序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
21 Millimetric wave radar system for the guidance of mobile ground robot US785277 1991-10-30 US5247306A 1993-09-21 Jean-Philippe Hardange; Anne Petitdidier
The disclosure relates to guidance devices on board autonomous vehicles or robots which have to move about notably in environments that are inaccessible or dangerous to human beings. Disclosed is a device for the detection of the environment, and the positioning and/or the guidance of a mobile vehicle on the ground, of the type comprising, firstly, means for the generation and transmission of a signal that can be reflected by a fixed obstacle and, secondly, means for the reception and processing of the signal reflected by said fixed obstacle, said processing means enabling the recognition of the environment and/or the guidance of said autonomous mobile vehicle, said transmitted signal being a millimetric wave radar signal and said transmission and reception means cooperating with a rotary antenna having a 360.degree. rotation in azimuth.
22 自律移動ロボット JP2016541584 2014-11-19 JP2017503267A 2017-01-26 ジェニファー スミス
ロボット(100)は、前方及び後方部分(112、114)を有するロボット本体(110)と、ソナーシステム(530)と、駆動システム(120)と、制御システム(210)とを含む。ソナーシステムは、ロボット本体上に配置され、かつロボット本体の前面(113)に沿って配置されたエミッタ(530ej−530e;j)のアレイと、レシーバ(530iv 530r4)のアレイとを有する。エミッタは、音波(532)を放出し、レシーバは、音波の反射を受信する。エミッタのアレイは、奇数個のエミッタを含み、レシーバのアレイは、偶数個のレシーバを含む。駆動システムは、ロボット本体を支持し、かつ経路(60)に沿って床面(10)を横切ってロボットを操作する。制御システムは、駆動システム及びソナーシステムと通信する。制御システムは、レシーバのアレイから受信したセンサ信号を処理する。【選択図】図1
23 自律移動体 JP2013246018 2013-11-28 JP2015103228A 2015-06-04 平 哲也
【課題】センサの異常を高精度に判定すること。
【解決手段】自律移動体は、路面上の当該自律移動体の移動方向にある第1及び第2位置との距離を夫々検出する少なくとも1つの距離センサと、距離センサにより検出された第1位置の距離値が第1閾値を超えたときの時間と第2位置の距離値が第2閾値を超えたときの時間との差分時間と、第1及び第2位置間を当該自律移動体が移動する移動時間と、の差分時間を算出し、該算出した差分時間が所定値以上となるときのみ、距離センサの異常と判定する判定手段と、を備えている。
【選択図】図1
24 Fast detection apparatus and method of the object based on the impulse-like signal in the time domain JP2006532320 2004-03-12 JP2007515620A 2007-06-14 ドナルド, ピー. マクレモア,
超広帯域(UWB)RF信号を用いてターゲット領域における関心物体を検出するための方法及びシステムが開示されている。 トランスミッタとアンテナアレイは、関心物体を含んでいるかもしれないターゲット領域を探査するために用いられる、超広帯域RFインパルス状信号を生成する。 アンテナと信号処理手段は、ターゲット領域からの応答信号を受信し、一群の座標を生成するために応答信号を処理する。 応答信号と既知の物体との間に対応が存在するか否かを決定するために、処理された応答信号の座標は、既存のデータベースにおける既知の物体の座標と比較さる。 対応を示すものが存在する場合、既知の物体の存在が、システムのオペレータへ表示される。
25 Autonomously traveling vehicle and method for controlling autonomously traveling vehicle JP31235998 1998-11-02 JPH11212640A 1999-08-06 BERGHOLZ RALF DR; TIMM KLAUS; WEISSER HUBERT
PROBLEM TO BE SOLVED: To obtain an autonomously traveling vehicle suitable to be used in public road traffic by providing plural sensors and cameras which are arranged at the front and rear range of the vehicle. SOLUTION: A traveling command of an input unit 29 or a registered traveling command is transmitted to a device 32 for a route plan. The device 32 further gets an accurate present location of a vehicle from a DGP sensor and traffic information from an external communication link. Additional traffic network information, e.g. a traffic-control sign detected by a camera can be estimated from signals of sensors 1 to 20. This autonomously traveling vehicle is provided with another sensor 37 in addition to the sensors 1 to 20. General state data and a state vector of the vehicle are combined and generated from information of the sensor 37 in a device 38 which recognizes state data. The sensor 37 can additionally perform state reporting for each system. The state report and the state vector are supplied to a vehicle controller 35 in the same way. COPYRIGHT: (C)1999,JPO
26 Autonomous moving object US15100156 2014-11-24 US09964953B2 2018-05-08 Tetsuya Taira
An autonomous moving object includes: at least one distance sensor configured to detect distances to first and second positions located in a moving direction of the autonomous moving object on a road surface; and a determination unit configured to calculate a difference between a differential time between a time when the distance value to the first position detected by the at least one distance sensor is greater than a first threshold value and a time when the distance value to the second position is greater than a second threshold value and a moving time in which the autonomous moving object moves between the first and second positions and to determine that the distance sensor is abnormal only when the calculated difference is equal to or greater than a predetermined value.
27 DETECTION OF RADIAL DEFORMATIONS OF TRANSFORMERS US15688845 2017-08-28 US20170356733A1 2017-12-14 Hossein Karami Porzani; Gevork Babamalek Gharehpetian; Maryam Alsadat Akhavan Hejazi; Yaser Norouzi
A method for detecting radial deformation in a winding of a transformer may include synthetic aperture radar (SAR) imaging of the winding using ultra high frequency (UHF) electromagnetic signals in a first instance of the winding to obtain a first image of the winding; SAR imaging of the winding using UHF electromagnetic signals in a second instance of the winding to obtain a second image of the winding; and comparing the first image of the winding and the second image of the winding to detect a radial deformation in the winding. The UHF electromagnetic signals may be transmitted as a plurality of successive sinusoidal signals, where frequencies of the successive sinusoidal signals gradually change from a first frequency to a second frequency.
28 METHODS FOR LOCATING AND POSITIONING, LOCATING SYSTEM, CHARGING STATION, AND CHARGING SYSTEM US15505223 2015-07-16 US20170269205A1 2017-09-21 Jörg Heuer; Anton Schmitt; Xi Zhang
The method for locating a certain object is a method for locating the object by means of a detected locating signal. With this method, locating of precisely this object is checked in such a way that an object with at least a temporally variable reflective property is used, and an influence of this reflective property on the detected locating signal is checked. The locating system has a locating sensor for locating an object by means of a locating signal detected by a locating sensor, as well as an evaluating device which is configured to check an influence of a temporally variable reflective property of the object on the locating signal detected by the locating sensor.
29 METHODS AND APPARATUSES FOR SPEED AND/OR POSITION SENSING US15416273 2017-01-26 US20170222738A1 2017-08-03 Dirk Hammerschmidt; Erich Kolmhofer; Rudolf Lachner
Embodiments relate to machines comprising a movable part, transceiver circuitry configured to transmit a radio signal towards the movable part and to receive a reflection of the radio signal from the movable part, evaluation circuitry configured to determine a position or a speed of the movable part based on at least the received radio signal. A distance between an antenna of the transceiver circuitry and the movable part is less than 5 cm.
30 AUTONOMOUS MOVING OBJECT US15100156 2014-11-24 US20170023943A1 2017-01-26 Tetsuya TAIRA
An autonomous moving object includes: at least one distance sensor configured to detect distances to first and second positions located in a moving direction of the autonomous moving object on a road surface; and a determination unit configured to calculate a difference between a differential time between a time when the distance value to the first position detected by the at least one distance sensor is greater than a first threshold value and a time when the distance value to the second position is greater than a second threshold value and a moving time in which the autonomous moving object moves between the first and second positions and to determine that the distance sensor is abnormal only when the calculated difference is equal to or greater than a predetermined value.
31 Collision avoidance using limited range gated video US10436695 2003-05-13 US06975246B1 2005-12-13 Tim K. Trudeau
A collision avoidance system for a vehicle includes a collision avoidance processor, and an active sensor for obtaining successive range measurements to objects along a path transversed by the vehicle. The active sensor includes a near range gate for obtaining a near range measurement to objects located at a range less than a first predetermined range, and a far range gate for obtaining a far range measurement to objects located at a range greater than a second predetermined range. The near and far range measurements are provided to the collision avoidance processor for maneuvering of the vehicle.
32 Method and apparatus for constructing an environment map of a self-propelled, mobile unit US401968 1995-03-10 US5684695A 1997-11-04 Rudolf Bauer
An improved method and apparatus for constructing a cellularly structured environment map of a self-propelled, mobile unit is provided. Examples of such self-propelled, mobile units are household robots, self-propelled vacuum cleaners and industrial transport vehicles. To this end, a higher increment for the occupancy degree of a currently evaluated cell is selected for near objects. Further, the occupancy degree is also incremented dependent on a velocity. As an additional measure given standstill of the unit, all cells of the environment map that are located within the aperture cone of a wavefront that emanates from the sensor of the mobile unit are modified in terms of their occupancy degree values. Additionally, a blind zone in which grid cells of the environment map experience no modification of the occupancy degree is defined around the mobile unit.
33 Method and apparatus for guiding a machine US315261 1994-09-29 US5652593A 1997-07-29 Quentin H. Rench; Stephen Jacobs
The disclosure involves a method for guiding a machine within an area. Such method includes the steps of triggering an acoustic locating signal from a stationary "beacon-type" base module to a receiver on the machine. The method is applicable for one-beacon, two-receiver and two-beacon, one-receiver applications. A related apparatus also includes a device for emitting a trigger signal and a device for determining the time elapsed between transmission and reception of the locating signal. An operating principle involves computing the module-to-machine distance by determining the "time of flight" of such signal. The machine is steered along a path, the locus of which is defined by an equation.
34 Verfahren und Vorrichtung zum lage- und winkelkompensierten Schweissen EP06005467.3 2006-03-17 EP1834755A1 2007-09-19 Oxenfarth, Hans

Die Erfindung betrifft ein Verfahren zum lage- und winkelkompensierten Schweißen eines Bauteils (6) an einen Grundkörper (5), insbesondere an einen Hohlblaskörper, umfassend die Arbeitsschritte dreidimensionale Erfassung der Geometrie- und Lagedaten der Fügefläche (51) des Grundkörpers (5), Positionierung wenigstens eines Heizelementes (221) auf Basis der erfassten Geometrie- und Lagedaten, derart, dass ein zwischen Heizelement (221) und Fügefläche (51) des Grundkörpers (5) ein gleicher Abstand über die gesamte Fügefläche (51) erzielt wird, Plastifizierung der Fügeflächen (51, 61) von Grundelement (5) und Bauteil (6), Zusammenführen der plastifizierten Fügeflächen (51, 61) von Bauteil (6) und Grundkörper (5).

Die Erfindung betrifft weiterhin eine Vorrichtung zur Durchführung des Verfahrens zum lage- und winkelkompensierten Schweißen eines Bauteils (6) an einen Grundkörper (5), umfassend wenigstens ein Heizelement (221) sowie Mittel zur Positionierung (2) des wenigstens einen Heizelements (221), Mittel (3) zur Positionierung des Grundkörpers (5), Mittel zur Positionierung des Bauteils, Mittel (23) zur Erfassung von Geometrie- und Lagedaten eines Körpers (5) sowie eine Steuereinheit (4), wobei die Mittel (2) zur Positionierung des wenigstens einen Heizelements (221), die Mittel (3) zur Positionierung des Grundkörpers (5) und die Mittel (2) zur Positionierung des Bauteils (6) gesteuert durch die Steuereinheit (4) derart zusammenwirken, dass auf Basis der Geometrie- und Lagedaten zwischen dem wenigstens einen Heizelement (221) und der Fügefläche (51) des Grundkörpers (5) über die gesamte Fügefläche (51) ein gleichmäßiger Abstand erzielbar ist.

35 Verfahren zur Erstellung einer Umgebungskarte und zur Bestimmung einer Eigenposition in der Umgebung durch eine selbstbewegliche Einheit EP94110598.3 1994-07-07 EP0635773A2 1995-01-25 Rencken, Wolfgang, Dr.

Die Erfindung beschreibt ein Orientierungs- und Kartenerstellungsverfahren für mobile Einheiten, die sich in einer unbekannten Umgebung bewegen. Zur Korrektur der Position der mobilen Einheit in der Umgebungskarte und der Lage einer Landmarke in der Umgebungskarte wird von einer bestimmten Position aus aufgrund der Bewegungshistorie ein bestimmter Abstand zur Landmarke prädiziert, und aufgrund der aktuellen Position ein bestimmter Abstand zur Landmarke gemessen.

Dieser Unterschied, der zwischen der prädizierten und der gemessenen Entfernung zur Landmarke auftritt, wird als Systemfehler bezeichnet. Der Systemfehler wird nun in Kenntnis der Unsicherheit, die bei der Positionsbestimmung der mobilen Einheit und die bei der Lagebestimmung der Landmarke auftritt, in deren Verhältnis aufgeteilt und zur Korrektur der Position der mobilen Einheit und der Lage der Landmarke in der Umgebungskarte verwendet.

So können die genannten Unsicherheiten während der Bewegung der mobilen Einheit verringert werden.

Einsatzgebiete des Verfahrens liegen im Bereich von Haushaltsrobotern, von Industrierobotern, oder beispielsweise autonomen Transportfahrzeugen.

36 Système radar en ondes millimétriques pour le guidage d'un robot mobile au sol EP91402836.0 1991-10-23 EP0485253A1 1992-05-13 Hardange, Jean-Philippe; Petitdidier, Anne

Le domaine de l'invention est celui des dispositifs de guidage embarqués sur des véhicules autonomes ou robots étant notamment amenés à circuler dans des environnements inaccessibles ou dangereux pour l'homme.

L'invention concerne un dispositif de détection d'environnement, de positionnement et/ou de guidage d'un véhicule autonome mobile au sol du type comprenant d'une part des moyens de génération et d'émission d'un signal pouvant être réfléchi par un obstacle fixe, et d'autre part des moyens de réception et de traitement du signal réfléchi par ledit obstacle fixe, lesdits moyens de traitement permettant la reconnaissance de l'environnement et/ou le guidage dudit véhicule mobile autonome, ledit signal émis étant un signal radar en ondes millimétriques, et lesdits moyens d'émission et de réception coopérant avec un dispositif d'antenne rotative en gisement sur 360°.

37 자율 이동체 KR1020167016802 2014-11-24 KR101921394B1 2018-11-22 다이라데츠야
자율이동체는, 노면상의자율이동체의이동방향에위치되는제1 및제2 위치까지의거리를검출하도록구성되는적어도 1개의거리센서; 및적어도 1개의거리센서에의해검출된제1 위치까지의거리값이제1 임계치를초과했을때의시간과제2 위치까지의거리값이제2 임계치를초과했을때의시간과의사이의차분시간과, 자율이동체가제1 및제2 위치사이에서이동하는이동시간과의사이의차분시간을산출하며, 산출된차분시간이미리결정된값 이상일때만거리센서가이상이있는것으로판정하도록구성되는판정유닛을포함한다.
38 NON-LINE OF SIGHT OBSTACLE DETECTION AND LOCALIZATION US15161872 2016-05-23 US20170287334A1 2017-10-05 Michael Slutsky; Igal Bilik
A non-line of sight obstacle detection and localization system and method of detecting and localizing a non-line of sight object include receiving reflections at a detection system of a moveable platform, the reflections including direct and multipath reflections, identifying the reflections associated with static targets to retain the reflections associated with moving targets, and distinguishing between line of sight objects and non-line of sight objects among the moving targets. The method also includes localizing the non-line of sight objects relative to the platform and indicating approaching non-line of sight objects among the non-line of sight objects, the approaching non-line of sight objects moving toward the platform on a path that intersects the platform.
39 BOUNDARY SIGNAL DETECTION US14822821 2015-08-10 US20170045612A1 2017-02-16 Colin E. Das; Brent R. Trenhaile
A boundary signal detection system distinguishes a valid boundary signal for a target region from an extraneous boundary signal for a neighboring region. The system includes electronics that convert the candidate signal from a time domain to a frequency domain to identify at least one embedded frequency in the candidate, that compare the at least one embedded frequency in the candidate signal to at least one predetermined embedded frequency of the valid boundary signal, and that identify the candidate signal as the valid boundary signal based upon the comparison.
40 Autonomous mobile robot US14547227 2014-11-19 US09278690B2 2016-03-08 Jennifer Smith
A robot includes a robot body having forward and rearward portions, a sonar system, a drive system, and a control system. The sonar system is disposed on the robot body and has an array of emitters and an array of receivers arranged along a forward surface of the forward portion of the robot body. The emitters emit a sound wave and the receivers receive reflections of the sound wave. The array of emitters includes an odd number of emitters and the array of receivers includes an even number of receivers. The drive system supports the robot body and is configured to maneuver the robot across a floor surface along a path. The control system is supports by the robot body and is in communication with the drive system and the sonar system. The control system processes sensor signals received from the array of receivers.
QQ群二维码
意见反馈