首页 / 专利库 / 物理 / 磁性 / 亚铁磁性 / 氧化铁磁性纳米粒子、其制备方法及其用于脱硫的方法

磁性纳米粒子、其制备方法及其用于脱硫的方法

阅读:956发布:2020-05-19

专利汇可以提供磁性纳米粒子、其制备方法及其用于脱硫的方法专利检索,专利查询,专利分析的服务。并且本 发明 提供了一种制备 氧 化 铁 磁性 纳米粒子 的方法,所述方法包括如下步骤:i)将 水 溶性亚铁盐和 水溶性 铁盐按摩尔比1∶2在 碱 性和 柠檬酸 盐存在下反应,生成以柠檬酸盐包覆在其表面的氧化铁粒子(c-MNPs);ii)使步骤i)获得的c-MNPs与含有嗜硫元素的化合物进行反应,制备结合嗜硫元素的以柠檬酸盐包覆在其表面的氧化铁粒子(嗜硫元素-MNPs);以及iii)用 表面活性剂 修饰步骤ii)获得的嗜硫元素-MNPs,将嗜硫元素-MNPs从水相转移到有机相中。本发明还涉及由上述方法制备的氧化 铁磁性 纳米粒子以及使用该氧化铁磁性纳米粒子 脱硫 的方法。利用本发明的氧化铁磁性纳米粒子有效地实现了深度脱硫效果。,下面是磁性纳米粒子、其制备方法及其用于脱硫的方法专利的具体信息内容。

1.一种制备磁性纳米粒子的方法,其特征在于,所述方法包括如下步骤:
i)将溶性亚铁盐和水溶性铁盐按摩尔比1:2在性和柠檬酸盐存在下反应,生成以柠檬酸盐包覆在其表面的氧化铁粒子(c-MNPs);
ii)使步骤i)获得的c-MNPs与含有嗜硫元素的化合物进行反应,制备结合嗜硫元素的以柠檬酸盐包覆在其表面的氧化铁粒子(嗜硫元素-c-MNPs);以及
iii)用表面活性剂修饰步骤ii)获得的嗜硫元素-c-MNPs,将嗜硫元素-c-MNPs从水相转移到有机相中;
其中所述嗜硫元素是,所述含有嗜硫元素的化合物是亚铜盐,所述表面活性剂是十六烷基三甲基铵盐(CTAB),由此得到CTAB修饰的Cu-c-MNPs(CTAB-Cu-c-MNPs)。
2.如权利要求1所述的方法,其特征在于,所述水溶性亚铁盐是氯化亚铁,所述水溶性铁盐是三氯化铁,以及所述柠檬酸盐是柠檬酸钠。
3.如权利要求2所述的方法,其特征在于,所述氯化亚铁的浓度范围是0.04M至
1.00M,所述三氯化铁的浓度范围是0.08M至2.00M,以及所述柠檬酸钠的浓度范围是0.20M至1.00M。
4.如权利要求1所述的方法,其特征在于,所述亚铜盐是氯化亚铜。
-3
5.如权利要求4所述的方法,其特征在于,所述氯化亚铜的浓度范围是6×10 M至
0.25M。
6.如权利要求1所述的方法,其特征在于,所述CTAB的浓度范围是0.08M至0.200M。
7.如权利要求1至6中任一项所述的方法,其特征在于,所述氧化铁磁性纳米粒子的平均粒径制成1-1.4μm。
8.一种如权利要求1至7中任一项方法中制备的氧化铁磁性纳米粒子。
9.一种从物质中除去含硫化合物的方法,其特征在于,所述方法包括:使如权利要求1至7中任一项方法中制备的氧化铁磁性纳米粒子与所述含有含硫化合物的物质在适合吸附至少一部分含硫化合物的条件下接触
10.如权利要求9所述的方法,其特征在于,所述含硫化合物是噻吩类化合物。
11.如权利要求10所述的方法,其特征在于,所述噻吩类化合物包括噻吩、苯并噻吩、二苯并噻吩、4,6-二甲基二苯并噻吩以及在4-和/或6-位上具有一或二个烷基的噻吩类化合物。
12.如权利要求9或10所述的方法,其特征在于,所述方法还包括通过施加梯度磁场将吸附后的所述氧化铁磁性纳米粒子从所述物质分离出来。
13.如权利要求12所述的方法,其特征在于,所述方法还包括将分离出来的所述氧化铁磁性纳米粒子用酸溶液处理,使所述氧化铁磁性纳米粒子再生。
14.如权利要求13所述的方法,其特征在于,所述酸溶液的pH值为1至6。
15.如权利要求13所述的方法,其特征在于,所述方法还包括对所述再生的氧化铁磁性纳米粒子施加磁场,使其分离出来并用水洗涤,回收得到可循环再用的氧化铁磁性纳米粒子。
16.如权利要求9或10所述的方法,其特征在于,所述氧化铁磁性纳米粒子的用量为5至10g/每升含有含硫化合物的物质。
17.如权利要求9或10所述的方法,其特征在于,在100rpm速率和40-60℃下,所述氧化铁磁性纳米粒子与所述含有含硫化合物的物质搅拌15-25分钟。
18.如权利要求9或10所述的方法,其特征在于,所述含有含硫化合物的物质是汽油、柴油、润滑油或其他燃料油。

说明书全文

磁性纳米粒子、其制备方法及其用于脱硫的方法

技术领域

[0001] 本发明涉及脱硫净化技术领域,更具体地说,本发明涉及一种制备氧化铁磁性纳米粒子的方法,该氧化铁磁性纳米粒子作为脱硫吸附剂能够实现有效地深度脱硫。

背景技术

[0002] 大气污染一直是各国政府需要解决的难题,尤其是空气中的含硫化合物(例如SOx)是影响人类健康的有害气体,因此各国政府或国际组织都制订了含硫化合物的排放标准和/或措施,以控制含硫化合物的排放。工业生产中使用的汽油、柴油以及作为汽车燃料的汽油、柴油等含有硫的化合物,在燃烧时会产生二氧化硫等气体,这是产生含硫化合物的最大污染源。所以石油提炼工业一般都有一道脱硫工艺以降低其硫的含量。
[0003] 众所周知,汽油和柴油通常含有300至500ppmw的含硫化合物,在燃烧时会产生对汽车发动机、人们的健康以及环境有害的硫化物,所以低硫汽车燃料近年逐渐受到重视。其中一种脱硫技术是加氢脱硫方法,它能够有效地除去某些含硫化合物,如硫醇和硫化物等。虽然加氢脱硫方法能够降低汽油和柴油中一部分含硫量,但该方法仍有一定的局限性,例如不能除去噻吩类化合物,如在4-和/或6-位上具有一或多个烷基的烷基二苯并噻吩(DBTs),即无法进行深度脱硫。此外,加氢脱硫方法要求在高温高压下进行,例如,温度
320℃至380℃,压为3-7Mpa,因此需要消耗大量的能源,并且需要制作耐高温高压的设备,故设备成本昂贵。
[0004] 另一种脱硫技术是使用嗜硫吸附剂,例如还原性金属、金属氧化物、负载金属的沸石基材料、活性氧和含材料等等。但是这些吸附剂的孔隙率和比表面积较低,导致它们吸附硫的能力不高,这一主要缺陷限制了它们的应用。
[0005] 纳米技术近年来已在许多领域得到了应用。纳米材料由于具有表面效应、体积效应和量子尺寸效应,因此表现出许多奇异的物理和化学特性。其中磁性纳米粒子(magnetic nanoparticles,MNPs)通过表面共聚和表面修饰的方法,能够与有机物、聚合物或无机材料相结合形成核壳结构的复合微球,它的核具有磁性,壳结构具有表面活性基团,能与各种有机和无机分子偶联。在外加磁场的作用下,磁性纳米粒子能够很方便地和底液分离,操作简便,成本低,分离效率高。此外,磁性微球具有大的比表面积,因此具有吸附容量大,速度快等优点,在物质的分离、吸附和净化等方面显示了很好的应用前景。
[0006] 中国专利申请号200510019060.9公开了一种Fe3O4/Au核壳结构磁性纳米颗粒及其制备方法,其中所述制备方法包括向FeCl2和FeCl3的混合溶液中加入和柠檬钠混合液,控制氧化铁纳米颗粒的生长,然后再加入柠檬酸钠溶液和HAuCl4溶液,在Fe3O4纳米颗粒上生长Au壳层,从而形成Fe3O4/Au核壳结构磁性纳米颗粒。该纳米颗粒可应用在生物与医学领域。
[0007] 国际专利申请号WO 01/78506A1公开了一种氧化物纳米吸附剂及其制备方法,所述氧化物纳米吸附剂可以破坏生物试剂如毒素。其中氧化物可以为MgO、CaO、TiO2、ZrO2、FeO、Fe2O3、NiO、CuO、Al2O3、ZnO、Mn2O3、V2O3、V2O5及其混合物。该专利申请公开的氧化物纳米颗粒表面可以用与其不同的第二种金属氧化物进行表面改性。
[0008] 目前,为了有效地减少含硫化合物对工业生产和环境的破坏以及保障人们的身体健康,研究人员对含有含硫化合物的物质的脱硫进行了大量的研究工作,尤其对于作为汽车燃料的汽油和柴油的深度脱硫(除去噻吩类化合物)作了多方面的尝试。现有一些噻吩类化合物化合物吸附剂被尝试用来作深度脱硫,但它们的比表面积低,限制了其负载能力,因此它们的脱硫性能不高。
[0009] 虽然磁性纳米粒子的设计与制造正越来越受到关注,在磁性分离、磁性探针、生物医学等诸多领域得到应用,但是现有技术中还未发现磁性纳米粒子应用在深度脱硫中。

发明内容

[0010] 本发明的一个目的是提供一种制备氧化铁磁性纳米粒子的方法,利用该方法获得的磁性纳米粒子可以选择性地除去诸如噻吩类化合物的含硫化合物。
[0011] 本发明的另一个目的是提供一种氧化铁磁性纳米粒子,不仅能有效地除去诸如噻吩类化合物的含硫化合物,而且操作简单,成本低,能耗少。
[0012] 为实现上述目的,本发明的第一方面提供了一种制备氧化铁磁性纳米粒子的方法,所述方法包括如下步骤:
[0013] i)将水溶性亚铁盐和水溶性铁盐按摩尔比1∶2在性和柠檬酸盐存在下反应,生成以柠檬酸盐包覆在其表面的氧化铁粒子(c-MNPs),例如三氧化二铁粒子;
[0014] ii)使步骤i)获得的c-MNPs与含有嗜硫元素的化合物进行反应,制备结合嗜硫元素的以柠檬酸盐包覆在其表面的氧化铁粒子(嗜硫元素-c-MNPs);以及
[0015] iii)用表面活性剂修饰步骤ii)获得的嗜硫元素-c-MNPs,将嗜硫元素-c-MNPs从水相转移到有机相中。
[0016] 根据本发明一优选实施例,所述水溶性亚铁盐是氯化亚铁,所述水溶性铁盐是三氯化铁,以及所述柠檬酸盐是柠檬酸钠。较佳地,所述氯化亚铁的浓度范围是0.04M至1.00M,所述三氯化铁的浓度范围是0.08M至2.00M,以及所述柠檬酸钠的浓度范围是0.20M至1.00M。
[0017] 根据本发明另一优选实施例,所述含有嗜硫元素的化合物是亚盐,例如氯化亚-3铜,较佳地,所述氯化亚铜的浓度范围是6×10 M至0.25M。
[0018] 优选地,所述表面活性剂是十六烷基三甲基铵盐(CTAB),得到CTAB修饰的嗜硫元素-c-MNPs(CTAB-嗜硫元素-c-MNPs),其中,所述CTAB的浓度范围较佳地是0.08M至0.200M。
[0019] 通过使用铁盐的类别及其浓度,本发明获得的氧化铁磁性纳米粒子的平均粒径为1-1.4μm。
[0020] 本发明的第二方面涉及一种根据本发明第一方面的方法制备的氧化铁磁性纳米粒子。
[0021] 本发明的第三方面提供一种从物质中除去含硫化合物的方法,所述方法包括:使根据本发明的方法制备的氧化铁磁性纳米粒子与所述含有含硫化合物的物质在适合吸附至少一部分含硫化合物尤其噻吩类化合物的条件下接触
[0022] 上述除去含硫化合物的方法还可以包括以下步骤:通过施加梯度磁场将吸附后的所述氧化铁磁性纳米粒子从所述含硫物质分离出来;将分离出来的所述氧化铁磁性纳米粒子用酸溶液处理,使所述氧化铁磁性纳米粒子再生,其中所述酸溶液的pH值可以是1至6;然后对所述再生的氧化铁磁性纳米粒子施加磁场,使其分离出来并用水洗涤,回收得到可循环再用的氧化铁磁性纳米粒子。
[0023] 根据本发明一实施例,所述氧化铁磁性纳米粒子的用量为5至10g/每升所述含有含硫化合物的物质。一般地,在100rpm速率和40-60℃下,所述氧化铁磁性纳米粒子与含有含硫化合物的物质搅拌15-25分钟,即可以使所述含硫化合物吸附在所述氧化铁磁性纳米粒子上。
[0024] 所述含有含硫化合物的物质可以是汽油、柴油、润滑油或其他燃料油。所述噻吩类化合物包括噻吩、苯并噻吩、二苯并噻吩、4,6-二甲基二苯并噻吩以及在4-和/或6-位上具有一或二个烷基的噻吩类化合物。
[0025] 与现有技术例如采用装填还原性金属、金属氧化物、负载金属的沸石基材料、活性氧化铝和含碳材料等等嗜硫吸附剂的固定床脱硫不同,本发明使用磁性纳米粒子作为硫的吸附剂,由于磁性纳米粒子的比表面积高,吸附能力强,这是其他任何嗜硫吸附剂所不能比拟的。本发明将纳米粒子的高比表面积、对硫有很强吸附作用的嗜硫元素例如铜、以及十六烷基三甲基铵盐(CTAB)能够能使纳米粒子易于分散在有机相中的性能这三者有机地结合起来,有效地实现了深度脱硫效果。已经发现,本发明的氧化铁磁性纳米粒子能够除去浓度为ppmw级的噻吩类化合物,脱硫效率极高。
[0026] 此外,本发明利用磁性纳米粒子通过磁场易于分离的特点,可使吸附后的纳米粒子再生,循环再用。

具体实施方式

[0027] 以下将以燃料油为例子详细对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
[0028] 众所周知,燃料油含有含硫化合物,燃烧时会产生含硫气体或硫化物,不但对车辆的发动机有害,而且影响人们的健康和污染环境。因此,为了减少含硫气体或硫化物的排放,最有效的方法是提供低硫燃料油甚至不含硫的燃料油,这样燃料油燃烧产生的气体无需经过脱硫处理就能达到排放标准。
[0029] 为此,人们在这一方面作出许多努力,但是有效地从燃料油中除去浓度为ppm级的含硫化合物仍然是一个难题。本发明提出了使用氧化铁磁性纳米粒子从燃料油中除去噻吩类化合物,从而实现燃料油的深度脱硫。
[0030] 在本发明一优选实施方式中,以FeCl2和FeCl3为起始原料,制备Y-Fe2O3磁性纳米粒子,然后在Y-Fe2O3纳米粒子的表面上包覆柠檬酸盐,形成Fe2O3-柠檬酸盐核-壳粒子(c-Fe2O3),其制备可用以下反应方程式表示:
[0031] FeCl2+2FeCl3·6H2O→Y-Fe2O3
[0032] Y-Fe2O3+Na3C6H5O7·2H2O→c-Fe2O3
[0033] 将经上述反应制备的在其表面上包覆柠檬酸盐的三氧化二铁磁性纳米粒子以c-MNPs表示。c-MNPs是本发明的脱硫吸附剂的核心,由于具有铁离子,因此在外加磁场的作用下,能够很方便地和燃料油分离,具有操作简便和分离效率高的优点。
[0034] 通过控制铁盐的浓度和类别,可以将纳米粒子的尺寸控制在所希望的数量级上,例如1至1.4μm,即1000至1400nm。
[0035] 使c-MNPs与嗜硫元素例如铜结合。将氯化亚铜与c-MNPs进行以下反应,使铜吸附在c-MNPs上,生成结合铜的c-MNPs(Cu-c-MNPs):
[0036] c-MNP+CuCl→Cu-c-MNPs
[0037] 由于铜对硫有很强的吸附作用,再加上纳米粒子的比表面积很大,因此结合了铜的纳米粒子Cu-c-MNPs能够有效地吸附硫,特别是噻吩类化合物,从而可获得深度脱硫效果。
[0038] Cu-c-MNPs是亲水分子,较难与有机化合物相互作用。为了使Cu-c-MNPs在有机相中具有高度分散性,与有机相发生相互作用,需要对Cu-c-MNPs作进一步修饰,例如通过相转移将Cu-c-MNPs从水相转移到有机相,使得Cu-c-MNPs能够在燃料油/有机相中发挥作用。例如,可以采用表面活性剂十六烷基三甲基溴化铵(CTAB)对Cu-c-MNPs进行表面修饰,得到CTAB修饰的Cu-c-MNPs(CTAB-Cu-c-MNPs):
[0039] Cu-c-MNP+CTAB→CTAB-Cu-c-MNP
[0040] CTAB的表面性能使得磁性纳米粒子易于分散在有机相中,能够更好地吸附燃料油中的含硫物质。已经发现,本发明的CTAB-Cu-c-MNPs对硫具有很高的吸附能力,经验证,每克CTAB-Cu-c-MNPs纳米粒子能够吸附8-40mg硫,大大高于现有脱硫剂的吸附能力(0-20mg硫/g脱硫剂)。
[0041] 实施例1表面上包覆柠檬酸盐的氧化铁磁性纳米粒子(c-MNPs)的制备
[0042] 分别制备20ml的0.04M氯化亚铁(FeCl2)溶液和20ml的0.08M三氯化铁(FeCl3)溶液,两种溶液分别高速搅拌约20分钟。搅拌后,将上述两种溶液加入到400ml的0.60M氨水溶液(NH4OH)中,混合物常温下搅拌约60分钟,再于搅拌下加热回流约60分钟。让混合物常温下冷却后,用离心方法(6000rpm转速,约20分钟)将上层剩余未反应的杂质除去,加入400ml清水洗涤沉淀物。重覆三次离心分离过程,得到400ml的纯化氧化铁磁性纳米粒子(MNPs)溶液。
[0043] 将250ml的4.0M硝酸溶液加入到MNPs溶液中,常速搅拌约20分钟,再用离心方法(6000rpm转速,约20分钟)提取MNPs。将MNPs加入到400ml清水中,并加热回流。在加热回流的过程中,加入100ml的1.0M柠檬酸钠(sodium citrate),再加热回流多1小时。让混合物于常温下冷却后再进行超滤,将剩余未反应的柠檬酸钠从反应溶液中去除,直至滤液导电率与清水相同,得到纯化的表面上包覆柠檬酸盐的氧化铁磁性纳米粒子(c-MNPs)。
[0044] 实施例2结合铜的c-MNPs(Cu-c-MNPs)的制备
[0045] 制备144ml的0.233M氯化亚铜(CuCl)溶液。向该溶液中加入适量实施例1制得的c-MNPs并使c-MNPs配成浓度为0.4%。将混合物于常温、200rpm转速和氮气气氛下搅拌10分钟。在反应烧瓶的底部放置磁石约15分钟,以将Cu-c-MNPs吸附在反应烧瓶的底部。去除上层液体,加入144ml的0.1M盐酸(HCl)溶液,并常速搅拌约20分钟,重覆3次上述磁化分离过程。
[0046] 类似地,用清水代替盐酸,用磁化分离过程去除溶液中的盐酸。将得到的Cu-c-MNPs有效地分散于清水中。
[0047] 实施例3CTAB修饰的Cu-c-MNPs(CTAB-Cu-c-MNPs)的制备
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈