序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
41 MODELING OF THE POINT-SPREAD-FUNCTION IN SINGLE-PINHOLE AND MULTI-PINHOLE SPECT RECONSTRUCTION US12568339 2009-09-28 US20100080339A1 2010-04-01 Derek W. Austin; Mu Chen; Bing Feng; Robert A. Mintzer; Anne Smith
A system and method for reconstructing single photon emission computed tomography data acquired with a pinhole collimator includes sub-dividing each voxel in the imaging target object space into sub-voxels and sub-dividing each of the detector bins in the gamma camera detector into sub-bins, connecting the centers of each of the sub-voxels to each of the detector sub-bins through a pinhole provided in the pinhole collimator by ray tracing and for each ray connecting the centers of each of the sub-voxels to each of the detector sub-bins, the transmission probability is calculated by analytically solving the intersections between the ray and the pinhole surfaces. Then, a geometric-response-function of the pinhole collimator is computed which is then convolved with the intrinsic-response-function of the detector to obtain the PSF.
42 Method for Assessment of Material Defects US12137151 2008-06-11 US20090309623A1 2009-12-17 Orin W. Holland; Terry D. Golding; Ronald P. Hellmer; Thomas H. Myers
A method is provided for measuring defects in semiconductor materials. In one embodiment the method includes placing deuterium in the material and directing an ion beam onto the material to cause a nuclear reaction with the deuterium. Products of the nuclear reaction are analyzed (NRA) to measure the concentration of defects. In other embodiments, a spectroscopic technique is used to detect the deuterium taggant. Lattice defect or total defect occurrences can be selected by selecting the method of placing deuterium in the sample. Defect concentration vs. depth below the surface of material can be determined by varying the energy of the ion beam or by measuring energy profiles of products of the nuclear reaction. The method may be applied to wafers, pixels or other forms of semiconductor materials and may be combined with X-ray analysis of elements on the material.
43 Area x-ray or UV camera system for high-intensity beams US12121177 2008-05-15 US20090116619A1 2009-05-07 Henry N. Chapman; Sasa Bajt; Eberhard A. Spiller; Stefan Hau-Riege; Stefano Marchesini
A system in one embodiment includes a source for directing a beam of radiation at a sample; a multilayer mirror having a face oriented at an angle of less than 90 degrees from an axis of the beam from the source, the mirror reflecting at least a portion of the radiation after the beam encounters a sample; and a pixellated detector for detecting radiation reflected by the mirror. A method in a further embodiment includes directing a beam of radiation at a sample; reflecting at least some of the radiation diffracted by the sample; not reflecting at least a majority of the radiation that is not diffracted by the sample; and detecting at least some of the reflected radiation. A method in yet another embodiment includes directing a beam of radiation at a sample; reflecting at least some of the radiation diffracted by the sample using a multilayer mirror; and detecting at least some of the reflected radiation.
44 X線測定のための円錐コリメータ JP2017231907 2017-12-01 JP2018091850A 2018-06-14 フスターフ クリスティアン ブロンス; パトロネラ エメレンティアナ ヘーヘマン
【課題】従来技術の問題を解決する。
【解決手段】X線装置は、サンプル(6)を支持するサンプルステージ(4)と、X線源(2)と、エネルギ分散X線検出器(8)とを含む。円錐X線コリメータ(10)が、サンプルとX線源との間に又はサンプルとエネルギ分散X線検出器との間に設けられ、円錐X線コリメータは、中心軸の周りに同心状に配置された複数の切頭円錐を含み、切頭円錐は、サンプル上に中心測定スポットを定める共通の頂点を有する。
【選択図】図1
45 高度な薬物開発及び製造 JP2014123249 2014-06-16 JP2014221047A 2014-11-27 EVA R BIRNBAUM; ANDREW T KOPPISCH; SHARON M BALDWIN; BENJAMIN P WARNER; MARK MCCLESKEY T; JENNIFER A BERGER; JEFFREY J STEWART; MICHAEL N HARRIS; ANTHONY K BURRELL
【課題】結合選択性を測定するための公知の方法に比べて著しい利点を有する、化学物質と受容体の間の結合選択性を測定するための方法を提供する。【解決手段】第一の受容体中の重元素(該重元素は、前記受容体への結合に関して検査されるべき化学物質中に存在する。)に対するベースラインX線蛍光シグナルを確立すること;前記受容体を前記化学物質へ曝露させること、及び化学物質−受容体複合体を形成させるために、前記化学物質を前記受容体に結合させること;前記化学物質−受容体複合体中の重元素に起因するX線蛍光シグナルを測定すること;正味のX線蛍光シグナルを得るために、前記化学物質−受容体複合体の測定されたX線蛍光シグナルから前記受容体の前記ベースラインX線蛍光シグナルを差し引くこと;を含む、少なくとも1つの重元素を有する化学物質の受容体に対する結合親和性を推測する方法。【選択図】なし
46 The sample holding cell for the X-ray microscope, the method of observation x-ray microscope, and x-ray microscope image JP2009190871 2009-08-20 JP5317120B2 2013-10-16 俊彦 小椋
A sample support member (11) is provided with a metal film (11b) which emits characteristic X-rays in a wavelength range of 0.6 to 6.0 nm including the "water window" region when an electron beam strikes the metal film (11b) and which is provided on one main surface of a sample support film (11a) which is a silicon nitride film or a carbon film. Characteristic X-rays in the soft X-ray region are emitted with high efficiency (high intensity) from the metal film (11b) which the electron beam has struck. Since the high-intensity characteristic X-rays strike the sample (10), the SN ratio of the observation image is improved. Since th metal film (11b) has an effect of minimizing the range where electrons are diffused in the sample support film (11a), the damage to the sample is reduced. Further, since the acceleration voltage of the incident electron beam can be increased, the metal film (11b) has also an effect of improving the resolution.
47 X-ray ct (computed tomography) apparatus, radiation detector, and method of manufacturing radiation detector JP2011183452 2011-08-25 JP2012086006A 2012-05-10 ISO MACHIKO; YAOI YOSHIAKI; MATSUDA KEIJI; NANBU SHUYA; KANAMARU SHUN; TANIGUCHI AKIHIKO
PROBLEM TO BE SOLVED: To provide an X-ray CT apparatus including a collimator manufactured such that the thickness and pitch of its collimator plates are uniform.SOLUTION: The X-ray CT apparatus includes a collimator unit configured to eliminate scattered radiation from X-rays that are incident on an X-ray detector, wherein the collimator unit includes a plurality of collimator modules, a supporter, and a fixing unit. The plurality of collimator modules include a plurality of first collimator plates arranged in a grid along a channel direction and a slice direction that are orthogonal to each other. The supporter supports the collimator modules such that the collimator modules are aligned on a plurality of straight lines along the channel direction and on a plurality of straight lines along the slice direction The fixing unit is provided to the supporter and fixes positions of the collimator modules in the channel direction and the slice direction.
48 Laminated pinhole disk and its manufacturing method JP2001028491 2001-02-05 JP2002228797A 2002-08-14 AWAJI AKIHIRO; KAMIJO OSAO; TAMURA SHIGEJI; YASUMOTO MASATO
PROBLEM TO BE SOLVED: To provide a method for forming a deep pinhole without taper or without misalignment between pinholes in disks when a multilayer film is manufactured out of the pinhole disks, which is used as an order sorting aperture(OSA) in a hard X-ray microscope using an FZP(Fresnel zone plate). SOLUTION: The plurality of pinhole disks are placed one on another. The positions of the pinholes are aligned with each other by using a wire, a pin, or a light beam, and fixed together. Then, the plurality of pinhole disks are bonded or welded together. COPYRIGHT: (C)2002,JPO
49 준단색 엑스선 촬영장치 KR1020080089664 2008-09-11 KR1020100030780A 2010-03-19 박영세
PURPOSE: A quasi-monochromatic x-ray imaging system is provided to obtain a clearer image by projecting the strength of X-ray with a constant integrated value at an arbitrary point. CONSTITUTION: A light source tube(10) comprises a beam source generating a polychromatic X-rays. An optical filter(20) reflects the polychromatic X-rays from the light source tube into a quasi-monochromatic X-ray. The light source tube and optical filter are located in the beam source. An image detector(6) obtains an image which is readable by the quasi-monochromatic X-ray which passes through a subject.
50 X-RAY IMAGING SYSTEM WITH DETECTOR HAVING PIXELS EP11760860.4 2011-08-30 EP2614507B1 2016-12-28 ENGEL, Klaus, Juergen; VOGTMEIER, Gereon
51 Advanced drug development and manufacturing EP12164870.3 2007-10-10 EP2511844A2 2012-10-17 Birnbaum, Eva, R.; Koppisch, Andrew, T.; Baldwin, Sharon, M.; Warner, Benjamin, P.; McCleskey, Mark, T.; Berger, Jennifer, A.; Stewart, Jeffrey, J.; Harris, Michael, N.; Burrell, Anthony, K.

There is described an apparatus for measuring protein characteristics comprising an X-ray fluorescence (XRF) spectrometer comprising a source of polychromatic X-rays, an X-ray detector, a protein, a molecule that has been exposed to and at least weakly binds to the protein, a plurality of X-ray fluorescence signal data obtained by irradiating chemical elements in the protein and molecule with the polychromatic X-rays and a security system for maintaining records for the data from the plurality of X-ray fluorescence signal measurements. There is also described an x-ray microscope for measuring a sample.

52 Blende für eine bildgebende Einrichtung EP09160478.5 2009-05-18 EP2124231A3 2010-06-16 Osterloh, Kurt; Ewert, Uwe; Zscherpel, Uwe

Die Erfindung betrifft eine Blende (100), insbesondere für eine bildgebende Einrichtung (200), welche geeignet ist, von einer Strahlungsquelle (10) ausgehende, insbesondere hochenergetische, Strahlung (12) zu begrenzen und entlang einer optischen Achse x nach dem Lochkameraprinzip auf einen Abbildungsbereich (14) zu richten, wobei die Blende (100) die Strahlung (12) wenigstens teilweise absorbierende Bereiche (18, 28a, 28b, 26) umfasst und wobei in der Blende (100) ein erster Spalt (32) oder zumindest ein erster die Strahlung (12) gering absorbierender Bereich vorhanden ist, welcher mindestens eine erste nicht-ebene Oberfläche und eine zweite nicht-ebene Oberfläche aufweist, welche ihn von den die Strahlung (12) wenigstens teilweise absorbierenden Bereichen (18, 28a, 28b, 26) abgrenzen; wobei die Kontur der ersten nicht-ebenen Oberfläche zumindest teilweise durch eine Funktion z(x,y)= f(y)*x+n(y) beschrieben werden kann und wobei die Kontur der zweiten nicht-ebenen Oberfläche zumindest teilweise komplementär zu der Kontur der ersten nicht-ebenen Oberfläche ist.

Es ist vorgesehen, dass in der Blende (100) mindestens ein zusätzlicher Spalt (32a, 32b) oder zumindest mindestens ein zusätzlicher die Strahlung (12) gering absorbierender Bereich vorhanden ist, wobei jeder zusätzliche Spalt (32a, 32b) oder die Strahlung (12) gering absorbierende Bereich jeweils mindestens eine erste zusätzliche nicht-ebene Oberfläche und eine zweite zusätzliche nicht-ebene Oberfläche aufweist, welche ihn von den die Strahlung (12) wenigstens teilweise absorbierenden Bereichen (18, 28a, 28b, 26) abgrenzen, und wobei zu jedem zusätzlichen Spalt (32a, 32b) oder die Strahlung (12) gering absorbierenden Bereich eine zugehörige affine Abbildung existiert, wobei jeweils die Kontur der ersten zusätzlichen nicht-ebenen Oberfläche nach Anwendung der zugehörigen affinen Abbildung zumindest teilweise durch die Funktion z(x,y) beschrieben werden kann und wobei jeweils die Kontur der zweiten zusätzlichen nicht-ebenen Oberfläche zumindest teilweise komplementär zu der Kontur der ersten zusätzlichen nicht-ebenen Oberfläche ist.

53 Blende für eine bildgebende Einrichtung EP09160478.5 2009-05-18 EP2124231A2 2009-11-25 Osterloh, Kurt; Ewert, Uwe; Zscherpel, Uwe

Die Erfindung betrifft eine Blende (100), insbesondere für eine bildgebende Einrichtung (200), welche geeignet ist, von einer Strahlungsquelle (10) ausgehende, insbesondere hochenergetische, Strahlung (12) zu begrenzen und entlang einer optischen Achse x nach dem Lochkameraprinzip auf einen Abbildungsbereich (14) zu richten, wobei die Blende (100) die Strahlung (12) wenigstens teilweise absorbierende Bereiche (18, 28a, 28b, 26) umfasst und wobei in der Blende (100) ein erster Spalt (32) oder zumindest ein erster die Strahlung (12) gering absorbierender Bereich vorhanden ist, welcher mindestens eine erste nicht-ebene Oberfläche und eine zweite nicht-ebene Oberfläche aufweist, welche ihn von den die Strahlung (12) wenigstens teilweise absorbierenden Bereichen (18, 28a, 28b, 26) abgrenzen; wobei die Kontur der ersten nicht-ebenen Oberfläche zumindest teilweise durch eine Funktion z(x,y)= f(y)*x+n(y) beschrieben werden kann und wobei die Kontur der zweiten nicht-ebenen Oberfläche zumindest teilweise komplementär zu der Kontur der ersten nicht-ebenen Oberfläche ist.

Es ist vorgesehen, dass in der Blende (100) mindestens ein zusätzlicher Spalt (32a, 32b) oder zumindest mindestens ein zusätzlicher die Strahlung (12) gering absorbierender Bereich vorhanden ist, wobei jeder zusätzliche Spalt (32a, 32b) oder die Strahlung (12) gering absorbierende Bereich jeweils mindestens eine erste zusätzliche nicht-ebene Oberfläche und eine zweite zusätzliche nicht-ebene Oberfläche aufweist, welche ihn von den die Strahlung (12) wenigstens teilweise absorbierenden Bereichen (18, 28a, 28b, 26) abgrenzen, und wobei zu jedem zusätzlichen Spalt (32a, 32b) oder die Strahlung (12) gering absorbierenden Bereich eine zugehörige affine Abbildung existiert, wobei jeweils die Kontur der ersten zusätzlichen nicht-ebenen Oberfläche nach Anwendung der zugehörigen affinen Abbildung zumindest teilweise durch die Funktion z(x,y) beschrieben werden kann und wobei jeweils die Kontur der zweiten zusätzlichen nicht-ebenen Oberfläche zumindest teilweise komplementär zu der Kontur der ersten zusätzlichen nicht-ebenen Oberfläche ist.

54 ADVANCED DRUG DEVELOPMENT AND MANUFACTURING EP07874491.9 2007-10-10 EP2084519A2 2009-08-05 BIRNBAUM, Eva, R.; KOPPISCH, Andrew, T.; BALDWIN, Sharon, M.; WARNER, Benjamin, P.; MCCLESKEY, Mark, T.; BERGER, Jennifer, A.; STEWART, Jeffrey, J.; HARRIS, Michael, N.; BURRELL, Anthony, K.
X-ray fluorescence (XRF) spectrometry has been used for detecting binding events and measuring binding selectivities between chemicals and receptors. XRF may also be used for estimating the therapeutic index of a chemical, for estimating the binding selectivity of a chemical versus chemical analogs, for measuring post-translational modifications of proteins, and for drug manufacturing.
55 X線CT(ComputedTomography)装置、放射線検出器及びその製造方法 JP2011183452 2011-08-25 JP5836011B2 2015-12-24 磯 真知子; 八百井 佳明; 松田 圭史; 南部 修也; 金丸 俊; 谷口 昭彦
56 Radiation imaging apparatus JP2009256963 2009-11-10 JP5407774B2 2014-02-05 明徳 藤田
57 Precision measurement method and apparatus of the X-ray intensity distribution nanobeam JP2009045688 2009-02-27 JP5343251B2 2013-11-13 和人 山内; 秀和 三村; 浩巳 岡田
Provided are a method and an apparatus of precisely measuring the intensity profile of an x-ray nanobeam, which can measure x-rays having different wavelengths with one knife edge and can perform optimal measurements corresponding to the depth of focus of an x-ray beam and the conditions of other measurement devices, using a dark field measurement method which enables precise measurements of the profile of an x-ray beam using a knife edge and using diffracted and transmitted x-rays. The knife edge (4) is formed of a heavy metal which advances the phase of an x-ray passing therethrough and is fabricated in such a manner that the thickness may change in the longitudinal direction continuously or in a stepwise fashion. The knife edge (4) is so set that an x-ray beam may traverse the knife edge (4) at such a thickness position as to achieve a phase shift in a range wherein a transmitted x-ray and a diffracted x-ray diffracted at the end of the knife edge may reinforce each other, and a superposed x-ray of the diffracted x-ray and the transmitted x-ray is measured by an x-ray detector.
58 Radiation imaging apparatus JP2009109229 2009-04-28 JP5282645B2 2013-09-04 研 廣岡; 章二 桑原
A radiographic apparatus includes a radiation source for emitting radiation, a radiation detecting device with detecting elements arranged two-dimensionally, a radiation grid with absorbing foil strips for removing scattered radiation, a physical quantity acquiring device for calculating predetermined physical quantities based on outputs of the radiation detecting device, a physical quantity map generating device for generating a physical quantity map by mapping the predetermined physical quantities, and a physical quantity map smoothing device for smoothing the physical quantities arranged on the physical quantity map in a direction of extension of the absorbing foil strips, thereby to generate an average value map.
59 Sample support member for x-ray microscope, sample-housing cell, x-ray microscope, and method for observing x-ray microscopic image JP2009190871 2009-08-20 JP2011007766A 2011-01-13 OGURA TOSHIHIKO
PROBLEM TO BE SOLVED: To convert a charged particle beam into a soft X-ray in a wavelength range of 0.6-6 nm including a "water window" domain with high efficiency, and to suppress a damage to a sample by suppressing low a diffusion range in the sample of the charged particle beam.SOLUTION: The sample support member (11) is provided with a metal film (11b), which emits characteristic X-rays in the wavelength range of 0.6-6.0 nm by electron beam irradiation, on one main surface of a sample support film (11a) which is a silicon nitride film or a carbon film. Hereby, the characteristic X-rays in the soft X-ray region are emitted with high efficiency (high intensity) from the metal film (11b) with which the electron beam has struck. Since the high-intensity characteristic X-rays strike the sample (10), the SN ratio of the observation image is improved. Since the metal film (11b) has the effect of minimizing the range where electrons are diffused in the sample support film (11a), the acceleration voltage of the incident electron beam can be increased, and the metal film (11b) has an effect of not only improving the SN ratio but also improving the resolution.
60 Method and device for precisely measuring x-ray nano beam intensity distribution JP2009045688 2009-02-27 JP2010197345A 2010-09-09 YAMAUCHI KAZUTO; MIMURA HIDEKAZU; OKADA HIROMI
PROBLEM TO BE SOLVED: To provide a method and a device for precisely measuring an X-ray nano beam intensity distribution adapted to the measurement of an X-ray having a different wavelength by using one knife edge, and capable of performing optimum measurement corresponding to a focal depth of an X-ray beam or a condition of the other measuring device, concerning a dark field measuring method performing highly accurate measurement of an X-ray beam profile by utilizing a diffraction X-ray and a transmission X-ray by using the knife edge. SOLUTION: The knife edge 4 is manufactured by changing continuously or stepwise a thickness in the longitudinal direction by a heavy metal having a function for advancing the phase of an X-ray transmitted therethrough, and set to cross the X-ray beam at a thickness position capable of obtaining a phase shift in a range that the transmission X-ray and the diffraction X-ray diffracted by the tip of the knife edge are reinforce with each other, and an X-ray wherein the diffraction X-ray and the transmission X-ray are superimposed on each other is measured by an X-ray detector. COPYRIGHT: (C)2010,JPO&INPIT
QQ群二维码
意见反馈