首页 / 国际专利分类库 / 机械工程;照明;加热;武器;爆破;发动机或泵 / 液体变容式机械;流体泵或弹性流体泵 / 旋转活塞或摆动活塞的液体变容式机械 / 专门适用于弹性流体的旋转活塞式泵(具有液体环或类似件入F04C19/00;在旋转活塞泵中工作流体只是用1个或多个往复式活塞排出的入F04B)
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
161 Refrigerant compressor JP2010180275 2010-08-11 JP2012036878A 2012-02-23 TAKATSUMA YUKO; MATSUNAGA MUTSUNORI; IMADA KOICHI; YANASE YUICHI
PROBLEM TO BE SOLVED: To obtain a refrigerant compressor capable of suppressing the occurrence of the galling and seizing of a bearing sliding part and capable of improving abrasion resistance.SOLUTION: The refrigerant compressor is provided with: a compression mechanism part for interlocking a fixed scroll 100 and a pivoting scroll 200 and for compressing refrigerant; and a rotary shaft 300 for driving the compression mechanism part. At least either an engagement part for the rotary shaft and the compression mechanism part or a rotation support part for supporting the rotary shaft is provided with slide bearings 210 and 401. The slide bearings are constituted from a lead-free resin impregnated material having a foreign substance embedding property for embedding abrasion particles. The rotary shaft is constituted from an iron-based material and a hard film 1000 having a hardness of 1000 Hv or greater is formed on the part of the rotary shaft that slides with the slide bearings.
162 スクロール圧縮機およびそのスクロールの加工方法 JP2012067168 2012-03-23 JP6021373B2 2016-11-09 平田 弘文; 桑原 孝幸
163 ロータリ圧縮機 JP2012072507 2012-03-27 JP6015055B2 2016-10-26 矢羽々 進吾; 両角 尚哉
164 温度制御装置、プラズマ処理装置、処理装置及び温度制御方法 JP2011249081 2011-11-14 JP5947023B2 2016-07-06 佐々木 康晴; 松崎 和愛
165 スクロール膨張機 JP2012100018 2012-04-25 JP5931563B2 2016-06-08 宇波 厚; 藤岡 完
166 圧縮機 JP2015094666 2015-05-07 JP2015232322A 2015-12-24 西村 公佑; 古庄 和宏; 大川 剛義
【課題】軽量化でき、かつ、信頼性を向上させることができる圧縮機を提供する。
【解決手段】ロータリ圧縮機は、シリンダ24と、ピストン21と、ブッシュ22とを備える。シリンダ24は、シリンダ孔24aを有する。ピストン21は、シリンダ孔24aにおいて、シリンダ24に対して移動する。ブッシュ22は、シリンダ孔24aにおいて、シリンダ24およびピストン21と摺動する。シリンダ24およびピストン21は、共晶点である12.6wt%を超えるSi含有量を有するAl‐Si合金から成形される。ブッシュ22は、鋼から成形され、シリンダ24およびピストン21と摺動する摺動面を含む表層を有する。表層は、Al‐Si合金に含まれる初晶Siの硬度よりも高い硬度を有するように改質されている。そして、表層は、摺動面において、Hv1000以上の硬度を有する。
【選択図】図2
167 圧縮機 JP2013249160 2013-12-02 JP2015107019A 2015-06-08 青田 桂治; 石嵜 明宣
【課題】本発明の目的は、モータの効率を維持したまま、小型化を達成することができる圧縮機を提供することである。
【解決手段】ロータリ圧縮機101は、ケーシング10と、圧縮機構15と、駆動モータ16とを備える。圧縮機構15は、ケーシング10の内部に設置される。駆動モータ16は、ケーシング10の内部に設置され、圧縮機構15を駆動する。駆動モータ16は、複数のティース72を有するステータ51と、ステータ51に隣接するインシュレータ62とを有する。駆動モータ16は、インシュレータ62を介してティース72に巻線64が巻かれた集中巻モータである。巻線64の渡り線65とケーシング10との間には、絶縁シート66が設置されている。
【選択図】図6
168 スクロール型圧縮機 JP2010210312 2010-09-21 JP5612411B2 2014-10-22 裕司 河村; 卿在 李
169 Compressor including lower frame, and method of manufacturing the same JP2014053344 2014-03-17 JP2014181712A 2014-09-29 LEE KIUK; KIM SU CHUL; HAN NARA
PROBLEM TO BE SOLVED: To provide a sealed compressor and a method of manufacturing the same, capable of easily mounting a rotating shaft and a lower frame.SOLUTION: A sealed compressor 100 includes a cylindrical shell 10, a rotating shaft 40 rotatably mounted in the cylindrical shell 10, a rotary driving portion 30 for rotating and driving the rotating shaft 40, a compressing mechanism portion 20 driven by the rotating shaft 40, a lower bearing 50 rotatably supporting one side of the rotating shaft 40, a lower frame 60 supporting the lower bearing 50, and press-fitted to a lower end portion of the cylindrical shell 10, and a base 70 for sealing the lower end portion of the cylindrical shell 10. The lower frame 60 includes a press-fit portion 63 closely kept into pressure contact with an inner peripheral face of the cylindrical shell 10, and a press-fit limiting portion 66 disposed adjacent to the press-fit portion 63, kept into contact with the lower end portion of the cylindrical shell 10, and limiting a press-fit depth.
170 Vane compressor JP2012529553 2011-08-02 JP5570603B2 2014-08-13 慎 関屋; 英明 前山; 真一 高橋; 雅洋 林; 哲英 横山; 辰也 佐々木; 英人 中尾
171 容積型圧縮機 JP2012536217 2011-09-29 JPWO2012042894A1 2014-02-06 長谷川 寛; 寛 長谷川; 岡市 敦雄; 敦雄 岡市; 雄司 尾形
ロータリ圧縮機100は、圧縮機構3、モータ2、吸入経路14、帰還経路16、可変容積機構30、インバータ42及び制御部44を備えている。帰還経路16は、作動室25から吸入経路14へと作動流体を戻す役割を担う。可変容積機構30は、帰還経路16に設けられ、圧縮機構3の吸入容積を相対的に小さくすべきときには帰還経路16を通じて作動室25から吸入経路14へと作動流体が戻ることを許容し、吸入容積を相対的に大きくすべきときには帰還経路16を通じて作動室25から吸入経路14へと作動流体が戻ることを禁止する。吸入容積の減少をモータ2の回転数の増加で補償するように可変容積機構30及びインバータ42が制御される。
172 Scroll compressor JP2012077202 2012-03-29 JP2013204567A 2013-10-07 NAKAJIMA AKIHIRO; SATO SHINICHI; SAEKI AKIO
PROBLEM TO BE SOLVED: To provide a scroll compressor with simple structure, configured to prevent cooling capacity from excessively increasing on the basis of rotational frequency during drive.SOLUTION: A scroll compressor 10 includes: a fixed scroll 12; a rotary scroll 24; a rotating shaft 14 including an eccentric shaft portion 19; a drive bush 20 to be fitted on an outer periphery of the eccentric shaft portion 19; a boss portion 27 formed in the rotary scroll 24 and having the drive bush 20 rotatably fitted into via a bearing 23; and a drive mechanism storage space. A compression chamber S is formed. The bearing 23 is a slide bearing, and includes an open/close valve which is opened/closed by centrifugal force of the rotating shaft 14. The drive mechanism storage space is partitioned into an upstream space 29 and a downstream space 51 via the open/close valve. The rotary scroll 24 includes a rotary scroll-side connection path 48 connecting the compression chamber S with the upstream-side space 29. The open/close valve is opened by centrifugal force generated when driven at a set rotational speed or higher, to connect the upstream space 29 with the downstream space 51.
173 Motor-driven compressor JP2012072114 2012-03-27 JP2013204457A 2013-10-07 YAMASHITA TAKURO; MIZUFUJI TAKESHI; KUROKI KAZUHIRO; NAGAGAWA SEI
PROBLEM TO BE SOLVED: To secure a pushing force against a fixed scroll by means of a movable scroll.SOLUTION: A plate 24 has a communication hole 24a which can intermittently communicate a back pressure region with a suction pressure region, by moving a position of a protrusion part 23e by an orbiting motion of a movable scroll 23. Therefore, only when the back pressure region communicates with the suction pressure region through the communication hole 24a during the movement of the position of the protrusion part 23e by the orbiting motion of the movable scroll 23, a pressure of the back pressure region is decreased. When the back pressure region does not communicate with the suction pressure region through the communication hole 24a, the pressure of the back pressure region is not decreased.
174 Scroll compressor and processing method of scroll JP2012067168 2012-03-23 JP2013199841A 2013-10-03 HIRATA HIROFUMI; KUWABARA TAKAYUKI
PROBLEM TO BE SOLVED: To provide a scroll compressor in which gas leakage from the tip surface of a spiral wrap can be reduced while preventing the uplift of a tip seal, efficiency can be improved, processing can be easily carried out, and mass production can be anticipated.SOLUTION: In a scroll compressor with steps, tip seals 17A, 17B, 18A, 18B are fitted to tip seal grooves 14L, 14M, 15L, 15M formed at higher and lower tooth tip surfaces 14H, 14I, 15H, 15I of spiral wraps 14B, 15B. One-side ends of the tip seals 17A, 17B, 18A, 18B repeat contact and noncontact with the bottom land of the other scroll by the revolution orbiting drive of an orbiting scroll. In addition, on one-side ends of the tip seals 17B, 18B that are brought into cantilever states, projections 29 extending in a vertical direction from the back surface of the tip seals are formed. Furthermore, holes 28 in/with which the projections 29 are fitted and engaged are formed at one-side ends of bottom surfaces of the tip seal grooves 14M, 15M in which the tip seals 17B, 18B are fitted.
175 Compressor JP2013043652 2013-03-06 JP2013137030A 2013-07-11 SAKUTA ATSUSHI; NIKAMI YOSHIYUKI; KONO HIROYUKI; IMAI YUSUKE; MORIMOTO TAKASHI; AEBA YASUSHI; HASHIMOTO YUSHI
PROBLEM TO BE SOLVED: To provide a compressor in which high efficiency and improved volumetric efficiency of an electric-motor unit are achieved, and low-oil circulation is achieved.SOLUTION: An oil-separation mechanism section 40 that separates oil from a refrigerant gas discharged from a compression mechanism section 10 is provided. The oil-separation mechanism section 40 has: a cylindrical space 41 that causes the refrigerant gas to orbit; an inflow section 42 via which the refrigerant gas discharged from the compression mechanism section 10 is directed into the cylindrical space 41; an outlet 43 via which refrigerant gas from which oil has been separated out is discharged from the cylindrical space 41 to one intra-container space 31; and a discharge port 44 via which the separated oil is discharged from the cylindrical space 41 to another intra-container space 32. The compression mechanism section 10 includes a fixed scroll 12, an orbiting scroll 13 arranged to oppose the fixed scroll 12, and a main bearing member 11 for pivotally supporting a shaft 5 for driving the orbiting scroll 13, and the cylindrical space 41 is characteristically formed with the fixed scroll 12 and the main bearing member 11.
176 Temperature control device, plasma processing device, processing device, and temperature control method JP2011249081 2011-11-14 JP2013105915A 2013-05-30 SASAKI YASUHARU; MATSUZAKI KAZUYOSHI
PROBLEM TO BE SOLVED: To provide a temperature control device which enables highly accurate temperature control without using an ozone layer destruction material in a refrigerant.SOLUTION: A temperature control device 70 includes: a heat exchange part 71 exchanging heat with a peripheral part through phase change of a refrigerant; a rotary pump 73 causing the refrigerant to flow in from the heat exchange part 71 and blending the refrigerant with an oil therein; and an oil-water separation machine 74 causing the refrigerant blended with the oil to flow in from the rotary pump 73 and separating the refrigerant from the oil. The temperature control device 70, which forms a refrigeration cycle having a cooling function by recirculating the refrigerant separated from the oil to the heat exchange part 71, is provided.
177 Screw compressor JP2011214251 2011-09-29 JP4911260B1 2012-04-04 モハモド アンワー ホセイン; 広道 上野; 貴司 井上; 正典 増田; 晃 松岡
A screw compressor (1) includes a slide valve (60) for changing a compression ratio. A valve body (65) of the slide valve (60) includes a sealing projection (66) extending along a rear end surface (74) thereof. In a slide valve housings (31) of a casing (10), the sealing projection (66) separates a low-pressure space (S1) and a high-pressure space (S2) from each other when being in slidable contact with a slidable-contact curved surface (32) of the casing (10). A refrigerant pressure in the low-pressure space (S1) is always applied on the entire nonslidable-contact surface (77) in the valve body (65). Thus, a force that pushes the valve body (65) toward a screw rotor (40) is constant, independently of the position of the slide valve (60), thereby decreasing a change of a clearance between a front surface (71) of the valve body (65) and the screw rotor (40).
178 Gas transfer machine JP22276199 1999-08-05 JP2001050161A 2001-02-23 KOJIMA YOSHINORI; NAKAZAWA TOSHIHARU; SEKIGUCHI SHINICHI; NOMICHI SHINJI
PROBLEM TO BE SOLVED: To make a gas transfer machine highly stable for even corrosive transfer gas and adaptive to a high speed operation by a compact structure. SOLUTION: In a gas transfer machine for transferring gas by performing a rotation operation for a rotor 1, a motor for driving the rotor 1 is provided with a member 11A for isolating a stator 6 and the inside of a motor rotor chamber 14. A motor rotor 7 has a structure that the rotor 7 is directly connected with an extension of a pump drive shaft 2 and the motor rotor 7 has a reluctance shape having a salient pole part of a magnetic material. COPYRIGHT: (C)2001,JPO
179 JPS612797B2 - JP7540875 1975-06-20 JPS612797B2 1986-01-28 HAJARUMAA SHIBAIE; AANORUDO ENGURANDO
180 MOTOR VEHICLE VACUUM PUMP US15761814 2015-09-23 US20180291906A1 2018-10-11 STEFAN HAMMER; WOLFGANG PILENZ; ENVER DES; STEFAN SOMMER; MIRITZ JOHANNES JOB
A motor vehicle vacuum pump includes a pump chamber with a pump rotor, an outlet chamber, a separating wall which separates the pump chamber from the outlet chamber, and an outlet valve arranged in the separating wall. The outlet valve is designed so that a compressed gas escapes from the pump chamber into the outlet chamber therethrough. The outlet valve is formed by a valve opening in the separating wall, a valve seat having a raised shape arranged around the valve opening, and a leaf spring as a valve body. The leaf spring abuts on the valve seat in a closed position and is spaced from the valve seat in an open position. The leaf spring has a radial overlap with the valve seat in the closed position of less than 1.5 mm and a radial projection outward beyond the raised valve seat which is larger than 1.0 mm.
QQ群二维码
意见反馈