的磁导率来确定通过填充物的磁通量的量。
9 一种无源信号隔离器的信号补偿方法 CN200610036440.8 2006-07-11 CN100517528C 2009-07-22 尹向阳; 磨定敏
发明公开了一种无源信号隔离器的信号补偿方法,在无源信号隔离器电路中增设一个补偿变压器,该补偿变压器的初级与电路中的主变压器的初级或次级串联,补偿变压器次级的其中一端连接引线以能增加输出电流的方向穿过主变压器环形磁芯后再根据补偿变压器的功能连接;补偿变压器的初、次线圈数比由所需补偿的误差大小得出。在补偿变压器的次级穿过主变压器环形磁芯的情况下,可以增加主变压器1/n倍的磁场强度,这样信号的隔离传输得到1/n倍的补偿量,使无源信号隔离器的精度得到提高。
10 一种无源信号隔离器的信号补偿方法 CN200610036440.8 2006-07-11 CN1913062A 2007-02-14 尹向阳; 磨定敏
发明公开了一种无源信号隔离器的信号补偿方法,在无源信号隔离器电路中增设一个补偿变压器,该补偿变压器的初级与电路中的主变压器的初级或次级串联,补偿变压器次级的其中一端连接引线以能增加输出电流的方向穿过主变压器环形磁芯后再根据补偿变压器的功能连接;补偿变压器的初、次线圈数比由所需补偿的误差大小得出。在补偿变压器的次级穿过主变压器环形磁芯的情况下,可以增加主变压器1/n倍的磁场强度,这样信号的隔离传输得到1/n倍的补偿量,使无源信号隔离器的精度得到提高。
11 固态电感器及其制作方法 CN03110239.5 2003-04-07 CN1266719C 2006-07-26 潘威; 许胜籘; 庄维佛
一种制作本发明的固态电感器的方法,它包括:形成底部电极;形成覆盖底部电极的超巨磁电阻(CMR)薄膜;形成覆盖所述CMR薄膜的顶部电极;对CRM薄膜加给电场处理,并响应所述电场处理,将CMR薄膜转变成CMR薄膜电感。
12 可变电感元件 CN00123885.X 2000-08-24 CN1158679C 2004-07-21 饭田直树; 川口正彦
一个电感器图案被形成在绝缘基片的上表面上。电感器图案是一个梯形电极,由大体上呈V形的框架部分和与大体上呈V形的框架部分的两个臂相交的多个横向条构成,将被微调,用于调整电感。多个横向条是按大体上相等的间隔安排的。大体上呈V形的框架部分的两个臂与横向条具有大致为45°的
13 固态电感器及其制作方法 CN03110239.5 2003-04-07 CN1453803A 2003-11-05 潘威; 许胜籘; 庄维佛
一种制作本发明的固态电感器的方法,它包括:形成底部电极;形成覆盖底部电极的超巨磁电阻(CMR)薄膜;形成覆盖所述CMR薄膜的顶部电极;对CMR薄膜加给电场处理,并响应所述电场处理,将CMR薄膜转变成CMR薄膜电感。
14 Equations for an LLC converter having increased power output capabilities US14933592 2015-11-05 US09705409B2 2017-07-11 Masahiro Yamaoka; Takehiko Yamakawa; Akira Kato
A power converter includes a transformer including a transformer including a primary winding and a secondary winding magnetically coupled to the primary winding, a bridge circuit including a switching element, and an inductor. A direct current voltage is converted into an alternating current voltage by turning on and off the switching element in the bridge circuit. An output voltage in the secondary winding is induced by supplying the alternating current voltage to the primary winding. The inductor is disposed on a path connecting the switching element and the primary winding. A resonance inductance value Lr including a leakage inductance value of the transformer and an inductance value of the inductor satisfies Formula 1.
15 Multilayer inductor US14898587 2014-05-16 US09653203B2 2017-05-16 Kiyohisa Yamauchi; Daisuke Matsubayashi; Juji Kato; Mikio Kitaoka; Shigenori Suzuki
A multilayer inductor providing improved DC superposition characteristics by a permanent magnet that emits a bias magnetic flux, and having a low-loss material as a magnetic body to improve converter conversion efficiency. The multilayer inductor has a plurality of laminated electrically insulating magnetic layers; and laminated conductive patterns, each of the conductive patterns being connected in sequence in the lamination direction forming a spiral coil inside the magnetic layer. An magnetized annular permanent magnet layer emits a magnetic flux whose direction is opposite that of a magnetic flux excited by the coil is between an outer peripheral edge of the inductor and an outer peripheral edge of the coil so as not to overlap an inner peripheral part of the magnet layer with the conductive patterns and so as to block a space between the conductive patterns and the magnet layer, in axial view of the coil.
16 POWER CONVERTER US14933592 2015-11-05 US20160172982A1 2016-06-16 MASAHIRO YAMAOKA; TAKEHIKO YAMAKAWA; AKIRA KATO
A power converter includes a transformer including a transformer including a primary winding and a secondary winding magnetically coupled to the primary winding, a bridge circuit including a switching element, and an inductor. A direct current voltage is converted into an alternating current voltage by turning on and off the switching element in the bridge circuit. An output voltage in the secondary winding is induced by supplying the alternating current voltage to the primary winding. The inductor is disposed on a path connecting the switching element and the primary winding. A resonance inductance value Lr including a leakage inductance value of the transformer and an inductance value of the inductor satisfies Formula 1.
17 Inductor that switches between coupled and decoupled states US14006400 2011-09-30 US09240271B2 2016-01-19 Xiaoguo Liang
An apparatus includes first core spaced from a second core. The second core has a first section with a first winding, a second section with a second winding, and a third section between the first and second sections. At least one filler is included between the first core and the third section of the second core. The operational state of the apparatus changes based on the amount of magnetic flux through the filler. When the flux is at an unsaturated level, the first and second windings operate as decoupled inductors. When the flux is at a saturated level, the first and second windings operate as a coupled inductor. The amount of magnetic flux through the filler may be determined based on the size of the current through one or more of the windings and/or the magnetic permeability of the filler material.
18 PASSIVE FAULT CURRENT LIMITER FOR WIND POWER APPLICATIONS US14613390 2015-02-04 US20150288170A1 2015-10-08 ARWYN THOMAS
A device for limiting a fault current for a generator, in particular of a wind turbine is provided. A first frame is made of a ferromagnetic material, wherein the first frame comprises a first frame section and a further first frame section, wherein a first gap is formed between the first frame section and the further first frame section. A first coil is wound around the first frame section, wherein the first coil is connectable to a first stator winding of a stator of the generator. A further first coil is wound around the further first frame section, wherein the further first coil is connectable to an electronic device. A first permanent magnet element is arranged inside the first gap. The first frame section and the further first frame section are formed with respect to each other such that an electromagnetic interaction between the first coil and the first permanent magnet element and the further first coil and the first permanent magnet element is provided.
19 SENSOR DEVICE US14475623 2014-09-03 US20150061660A1 2015-03-05 Takatsugu NEMOTO; Yasutaka NAKASHIBA; Takasuke HASHIMOTO; Shinichi UCHIDA; Kazunori GO; Hiroshi OE; Noriko YOSHIKAWA
A sensor device includes a power line and a semiconductor device. The semiconductor device includes an inductor. The inductor is formed using an interconnect layer (to be described later using FIG. 3). The power line and the semiconductor device overlap each other when viewed from a direction perpendicular to the semiconductor device. The semiconductor device includes two inductors. The power line extends between the two inductors when viewed from a direction perpendicular to the semiconductor device.
20 Wireless power transmission system US13075096 2011-03-29 US08716900B2 2014-05-06 Hiroshi Kanno
The wireless power transmission system of this invention transmits power over a resonant magnetic field. The system includes a power-transmitting resonator 105 and a power-receiving resonator 107, at least one of which is a series resonant circuit with an inductor including spiral wiring 201 and extended wires 213, 207a, 207b and 207c. The extended wire 213 connects a point 203 of the spiral wiring 201 to a power supplying structure, while the extended wires 207a, 207b and 207c connect other points of the spiral wiring 201 to the power supplying structure. Capacitors 209a, 209b and 209c and switches 211a, 211b and 211c are connected to the extended wires 207a, 207b and 207c, respectively. The series resonant circuit has its inductance varied according to which current path has been chosen by selectively turning ON one of the switches. A wiring portion 201a of the spiral wiring 201 has a low-resistance portion 2010, of which the wiring resistance per unit length at a resonant frequency is set to be lower than in at least a part of the rest of the spiral wiring.
QQ群二维码
意见反馈