序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
81 GENERATOR US14351322 2012-10-11 US20140238021A1 2014-08-28 Gershon Harif
A generator comprising: a heat differential module with a first, high temperature source configured for providing a work medium at high temperature, a second, low temperature source configured for providing a work medium at low temperature, and a heat mechanism in fluid communication with the first and second sources, configured for maintaining a temperature difference therebetween by at least one of: providing heat to the work medium at said first source, and removing heat from the work medium at said second source; a pressure module comprising a pressure medium which is in selective fluid communication with the work medium from the first, high temperature source and the work medium from the second, low temperature source, for alternately performing a heat exchange process with the high/low temperature work medium, to have its temperature fluctuate between a minimal operative temperature and a maximal operative temperature corresponding to the high and low temperature of the respective work medium; a conversion module in mechanical communication with the pressure medium, configured for utilizing temperature fluctuation of the pressure medium for the production of output energy; and a heat recovery arrangement in thermal communication with at least one of the heat differential module and the pressure module, configured for receiving at least a portion of the heat energy of the high and low temperature work medium which was not transferred to the pressure medium during said heat exchange process, and redirecting said heat energy back to one of the heat differential module and the pressure module; wherein provision of heat to the work medium is performed by way of a heat exchange process with an auxiliary high temperature fluid.
82 DEVICES AND METHODS FOR TREATMENT OF HEART FAILURE AND ASSOCIATED CONDITIONS US14142274 2013-12-27 US20140163649A1 2014-06-12 Dimitrios Georgakopoulos; Eric Grant Lovett
Devices and methods of use are described for identification, treatment, and/or management of heart failure and/or associated conditions. An exemplary device may include a first fluid status monitoring circuit configured to monitor a first fluid status indicator of a pulmonary fluid status associated with pulmonary edema, a second fluid status monitoring circuit configured to monitor a separate and different second fluid status indicator of a non-pulmonary fluid status, and a controller coupled to the first and second fluid status monitoring circuits, and a therapy circuit coupled to the controller. The controller is configured to use information about the first and second fluid status indicators to determine a therapy control signal to control a therapy, and the therapy circuit is configured to provide therapy in response to the therapy control signal to adjust at least one of the pulmonary fluid status or the non-pulmonary fluid status.
83 Devices and methods for treatment of heart failure and associated conditions US13646824 2012-10-08 US08700162B2 2014-04-15 Dimitrios Georgakopoulos; Eric Grant Lovett
Devices and methods of use for identification, treatment and/or management of heart failure and/or associated conditions. An exemplary device may include a first sensor configured to monitor a parameter indicative of a fluid level in a pulmonary circulation of a patient, a second sensor configured to monitor a parameter indicative of a fluid level in a non-pulmonary circulation of a patient, and a control system coupled to the first sensor and second sensor. The control system is configured to provide a baroreflex therapy to the patient based at least in part on the parameter indicative of a fluid level in a pulmonary circulation and the parameter indicative of a fluid level in a non-pulmonary circulation. The baroreflex therapy adjusts at least one of the fluid level in the pulmonary circulation and the fluid level in the non-pulmonary circulation.
84 DEVICES AND METHODS FOR TREATMENT OF HEART FAILURE AND ASSOCIATED CONDITIONS US13646824 2012-10-08 US20130338735A1 2013-12-19 Dimitrios Georgakopoulos; Eric Grant Lovett
Devices and methods of use for identification, treatment and/or management of heart failure and/or associated conditions. An exemplary device may include a first sensor configured to monitor a parameter indicative of a fluid level in a pulmonary circulation of a patient, a second sensor configured to monitor a parameter indicative of a fluid level in a non-pulmonary circulation of a patient, and a control system coupled to the first sensor and second sensor. The control system is configured to provide a baroreflex therapy to the patient based at least in part on the parameter indicative of a fluid level in a pulmonary circulation and the parameter indicative of a fluid level in a non-pulmonary circulation. The baroreflex therapy adjusts at least one of the fluid level in the pulmonary circulation and the fluid level in the non-pulmonary circulation.
85 Electrogenerating device with a high-temperature steam turbine US12527646 2007-10-10 US08516817B2 2013-08-27 Vladimir Alekseevich Fedorov; Oleg Nikolaevich Favorskiy; Alexander Ivanovich Leontiev; Oleg Osherevich Milman
An electrogenerating device comprises a steam boiler, a hydrogen plant for steam conversion of natural gas into hydrogen, an oxygen plant for production of oxygen from air, a high-temperature H2/O2 steam superheater, a steam turbine provided with an electric power generator and a condenser, and a heat recovery boiler. Inlets of the high-temperature steam superheater are connected to an outlet of the steam boiler and outlets of the hydrogen and oxygen plants at a ratio of hydrogen to oxygen flow rates close to a stoichiometric ratio. The total noncondensable gas impurities in hydrogen and oxygen are less than 0.5% by volume at a temperature of 20 to 100° C. An outlet of the high-temperature steam superheater is connected to an inlet of the steam turbine, an outlet of the hydrogen plant is exhaust-gas connected to a gas path of the heat recovery boiler. In addition, an outlet of the heat recovery boiler is steam connected to an intermediate inlet of the steam turbine. The electrogenerating device makes it possible to continuously produce electric power with high efficiency and can be used for production of electric power using a combination of organic and hydrogen fuels.
86 Energy storage system and method for storing and supplying energy US12489681 2009-06-23 US08196405B2 2012-06-12 Erik Wolf
An energy storage system is provided which includes an electrolyser a hydrogen gas storage and a power plant. The electrolyser is connected to the hydrogen gas storage and the hydrogen gas storage is connected to the power plant. Furthermore, a method for storing and supplying energy is provided which includes delivering electrical energy to an electrolyser; decomposing water into oxygen and hydrogen gas by means of the electrolyser; storing the hydrogen gas; supplying the stored hydrogen gas to a power plant; and producing electrical energy via of the power plant.
87 DEVICES AND METHODS FOR TREATMENT OF HEART FAILURE AND ASSOCIATED CONDITIONS US13360339 2012-01-27 US20120123506A1 2012-05-17 Dimitrios Gerogakopoulos; Eric Grant Lovett; Adam Cates
Devices and methods of use identification, treatment, and/or management of heart failure and/or associated conditions. Methods may include providing a baroreflex therapy system, providing an implantable measurement device proximate a blood vessel of a patient, the implantable measurement device including a plurality of electrodes, determining an impedance of the blood vessel with the implantable measurement device over a time period of at least one cardiac cycle, generating at least one signal representative of a pressure waveform based on the impedance, activating, deactivating or otherwise modulating the baroreflex therapy system to deliver a therapy to treat heart failure based at least in part on the at least one signal representative of the pressure waveform.
88 SPACE ENGINE INCLUDING THE HAASE CYCLE WITH ENERGY RECOVERY COOLING US12734836 2008-11-26 US20110061612A1 2011-03-17 Richard Alan Haase; John Smaardyk; Frank Newsom
The instant invention relates to improved methods, systems, processes and apparatus (means) for the combustion of hydrogen (H2) with oxygen (O2), wherein the H2 and O2 are obtained from at least one storage tank or obtained by electrolysis of water (H2O). The instant invention is based upon the chemistry of H2O incorporating H2 as the fuel and O2 as the oxidizer. The instant invention relates to combustion, wherein the thermodynamics of the Otto Cycle are improved providing improved combustion efficiency and power output, thereby producing the Haase Cycle. The instant invention relates to means of liquefaction unit for storage of said H2 and/or of said O2 in applications which are at an altitude above the surface of the earth (space applications). Finally, the instant invention relates to applications of producing mechanical or electrical energy, as well as improved H2 and/or O2 storage in space applications.
89 Supply system for an aircraft US11909381 2006-03-24 US07828244B2 2010-11-09 Hans-Juergen Heinrich; Paul Joern
A supply system that encompasses a vapor generator, may be used to generate water. The vapor generator is supplied with hydrogen and oxygen, and generates hot water vapor, which may be used for supplying energy and water. For example, using the supply system reduces a take off weight for an aircraft and supply redundancy.
90 ENERGY STORAGE SYSTEM AND METHOD FOR STORING AND SUPPLYING ENERGY US12489681 2009-06-23 US20090322090A1 2009-12-31 Erik Wolf
An energy storage system is provided which includes an electrolyser a hydrogen gas storage and a power plant. The electrolyser is connected to the hydrogen gas storage and the hydrogen gas storage is connected to the power plant. Furthermore, a method for storing and supplying energy is provided which includes delivering electrical energy to an electrolyser; decomposing water into oxygen and hydrogen gas by means of the electrolyser; storing the hydrogen gas; supplying the stored hydrogen gas to a power plant; and producing electrical energy via of the power plant.
91 Steam generator system US12012361 2008-02-01 US20090013940A1 2009-01-15 James A. Rowan
A steam generator includes a submersible burner compartment with at least one burner subassembly and an associated submersible primary ignition means. The burner subassembly also has an associated infrared primary flame monitoring subassembly. The primary flame monitoring system and primary ignition means are all housed within the burner compartment whereby when the burner compartment is filled with water, the burners are all submerged. The infrared flame monitoring subassembly is electronically coupled to a primary monitoring device and a fuel feed pipe is couple to the burner subassembly. A super heater compartment is coupled to and receives steam exhausted from the burner compartment. The super heater compartment has at least one burner subassembly located therein. An associated submersible secondary ignition means and an associated infrared secondary flame monitoring subassembly are provided for each burner subassembly. The burner, secondary ignition means and infrared secondary monitoring subassembly are all housed within the super heater compartment with the infrared subassembly electronically coupled to a secondary monitoring device.
92 Rechargeable open cycle underwater propulsion system US11117009 2005-04-28 US07128624B1 2006-10-31 Jeffrey S. Goldmeer; William H. Girodet
In an underwater vehicle, hydrogen and oxygen are fed into a combustion chamber of a combustor of the underwater vehicle to initiate a combustion reaction, which generates high-pressure steam. The high-pressure steam can be cooled with the injection of seawater, and can be condensed into high-pressure water by the addition of sufficient seawater. High-pressure water is then ejected out of the combustor, generating thrust for the underwater vehicle. Sensors that measure the combustor pressure and the external pressure could be used to adjust the combustor pressure, allowing for constant velocity as the depth of the underwater vehicle changes. Alternatively, the sensors could adjust the area of an exit nozzle of the combustor. Stored water can be converted back into hydrogen and oxygen by using electrical power external to the system. After regeneration of the water into hydrogen and oxygen, the propulsion system would be ready for operation again.
93 Method for the separation of residual gases and working fluid in a combined cycle water/steam process US10530820 2003-07-14 US20060117735A1 2006-06-08 Wolfgang Harazim
The invention relates to a method for the separation of residual gases and working fluid in a combined cycle water/steam process, which provides for the multi-stage compression and multi-stage expansion of the mixture of working fluid and reaction products from the additional liquid and/or gaseous fuels, by the use of steam. The aim of the invention is the minimisation of the working fluid losses and minimisation of the additional necessary energy use. Said aim is achieved, whereby the expanded exhaust gas from the high pressure turbine stage (19) is subjected to a cooling process which cools the same to the condensation temperature of the steam contained in the exhaust gas (6). The non-condensed parts of the exhaust gas (6) are bled off, whereby the condensation of the working fluid, the bleeding off of non-condensed residual gases (25), the depressurisation of the working fluid condensate and the evaporation of the condensed working fluid are carried out in a residual gas separator (10).
94 Environment-friendly engine system US11093251 2005-03-29 US07043918B1 2006-05-16 Shu Lee
An environment-friendly engine system is characterized by that hydrogen gas that fuels the engine is generated from water by electrolysis and that the electric power for electrolysis is supplied by a fuel cell in a water fuel tank and a leadacid cell connected in parallel with the fuel cell. As the engine system is operating, the fuel cell burns methyl alcohol or ethyl alcohol to generate power for activating water electrolysis that produces hydrogen gas. The hydrogen gas fuels a hydrogen engine, and the steam produced in the engine is used to drive an electricity generator and subsequently a turbine, whereby the electricity is stored in a leadacid cell used together with the fuel cell. Thereby, the engine system is safe to operate and produces no any of the greenhouse gases, truly friendly to the environment.
95 Reheat heat exchanger power generation systems US10798182 2004-03-10 US07021063B2 2006-04-04 Fermin Viteri
A reheat heat exchanger is provided particularly for use in Rankine cycle power generation systems. The reheat heat exchanger includes a high pressure path between a high pressure inlet and a high pressure outlet. The reheat heat exchanger also includes a low pressure path between a low pressure inlet and a low pressure outlet. The two paths are in heat transfer relationship. In a typical power generation system utilizing the reheat heat exchanger, the high pressure inlet is located downstream from a source of high temperature high pressure working fluid. An expander is located downstream from the high pressure outlet and upstream from the low pressure inlet. A second expander is typically provided downstream from the low pressure outlet. The reheat heat exchanger beneficially enhances the efficiency of power generation systems, particularly those which utilize expanders having inlet temperatures limited to below that produced by the source of working fluid.
96 Low pollution power generation system with ion transfer membrane air separation US10716004 2003-11-17 US06945029B2 2005-09-20 Fermin Viteri
A low or no pollution power generation system is provided. The system has an air separator to collect oxygen. A gas generator is provided with inputs for the oxygen and a hydrocarbon fuel. The fuel and oxygen are combusted within the gas generator, forming water and carbon dioxide. Water or other diluents are also delivered into the gas generator to control temperature of the combustion products. The combustion products are then expanded through at least one turbine or other expander to deliver output power. The combustion products are then passed through a separator where the steam is condensed. A portion of the water is discharged and the remainder is routed back to the gas generator as diluent. The carbon dioxide can be conditioned for sequestration. The system can be optimized by adding multiple expanders, reheaters and water diluent preheaters, and by preheating air for an ion transfer membrane oxygen separation.
97 Retrofitting coal-fired power generation systems with hydrogen combustors US09459207 1999-12-10 US06263568B1 2001-07-24 Ronald Leo Bannister; Richard Allen Newby
A method of retrofitting a power generation system having a coal-fired steam boiler, a steam turbine system, and a condenser comprising installing a hydrogen-fired combustion system therein having the step of replacing the coal-fired steam boiler with a hydrogen-fired combustion system such that a steam flow generated by the hydrogen-fired combustion system is directed to the steam turbine system. Another method of retrofitting a power generation system has the steps of installing a hydrogen-fired combustion system to receive the steam flow, a hydrogen stream, and an oxygen stream, and to produce a super-heated steam flow therefrom; and installing a new steam turbine system capable of receiving and expanding said super-heated steam flow and directing said expanded super-heated steam flow to at least a portion of said original steam turbine system.
98 Clean air engines for transportation and other power applications US09533611 2000-03-22 US06247316B1 2001-06-19 Fermin Viteri
A low or no pollution engine is provided for delivering power for vehicles or other power applications. The engine has an air inlet which collects air from a surrounding environment. At least a portion of the nitrogen in the air is removed using a technique such as liquefaction, pressure swing adsorption or membrane based air separation. The remaining air is primarily oxygen, which is then compressed and routed to a gas generator. The gas generator has an igniter and inputs for the high pressure oxygen and a high pressure hydrogen containing fuel, such as hydrogen or methane. The fuel and oxygen are combusted within the gas generator, forming water and carbon dioxide with carbon containing fuels. Water is also delivered into the gas generator to control a temperature of the combustion products. The combustion products are then expanded through a power generating device, such as a turbine or piston expander to deliver output power for operation of a vehicle or other power uses. The combustion products, steam and, with carbon containing fuels, carbon dioxide, are then passed through a condenser where the steam is condensed and the carbon dioxide is collected or discharged. A portion of the water is discharged into the surrounding environment and the remainder is routed back to the gas generator.
99 Reduced pollution power generation system having multiple turbines and reheater US865213 1997-05-29 US5956937A 1999-09-28 Rudi Beichel
Pollution-free or low pollution, efficient, large scale electrical power generation systems, using thermal energy from combustion of hydrocarbon fuel are described herein. The pollutant-free hydrocarbon fuel is combusted in a gas generator with pure oxygen or substantially pure oxygen that is free of nitrogen. Water is also injected into the gas generator. The gas generator discharges high enthalpy steam and carbon dioxide which can then be utilized in a variety of applications including driving turbines for power generation. The steam can be recycled into the gas generator or discharged for various uses. The carbon dioxide can be collected for industrial use or discharged.
100 System for generating hydrogen US853284 1997-05-09 US5867978A 1999-02-09 Martin Klanchar; Thomas G. Hughes
A process and apparatus are disclosed for generating hydrogen gas from a charge of fuel selected from the group consisting of lithium and alloys of lithium and aluminum. The charge of fuel is placed into an enclosed vessel, then heated until it is molten. A reactant consisting of water is introduced into the vessel, as by spraying from a nozzle, for reaction with the charge of fuel resulting in the production of hydrogen gas and heat which are withdrawn from the vessel. Prior to initiation of the process, an inert gas atmosphere, such as argon, may be imparted to the interior of the vessel. A sufficiently large mass flow of the reactant through the nozzle is maintained to assure that there be no diminution of flow resulting from the formation on the nozzle of fuel and chemical compounds of the fuel. Optimum charges of the fuel are application specific and the ranges of the constituents are dependent upon the particular use of the system. The process and apparatus of the invention may be incorporated into a Rankine cycle engine or into a hydrogen oxygen fuel cell system.
QQ群二维码
意见反馈