序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 一种无人化机器人雷达探测仪 CN201510813998.1 2015-11-23 CN106772359A 2017-05-31 王玉洁
发明公开了一种无人化机器人雷达探测仪,属机械自动化、国防机器人外观察电子领域。本发明包括:雷达系统(1),传感器摄像(2),摄像(3)、发射机(4)和塔式支架(5);其中安装图像传感器摄像(2),摄像(3)与发射机(4)连结;塔式支架(5)安装在电动散射枪的控板上或机器人上。本发明解决了无人化机械的外部环境观察控制的问题,用于无人化机器人或边防哨所;由于采用上述设计,使得机器人,电动枪上安装四周和空中的观察器,可使机器人能观察以己为中心的周围环境的情况。
2 通过微波定位焊接头的方法 CN201280003807.X 2012-05-11 CN103501951B 2015-06-10 安德烈亚·阿德雷; 安德烈亚·施特尔策
发明涉及一种用于在工件(14)上方定位机器人焊接系统的焊炬(7)的方法。为了进行位置确定,以微波形式从布置在焊接头上的发射器向所述工件(14)发出测量信号,在所述工件(14)上反射的微波被布置在所述焊接头上的至少一个接收器接收,且所接收的微波由评估模来评估以确定所述工件(14)的边缘(26)的位置。为了提供精确、对干扰敏感的位置确定,所述微波是从位于所述焊接头上的不同位置的至少一个发射器发出的,并且反射微波在极化改变的情况下由布置在所述焊接头上的至少一个接收器接收,所述至少一个接收器具有相对于所述发射器的极化平面成度布置的极化平面,并且所述边缘(26)的位置由所述评估模块至少基于在所述不同位置处反射的各个微波的相位改变来确定。本发明还涉及一种用于在工件(14)上方以模型支撑的方式定位机器人焊接系统的焊接头的方法,其中为了进行位置确定,以微波形式从布置在所述焊接头上的发射器向所述工件(14)发出测量信号,在所述工件(14)上反射的微波被布置在所述焊接头上的至少一个接收器接收,且所接收的微波由评估模块来评估以确定所述工件(14)的边缘(26)的位置;所评估的测量信号被从所述评估模块转发至模型计算模块;包含多个规定参数的存储模块通过该模型计算模块而启动,所述模型通过由输入和/或输出装置(18)输入的焊缝几何形状来选择,并且通过修改预定的参数将所计算的模型与所评估的测量信号进行比较直到能获得规定的一致性。
3 获取机器人行走状态的方法及装置 CN201610260347.9 2016-04-25 CN107305249A 2017-10-31 孔尧; 邢昀; 段毅钧; 王香连
发明实施例公开了一种获取机器人行走状态的方法及装置,所述机器人上设置有雷达探测器,所述方法包括:接收所述雷达在不同时刻对预设范围内各物体的扫描结果;根据所述扫描结果分别绘制不同时刻的雷达图,并获取所述不同时刻的雷达图的几何中心;当所述雷达的旋转中心与所述不同时刻的雷达图的几何中心的距离不同时,确定所述机器人处于行走状态。该方法能够获取机器人的行走状态,且获取结果准确。
4 一种机器人单目视觉定位方法 CN201610207731.2 2016-04-05 CN105890589A 2016-08-24 高剑; 孙笑笑; 严卫生; 张福斌; 夏飞; 崔荣鑫
发明提出一种机器人单目视觉定位方法,结合多普勒和陀螺仪测得水下机器人在载体系下的线速度和速度,得到状态方程;取4个已知在全局系下坐标的静止特征点,通过坐标系变化,得到特征点在图像系下的位置,得到量测方程;已知k?1时刻的状态向量和其协方差矩阵,通过Unscented变换方法,求得Sigma点;再通过一次时间更新,估计k时刻的量测值;结合多普勒和陀螺仪测得航行器在载体系下的线速度和角速度,全局系下的特征点在图像系下的位置,可以得到k时刻量测值,经过量测更新,估计k时刻的状态向量,并得到k时刻状态向量的协方差矩阵。本发明突破了几何法中特征点的布置必须满足特定条件这一限制,弥补了EKF滤波只能估计位置信息这一缺陷,能同时估计位置信息和欧拉角。
5 自主移动对象 CN201480065623.5 2014-11-24 CN105793731A 2016-07-20 平哲也
自主移动对象包括:至少一个距离传感器,其被配置成检测距路面上的位于自主移动对象的移动方向上的第一位置和第二位置的距离;以及确定单元,其被配置成计算当由至少一个距离传感器检测到的距第一位置的距离值大于第一阈值时的时间和当距第二位置的距离值大于第二阈值时的时间之间的差值时间与自主移动对象在第一位置和第二位置之间移动的移动时间之间的差,并且仅当所计算的差等于或大于预定值时才确定距离传感器异常。
6 一种利用2D雷达实现空间探测的方法 CN201610292672.3 2016-05-05 CN106054176A 2016-10-26 高世恒; 高业众
发明涉及一种利用2D雷达实现空间探测的方法,其包括以下步骤:在移动主体上设置2D激光雷达和旋转部件;在移动主体内设置电源模、主控模块、信号处理模块和驱动模块,电源模块为主控模块提供工作电压,2D激光雷达与旋转部件连接,旋转部件通过驱动模块与主控模块连接;主控模块通过驱动模块驱动旋转部件绕移动主体的正面进行上下或左右旋转,旋转部件带动2D激光雷达旋转,2D激光雷达将探测到的前方障碍物发射回的电磁波发送给信号处理模块;信号处理模块对接收到的电磁波进行处理后发送给主控模块,主控模块计算得到前方障碍物的方位和距离信息。本发明能够利用2D激光雷达完成对移动主体前方的全方位探测。
7 基于信息预评判及补偿修正的SINS/DVL/ES组合导航方法 CN201610010208.0 2016-01-07 CN105783940A 2016-07-20 徐晓苏; 童金武; 张涛; 李瑶; 王捍兵; 孙进; 刘义亭; 姚逸卿; 杨冬瑞; 陈立平; 石宏飞; 金博楠
发明提供了一种基于信息预评判及导航结果补偿修正的SINS/DVL/ES组合导航方法。本发明在SINS/DVL组合前对DVL的数据有效性进行判断,当DVL数据信息无效时,DVL导航信息不参与组合导航;同时,本发明将残差x2检测法引入,对组合导航结果是否平稳进行评估,并设计了组合导航结果振荡时的补偿修正方法对Kalman输出结果进行实时评判和修正补偿。本发明既能有效抑制SINS/DVL组合导航姿态、速度的发散速度,提高组合系统姿态、速度精度,在一定程度上提高位置精度;又能解决在DVL数据信息质量下降所带来姿态误差的振荡问题。
8 集中式雷达方法和系统 CN201510516261.3 2015-07-03 CN105403882A 2016-03-16 I·比利克; R·Y·加兹特
发明涉及集中式雷达方法和系统。具体地,提供用于雷达系统的方法和系统。雷达系统包括多个分布式雷达单元和集中式雷达处理单元。多个分布式雷达单元各自配置以获得相应的雷达信号。多个分布式雷达单元中的每一个设置在移动平台的不同相应位置。集中式雷达处理单元设置在移动平台中,与多个分布式雷达单元中的每一个连接,并配置成直接处理来自多个分布式雷达单元中的每一个的雷达信号。
9 通过微波定位焊接头的方法 CN201280003807.X 2012-05-11 CN103501951A 2014-01-08 安德烈亚·阿德雷; 安德烈亚·施特尔策
发明涉及一种用于在工件(14)上方定位机器人焊接系统的焊炬(7)的方法。为了进行位置确定,以微波形式从布置在焊接头上的发射器向所述工件(14)发出测量信号,在所述工件(14)上反射的微波被布置在所述焊接头上的至少一个接收器接收,且所接收的微波由评估模来评估以确定所述工件(14)的边缘(26)的位置。为了提供精确、对干扰敏感的位置确定,所述微波是从位于所述焊接头上的不同位置的至少一个发射器发出的,并且反射微波在极化改变的情况下由布置在所述焊接头上的至少一个接收器接收,所述至少一个接收器具有相对于所述发射器的极化平面成度布置的极化平面,并且所述边缘(26)的位置由所述评估模块至少基于在所述不同位置处反射的各个微波的相位改变来确定。本发明还涉及一种用于在工件(14)上方以模型支撑的方式定位机器人焊接系统的焊接头的方法,其中为了进行位置确定,以微波形式从布置在所述焊接头上的发射器向所述工件(14)发出测量信号,在所述工件(14)上反射的微波被布置在所述焊接头上的至少一个接收器接收,且所接收的微波由评估模块来评估以确定所述工件(14)的边缘(26)的位置;所评估的测量信号被从所述评估模块转发至模型计算模块;包含多个规定参数的存储模块通过该模型计算模块而启动,所述模型通过由输入和/或输出装置(18)输入的焊缝几何形状来选择,并且通过修改预定的参数将所计算的模型与所评估的测量信号进行比较直到能获得规定的一致性。
10 使用时域脉冲信号快速检测物体的设备和方法 CN200480006704.4 2004-03-12 CN1788213B 2010-09-08 D·P·麦克莱莫尔
公开了一种使用超宽带(UWB)RF信号检测在目标区域中感兴趣的物体的方法和系统。发射机和天线阵列产生超宽带RF脉冲信号,这些信号用来探测可能包括感兴趣的物体的目标区域。天线和信号处理器从该目标区域接收返回信号,并处理这些返回信号以产生一组坐标。所处理的返回信号的坐标与一个预先存在数据库中的多个已知物体的坐标相比较,以便确定在该返回信号和一个已知物体之间是否匹配。当有匹配的指示时,就向该系统的操作员显示存在该已知物体。
11 使用时域脉冲信号快速检测物体的设备和方法 CN200480006704.4 2004-03-12 CN1788213A 2006-06-14 D·P·麦克莱莫尔
公开了一种使用超宽带(UWB)RF信号检测在目标区域中感兴趣的物体的方法和系统。发射机和天线阵列产生超宽带RF脉冲信号,这些信号用来探测可能包括感兴趣的物体的目标区域。天线和信号处理器从该目标区域接收返回信号,并处理这些返回信号以产生一组坐标。所处理的返回信号的坐标与一个预先存在数据库中的多个已知物体的坐标相比较,以便确定在该返回信号和一个已知物体之间是否匹配。当有匹配的指示时,就向该系统的操作员显示存在该已知物体。
12 Fast detection apparatus and method of the object based on the impulse-like signal in the time domain JP2006532320 2004-03-12 JP5186682B2 2013-04-17 ドナルド, ピー. マクレモア,
13 Method and apparatus for determining the position of the vehicle JP22300193 1993-09-08 JP3485336B2 2004-01-13 イー アレン ウィリアム; エイ ケムナー カール; エル ピーターソン ジョエル; ケイ レイ ノーマン; ビー リーグ リチャード
14 Boundary signal detection US14822821 2015-08-10 US09903947B2 2018-02-27 Colin E. Das; Brent R. Trenhaile
A boundary signal detection system distinguishes a valid boundary signal for a target region from an extraneous boundary signal for a neighboring region. The system includes electronics that convert the candidate signal from a time domain to a frequency domain to identify at least one embedded frequency in the candidate, that compare the at least one embedded frequency in the candidate signal to at least one predetermined embedded frequency of the valid boundary signal, and that identify the candidate signal as the valid boundary signal based upon the comparison.
15 METHOD AND APPARATUS FOR READING CODE USING SHORT-RANGE MILLIMETER WAVE (MMWAVE) RADAR US15449498 2017-03-03 US20170254898A1 2017-09-07 Joo-Sung PARK; Ki-Taek BAE; Dae-Hyun KIM; Seung-Ku HAN; Tae-Sik YANG; Sang-Hyun CHANG
A code reading method and a radar system using a short-range millimeter wave (mmWave) radar are provided. The method includes transmitting a mmWave radar signal to a target object from a radar system and receiving a reflection wave signal reflected on the target object, extracting reflection signal strengths for a plurality of line codes constituting the target object from the reflection wave signal, compensating for the reflection signal strengths considering a difference in antenna gain between the plurality of line codes as per an antenna radiation pattern of the radar system, forming a radar image using the compensated reflection signal strengths, and reading a binary code from the radar image.
16 TARGET EXTRACTION SYSTEM, TARGET EXTRACTION METHOD, INFORMATION PROCESSING APPARATUS, AND CONTROL METHOD AND CONTROL PROGRAM OF INFORMATION PROCESSING APPARATUS US15124200 2014-12-26 US20170016983A1 2017-01-19 Osamu HOSHUYAMA
To acquire a beat frequency necessary for target extraction, target speed estimation, and Doppler influence detection by preventing the necessary beat frequency from overlapping unnecessary frequencies in a heterodyne processing result, an apparatus includes a wave receiver that receives a reflected wave of a chirp wave reflected from a target, and outputs a reception wave signal, a dual-sweep signal generator that generates a dual-sweep signal of the chirp wave, having a frequency which does not overlap that of the chirp wave, and a heterodyne processor that generates a beat frequency by multiplying the reception wave signal and the dual-sweep signal as a heterodyne signal.
17 METHOD AND DEVICE FOR DETECTING POSITION OF MICRO ROBOT USING ULTRA WIDE-BAND IMPULSE RADAR SIGNAL US15056161 2016-02-29 US20160270691A1 2016-09-22 Hong Yeon YU; Nac Woo KIM; Sim-Kwon YOON; Byung-Tak LEE; Young Sun KIM
Provided is a micro robot position detection device. The device includes a micro robot position detection unit that uses a micro robot control parameter to filter a reflected signal of an ultra wide-band impulse radar signal emitted to a micro robot to extract, as a micro robot signal, a natural oscillating frequency signal generated when the micro robot is driven through control of external electromagnetic field, and analyzes the micro robot signal based on a transmission and reception parameter of the ultra wide-band impulse radar signal to calculate position information for the micro robot. Also, the device may further include an image matching unit that receives position information for the micro robot and performs position correction on the received position information based on pre-stored reference image data and the image data.
18 Method for positioning a welding head by means of microwaves US13879888 2012-05-11 US09327362B2 2016-05-03 Andreas Haderer; Andreas Stelzer
A method for positioning a welding head or welding torch of a robot welding system over a workpiece sends microwaves as a measuring signal from a transmitter arranged on the welding head to the workpiece. The microwaves reflected on the workpiece are received by at least one receiver arranged on the welding head, and the received microwaves are evaluated by an evaluation module for determining the position of a workpiece edge. The microwaves are sent from at least one transmitter in different positions on the welding head, and the reflected microwaves are received, with a change of polarization, by the at least one receiver, having a polarization plane arranged at an angle to the polarization plane of the transmitter. The position of the edge is determined by the evaluation module at least on the basis of a phase change of the respective microwaves reflected on the different positions.
19 METHOD FOR POSITIONING A WELDING HEAD BY MEANS OF MICROWAVES US13879888 2012-05-11 US20130204434A1 2013-08-08 Andreas Haderer; Andreas Stelzer
A method for positioning a welding head or welding torch of a robot welding system over a workpiece sends microwaves as a measuring signal from a transmitter arranged on the welding head to the workpiece. The microwaves reflected on the workpiece are received by at least one receiver arranged on the welding head, and the received microwaves are evaluated by an evaluation module for determining the position of a workpiece edge. The microwaves are sent from at least one transmitter in different positions on the welding head, and the reflected microwaves are received, with a change of polarization, by the at least one receiver, having a polarization plane arranged at an angle to the polarization plane of the transmitter. The position of the edge is determined by the evaluation module at least on the basis of a phase change of the respective microwaves reflected on the different positions.
20 Method for localization of beacons for an autonomous device US465328 1995-06-05 US5682313A 1997-10-28 Leif Edlund; Rolf Berlin; Charles R. Davidsson
The present invention provides an improved method for determining a coarse direction in an orientation system of a an autonomous device (10), for instance a dust cleaning robot together with a system of active beacons or transponders. A transmitter (20) for transmitting sensing signals is displaced in relation to the rotational center (25) of the the device (10). When the device is rotated around a vertical rotational axis in the rotational center, a minimum in the distance to the respective transponder or beacon is obtained when the transmitter of the device is positioned immediate to a point lying on a straight line between the rotational center of the device and a respective transponder, whereby an immediate coarse determination of the direction to each transponder is directly obtained. From such an immediate direction determination direct better starting values are obtained for a position calculation by means of for example Kalman filtering, by which successively from the signals obtained by these transponder responses an orientation basis is achieved for the area where the device should be acting.
QQ群二维码
意见反馈