序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
21 合金 CN201510946495.1 2015-12-17 CN106893926A 2017-06-27 邵狄江
发明提供一种合金,按重量比含有锆2.2-3%、10–11%、8.3%、镍4.2-6.6%、锑1-2.5%、钨6.3-7.1%、3.2-4.3%、余量为铁和难以去除的杂质;上述配料充分混合后放入炼炉中加热。本发明加工成型率高,工件稳定性高,使用寿命长。
22 合金 CN201510851914.3 2015-11-30 CN106811672A 2017-06-09 杨菊芳
发明提供一种合金,按重量比含有锆0.5–1%、0.5-1.5%、钼3-4%、2-3%、铋2-3%、钨1-2%、锰0.5-1.5%、余量为铁和难以去除的杂质;上述配料充分混合后放入炼炉中加热。本发明制备简单方便,大大提高了韧性和耐腐蚀性。
23 稀土用稀土中间合金的制备方法 CN201611169551.6 2016-12-16 CN106756446A 2017-05-31 于雅樵; 张志宏; 高日增; 陈国华; 刘玉宝; 张文灿
发明公开了一种低稀土用稀土中间合金的制备方法,采用真空冶炼炉,按照质量比1~5:5~9将稀土金属与纯铁放入真空炉内的坩埚中;将真空炉抽真空在20Pa以下,然后充入惰性气体保护,经过高温熔化‑精炼、电磁搅拌合金化过程,高温熔化温度为1000~1500℃,精炼过程采用的温度为1400~1500℃,时间为5~15分钟;然后浇铸到锭模中得到稀土铁中间合金。本发明能够显著提高稀土收得率,准确控制钢中稀土的含量,降低稀土的加入成本,改善和提高钢材的塑性、低温冲击韧性、厚度方向性能和耐腐蚀性能。
24 合金 CN201510828577.6 2015-11-25 CN106756443A 2017-05-31 汪朝年
发明提供一种合金,按重量比含有1-2%、钼1-2%、34%、1-2%的锰,2-3%的、铬1.5-3%、锌0.5-1%、余量为铁和难以去除的杂质;上述配料充分混合后放入炼炉中加热。本发明制备简单,耐磨性好,延长使用寿命。
25 一种铬合金的生产方法 CN201610576851.X 2016-07-20 CN106086402A 2016-11-09 任中山; 王静静; 徐刚; 闫方兴; 曹志成; 薛逊; 吴道洪
发明涉及一种生产铬合金的方法,包括以下步骤:将铬铁粉矿和还原剂分别进行磨矿处理,粒度磨细至200目粒度占70%以上;将磨细后的所述铬铁粉矿、所述还原剂、粘结剂混合均匀,进行成型处理,获得团,对所述团块进行干燥处理,获得干燥处理的团块;对所述干燥处理的团块在T1温度,还原t1时间,获得金属化球团;所述金属化球团高温状态下送至燃气熔分炉,在T2温度进行熔化分离,获得铬铁合金。本发明的铬铁合金的生产方法采用铬铁粉矿和价格低廉的还原剂,有效降低生产成本。熔化分离采用燃气燃烧供热的燃气熔分炉,相比现有技术采用的电炉,本发明使用的燃气熔分炉能源转化效率高,起到节能效果。
26 冶炼的炉外精炼方法 CN201610529850.X 2016-07-07 CN106011601A 2016-10-12 余彬; 孙朝晖; 程兴德; 陈海军; 唐红建; 景涵; 杜光超; 尹丹凤; 王唐林
发明属于冶金领域,具体涉及一种冶炼合金的炉外精炼方法。针对现有多期法钒铁冶炼方法冶炼末期渣中钒含量高、电耗高、电炉炉体侵蚀严重等问题,本发明的目的在于提供一种冶炼钒铁的炉外精炼方法,该方法包括两期电炉冶炼,冶炼完成后将出渣后的初级熔融合金浇铸于装有精炼料的锭模中混合反应,进行炉外精炼。该方法不仅能够大幅降低单炉通电时间,减少冶炼电炉的炉衬侵蚀,同时延长了合金沉降时间,有利于合金收率的提高,具有显著的社会经济效益。
27 一种采用电热法生产200系不锈基料和200系不锈钢的方法 CN201610169158.0 2016-03-23 CN105671413A 2016-06-15 储少军; 曾世林; 赵洪洋
发明属于合金冶炼技术领域,具体涉及一种采用电热法生产200系不锈基料和200系不锈钢的方法,其以硅铬合金作为低中间合金,以锰矿作为低碳中间合金的脱硅剂,冶炼得到200系不锈钢基料;或者,以锰硅合金作为低碳中间合金,以铬矿作为低碳中间合金的脱硅剂,冶炼得到200系不锈钢基料。本发明所提供的方法相对传统的采用高碳铬铁或中、低碳铬铁,低碳锰铁或电解锰生产含铬锰合金钢种的生产工艺,具有生产工艺流程短、低成本、资源综合利用高、铬铁渣排放少等优点。
28 一种铬合金及其制备工艺 CN201610108814.6 2016-02-26 CN105648304A 2016-06-08 梅百荣
发明公开了一种铬合金及其制备工艺,由以下重量百分比的组分组成:0.09-0.15%、铬26-32%、0.12-0.20%、0.22-0.32%、镍0.10-0.15%、锰0.18-0.25%、0.10-0.30%、0.38-0.45%、硫0.03-0.05%、磷0.01-0.03%、不可避免杂质小于0.06%、余量为铁。与现有技术相比,本发明制备工艺参数能有效改善铬铁合金工艺性能,提高铬铁合金加工及热处理的强度,有效保证了铸造性能、机械性能,同时铬铁合金的强度、韧性、延展性和耐磨能均得到有效的提高。
29 具备处理效果的新型低成本合金及其制备方法 CN201510704009.5 2015-10-27 CN105349875A 2016-02-24 张立峰; 刘洋
发明一种具备处理效果的新型低成本合金及其制备方法,该合金主要成分包括硅、铁和少量的和钙和不可避免的杂质,铝和钙总量占合金总质量的质量百分数为1-3%。该方法将硅石和焦炭按照设计要求的比例称取加入,根据加入炉料中焦炭中的Al2O3和CaO的含量,添加一定量的CaO,使炉料中的Al2O3和CaO的质量比例控制在1:1-1.7。该方法工艺简单,成本低,即对原料中的Al含量没有严格控制要求,即对硅石和焦炭级别不再有严格的限制,通过提高硅铁炉渣中CaO含量会使炉渣黏度降低,有利于排渣,在一定程度上有利于渣金分离,提高合金的收得率。省去硅铁的炉外精炼工序,节约了硅铁合金的生产成本,提高企业效益。
30 一种用于制造烧结硬化零件的中间合金以及该烧结硬化零件的制造工艺 CN201180017497.2 2011-02-15 CN102933731B 2016-02-03 吉勒斯·埃斯佩兰斯; 伊恩·巴隆-普若尔; 小丹尼斯·克里斯托夫森
发明描述了一种用于制造零件的中间合金,以及由这种中间合金制造烧结硬化钢零件的工艺。该粉末状中间合金包括由以下组成的组合物,包括:,大约1-5wt%的C,大约3-15wt%的Mn,大约3-15wt%的Cr,其中,该中间合金具有由该合金元素固溶体组成的微观结构,该微观结构包括:至少10V%奥氏体,剩余为铁化合物。该工艺包括:制备该中间合金,将该中间合金与钢粉末混合制造一种混合物,其中,该中间合金占该混合物的5-35wt%,将该混合物装入零件的模具中压缩,烧结该混合物以制造该钢零件,并在烧结之后控制冷却速率从而产生烧结硬化。该中间合金粉末还可在与低合金钢粉末混合时作为烧结硬化增强剂使用。
31 高锰低的生产方法和熔炼设备 CN200580026753.9 2005-12-02 CN101057001A 2007-10-17 卢茨·罗泽; 瓦尔特·魏舍德尔
用于生产具有高锰含量和低含量的(1)的一种方法和一种熔炼设备,是在液态生(2)或液态碳钢(3a)和造渣剂(4)的基础上工作的,还有一个目的就是避免迄今在不同熔炉例如电弧炉(18)中的工艺方法上的缺点。生产高锰低碳钢的工艺过程是:将液态铁锰炉料(5)和液态钢(3a)投入到一座FeMn-精炼转炉(6a)中,然后利用炉顶喷管(8)和熔液面下的喷嘴(9)联合吹入(7),将碳含量降低到大约0.7%~0.8%,其中,将由粗熔体形成的冷的成品部分作为致冷剂(10)加入,并利用熔液面下的喷嘴(9)继续吹入氧(7)将碳含量降低到大约0.05~0.1%C。
32 粉碎性良好的系Si-Mn合金或铁系Si-Mn-Ni合金及其合金粉末 CN98104056.X 1998-01-20 CN1206749A 1999-02-03 青木宏一; 小埜田敦夫; 谦田政男; 西村均; 铃木邦辉; 菊池俊二
发明提供了易于粉碎,且能够大量生产的系Si-Mn或铁系Si-Mn-Ni合金及其合金粉末。这种粉碎性良好的铁系Si-Mn或铁系Si-Mn-Ni合金及其合金粉末的特征在于,以重量%计含有C:0.40%~1.20%、Si:5.0~12.0%、Mn:19.0%~42.0%、Ni:30%以下,其余部分为Fe,而且Si≥11.89—2.92C—0.077Mn、维氏硬度(Hv)≥550、结构的树枝状晶体面积率≤50%。此外,在上述成分组成中,Si≤8.3C+0.14Mn、比磁导率(μ)≤1.10。
33 METHOD FOR PRODUCING MANGANESE CONTAINING FERROALLOY EP14825167.1 2014-12-16 EP3084019B1 2018-05-02 KROGERUS, Helge; MÄKELÄ, Pasi; KIVINEN, Visa
To produce manganese containing ferroalloy for steel production, an agglomeration mixture is produced which comprises chromite ore concentrate and manganese ore fines with a grain size smaller than 6-9 mm. The mixture is agglomerated to produce green agglomeration products, such as pellets or other types of agglomerates. The green agglomeration products are sintered in a steel belt sintering furnace to produce either sinter or sintered pellets. The sinter or sintered pellets are smelted in a submerged arc furnace to produce manganese and chromium containing ferroalloy. The ferroalloy produced by the method comprises 6.0-35 w-% manganese and 31-54 w-% chromium.
34 METHOD FOR PRODUCING FERROALLOY CONTAINING NICKEL EP10740969 2010-02-11 EP2396438A4 2017-08-02 MÄKELÄ TUOMO; NIEMELÄ PEKKA
The invention relates to a method for producing a ferroalloy containing nickel. From a fine-grained raw material containing iron and chromium and a fine-grained raw material containing nickel, a mixture is formed with binding agent, the mixture is agglomerated so that first formed objects of desired size are obtained. The objects formed are heat treated in order to strengthen the objects so that the heat treated objects withstand conveyance and loading into a smelter furnace. Further, the objects are smelted under reducing circumstances in order to achieve ferrochromenickel, a ferroalloy of a desired composition containing at least iron, chromium and nickel.
35 MAGNESIUM FERROSILICON ALLOY AND USE THEREOF IN MANUFACTURE OF NODULAR CAST IRON EP83901516.1 1983-03-28 EP0108107B1 1988-01-13 DREMANN, Charles Earl
A magnesium ferrosilicon alloy for in-mold nodulization of ductile iron consisting of 5-15% by weight of magnesium, 60-80% silicon, 0.1-1.5% calcium, 0.1-3.0% aluminum, 0-2.5% rare earth, and balance iron.
36 Additive for metallurgic liquids being effective to improve the characteristics of metal or metal alloy articles of manufacture EP85101768.1 1985-02-18 EP0156157A1 1985-10-02 Gorgerino, Mario Dominique

An additive for metallurgic liquids is disclosed which is effective to efficiently remove slag therefrom and comprises at least one colloidal substance mainly consisting of colloidal silica in the siloxane three-dimensional lattice. The additive may include such minerals as opal, kieselgur, tripoli, obsidians, pumices, zeolites, vermiculite or bentonites, either singly or mixed together.

37 MAGNESIUM FERROSILICON ALLOY AND USE THEREOF IN MANUFACTURE OF NODULAR CAST IRON. EP83901516 1983-03-28 EP0108107A4 1985-02-28 DREMANN CHARLES EARL
38 IMPROVED ADDITION AGENT FOR CAST IRON EP82902874.0 1982-08-30 EP0088114A1 1983-09-14 Moore, William H.
Alliage d'inoculation additif pour fonte de moulage en fusion. La composition est un alliage de ferro-silicium contenant de 5 à 8 % de calcium en tant qu'ingrédient actif.
39 A process for the preparation of silicon or ferrosilicon EP80850148.0 1980-10-10 EP0028208A1 1981-05-06 Johansson, Thomas

A process for the production of silicon or ferrosilicon by reduction of silicon oxide, optionally in the presence of iron or iron oxide, using a carbonaceous reducing agent, in a reduction furnace. The yield is improved without harmful temperature rises if the ratio of the amount of thermal energy supplied to the furnace to the amount of silicon oxide supplied to the furnace is made adjustable in such a manner that a value for the ratio can be set within an interval, which interval in its lower end is limited by the lowest value permitting constant reduction of the silicon monoxide and silicon directly with a certain part of the reducing agent which is supplied at the top of the furnace, because the amount of produced silicon monoxide is insufficient for complete conversion of all the carbonaceous reducing agent to silicon carbide at the top of the furnace, and in its upper end is limited by the highest value permitting constant reduction of the silicon oxide raw material to silicon monoxide and silicon di- retcly with silicon carbide, because the amount of produced silicon monoxide is sufficient for conversion of the carbonaceous reducing agent to silicon carbide at the top of the furnace, and that a sufficient content of reducing agent is maintained in the lower, hotter, parts of the furnace so that reduction to some extent can take place directly with the reducing agent.

40 A MASTER ALLOY FOR PRODUCING SINTER HARDENED STEEL PARTS AND PROCESS FOR THE PRODUCTION OF SINTER HARDENED PARTS EP11741804.6 2011-02-15 EP2536862A1 2012-12-26 L'ESPERANCE, Gilles; BAILON-POUJOL, Ian; CHRISTOPHERSON ,Denis,Jr
A master alloy used to produce the steel part and a process for producing a sinter hardened steel part from the master alloy are described. The powdered master alloy having a composition of iron, about 1 to less than 5 weight% C, about 3 to less than 15 weight% Mn, and about 3 to less than 15 weight% Cr, wherein the master alloy comprises a microstructure composed of a solid solution of the alloying elements and carbon, the microstructure comprising at least 10 volume% austenite and the remainder as iron compounds. The process comprises: preparing the master alloy, mixing the master alloy with a steel powder to produce a mixture wherein the weight% of the master alloy is from 5 to 35 weight% of the mixture, compacting the mixture into a shape of a part and sintering the mixture to produce the steel part, and controlling the cooling rate after sintering to produce sinter hardening. The master alloy powder can also be used as a sinter hardening enhancer when mixed with low -alloy steel powders.
QQ群二维码
意见反馈