首页 / 专利库 / 纳米技术 / 纳米材料 / 有机纳米材料 / 纳米管 / 碳纳米管 / 多壁碳纳米管 / 用于大量生产多壁碳纳米管的催化剂

用于大量生产多壁纳米管的催化剂

阅读:950发布:2020-05-13

专利汇可以提供用于大量生产多壁纳米管的催化剂专利检索,专利查询,专利分析的服务。并且本 发明 的一 实施例 提供一种用于制备多壁 碳 纳米管 的催化剂,其特征在于,包括基于如下公式的金属成分,并且具有厚度为0.5~10μm的中空结构: Ma:Mb=x:y,其中,在所述公式中,Ma为选自Fe、Ni、Co、Mn、Cr、Mo、V、W、Sn及Cu中的两种以上的金属,Mb为选自Mg、Al、Si及Zr中的一种以上的金属,x和y分别表示Ma和Mb的摩尔分数,并且x+y=10,2.0≤x≤7.5,2.5≤y≤8.0。,下面是用于大量生产多壁纳米管的催化剂专利的具体信息内容。

1.一种用于制备多壁纳米管的催化剂,其特征在于,包括:
基于如下公式金属成分,并且具有厚度为0.5至10μm的中空结构:
<公式>
Ma:Mb=x:y
其中,在所述公式中,Ma为选自Fe、Ni、Co、Mn、Cr、Mo、V、W、Sn及Cu中的两种以上的金属,Mb为选自Mg、Al、Si及Zr中的一种以上的金属,x和y分别表示Ma和Mb的摩尔分数,并且x+y=
10,2.0≤x≤7.5,2.5≤y≤8.0。
2.根据权利要求1所述的用于制备多壁碳纳米管的催化剂,其特征在于,所述催化剂的表观密度为0.05~0.70g/mL。
3.根据权利要求1所述的用于制备多壁碳纳米管的催化剂,其特征在于,所述厚度为1~8μm。
4.根据权利要求1所述的用于制备多壁碳纳米管的催化剂,其特征在于,所述中空结构的中空比率为50体积%以上。
5.一种碳纳米管集合体,其特征在于,包括束状碳纳米管,所述束状碳纳米管由在根据权利要求1至4中任意一项所述的用于制备多壁碳纳米管的催化剂上生长的多个多壁碳纳米管构成。
6.根据权利要求5所述的碳纳米管集合体,其特征在于,
所述束状碳纳米管的平均束直径为0.5~20μm,且所述束状碳纳米管的平均束长度为
10~200μm。
7.根据权利要求5所述的碳纳米管集合体,其特征在于,
所述多壁碳纳米管的拉曼光谱强度比为0.7~1.5。
8.根据权利要求5所述的碳纳米管集合体,其特征在于,
所述多壁碳纳米管的平均直径为5~50nm。
9.根据权利要求5所述的碳纳米管集合体,其特征在于,
所述多壁碳纳米管的表观密度为0.01~0.07g/mL。

说明书全文

用于大量生产多壁纳米管的催化剂

技术领域

[0001] 本发明涉及一种用于大量生产多壁碳纳米管的催化剂。

背景技术

[0002] 碳纳米管(carbon nanotube)是具有一个碳原子与三个其他碳原子键合的六边形蜂窝状的管形结构的材料,其电性能、热性能和机械性能优于其他材料,因此应用于各种产业领域。
[0003] 通常,这种碳纳米管通过如电弧放电法(arc-discharge)、热解法(pyrolysis)、激光蒸发法(laser vaporization)、化学气相沉积法(chemical vapor deposition)、等离子体化学气相沉积法(plasma chemical vapor deposition)、热化学气相沉积法(thermal chemical vapor deposition)、气相合成法(chemical vapor condensation)等的各种方法制备。
[0004] 迄今为止,已经开发出具有各种金属成分的组合和物理性质的用于制备碳纳米管的催化剂,但它们中的大多数是基于生产率低且所合成的碳纳米管的均匀性低的固定床化学气相沉积反应器开发的,因此存在不适合有利于大量生产和均匀的碳纳米管制备的流化床化学气相沉积反应器的问题。
[0005] 并且,催化剂的制备方法是喷雾干燥(spray dry)法,其在200~350℃的低温下进行,且为了在催化剂内部形成孔,必须使用溶性聚合物作为成孔剂,而且,为了将催化剂形成为适合合成的形态,需要在350~1100℃下经过单独的烧制过程,因此,通过喷雾干燥法制备的催化剂由于其高表观密度而具有不适合流化床反应器的问题。

发明内容

[0006] 技术问题
[0007] 本发明是为了解决上述现有技术的问题而提出的,本发明的目的在于提供适合于使用流化床反应器的多壁碳纳米管的制备工序的催化剂。
[0008] 解决问题的方案
[0009] 本发明的一个方面提供一种用于制备多壁碳纳米管的催化剂,其特征在于,包括基于如下公式的金属成分,并且具有厚度为0.5~10μm的中空结构:
[0010] <公式>
[0011] Ma:Mb=x:y
[0012] 其中,在所述公式中,Ma为选自Fe、Ni、Co、Mn、Cr、Mo、V、W、Sn及Cu中的两种以上的金属,Mb为选自Mg、Al、Si及Zr中的一种以上的金属,x和y分别表示Ma和Mb的摩尔分数,x+y=10,2.0≤x≤7.5,2.5≤y≤8.0。
[0013] 在一实施例中,上述催化剂的表观密度可以为0.05~0.70g/mL。
[0014] 在一实施例中,上述厚度可以为1~8μm。
[0015] 在一实施例中,上述中空结构的中空比率可以为50体积%以上。
[0016] 本发明的另一方面提供一种碳纳米管集合体,其特征在于,包括束状碳纳米管,上述束状碳纳米管由在上述用于制备多壁碳纳米管的催化剂上生长的多个多壁碳纳米管构成。
[0017] 在一实施例中,上述束状碳纳米管的平均束直径(bundle diameter)可以为0.5~20μm,且上述束状碳纳米管的平均束长度(bundle length)可以为10~200μm。
[0018] 在一实施例中,上述多壁碳纳米管的拉曼光谱强度比(IG/ID)可以为0.7~1.5。
[0019] 在一实施例中,上述多壁碳纳米管的平均直径可以为5~50nm。
[0020] 在一实施例中,上述多壁碳纳米管的表观密度可以为0.01~0.07g/mL。
[0021] 发明的效果
[0022] 根据本发明的一方面,可以在不使用单独的载体的状态下喷雾热解溶解有所有金属催化剂成分的催化剂水溶液来制备具有中空结构即核-壳结构的球形或部分破碎的球形的催化剂,通过将构成上述中空结构的壳的厚度、中空比率和催化剂的密度控制在一定范围内来使催化剂的组成和结构对流化床反应器最优化,从而可以大量生产多壁碳纳米管。
[0023] 本发明的效果并非限定于所述效果,应当理解,包括从本发明的详细的说明或权利要求书中记载的发明的结构中推论出的所有效果。附图说明
[0024] 图1为本发明的一实施例的用于制备多壁碳纳米管的催化剂的SEM图像。
[0025] 图2为本发明的一比较例的用于制备多壁碳纳米管的催化剂的SEM图像。

具体实施方式

[0026] 下面,参照附图对本发明进行详细说明。但本发明可以以许多不同的形式实施,因此不限于在此描述的实施例。在图中,为了明确说明本发明而省略了与说明无关的部分,在说明书全文中,对于相同或类似的结构要素,标注了相同的附图标记。
[0027] 在整个说明书中,某一部分与另一部分相“连接”时,不仅包括“直接连接”的情况,还包括在中间具备其他元件“间接连接”的情况。并且,本文中使用的术语“包括”、“包含”等意味着,在没有特别相反的记载时,并不排除其他构成要素,而进一步包括其他的构成要素。
[0028] 本发明的一个方面提供一种用于制备多壁碳纳米管的催化剂,其特征在于,包括基于如下公式式的金属成分,并且具有厚度为0.5~10μm的中空结构:
[0029] <公式>
[0030] Ma:Mb=x:y
[0031] 在上述公式中,Ma为选自Fe、Ni、Co、Mn、Cr、Mo、V、W、Sn及Cu中的两种以上的金属,Mb为选自Mg、Al、Si及Zr中的一种以上的金属,x和y分别表示Ma和Mb的摩尔分数,x+y=10,2.0≤x≤7.5,2.5≤y≤8.0。
[0032] 上述催化剂可以用于合成碳纳米管的气相合成法,上述Ma为选自Fe、Ni、Co、Mn、Cr、Mo、V、W、Sn及Cu中的两种以上的金属,上述Mb为选自Mg、Al、Si及Zr中的一种以上的金属,因此,上述催化剂可以包括至少三种以上的金属,优选地,三种至五种的金属成分。
[0033] 尤其,上述Ma是上述催化剂中的催化剂成分和活性成分,并且与使用单一金属成分作为上述催化剂成分和活性成分的情况相比,通过将两种或更多种金属成分混合使用来在碳纳米管的合成过程中抑制产生杂质,从而可以提高纯度。
[0034] 在本说明书中使用的术语“催化剂成分”是指从根本上降低物质的化学反应能的物质即主催化剂,“活性成分”是指辅助上述催化剂成分作用的物质即促进剂。当上述催化剂成分和活性成分在一定范围内形成均匀分布时,可以提高碳纳米管的合成产率。
[0035] 上述Ma和Mb的摩尔分数x和y可分别满足2.0≤x≤7.5和2.5≤y≤8.0的关系。当上述x小于2.0时,催化剂的活性和据此的碳纳米管的合成产率可能降低。当上述x大于7.5时,作为载体成分的Mb的含量相对较低,导致催化剂的耐久性降低,因此存在难以应用于用于大量生产碳纳米管的连续流化床化学气相沉积方法的问题。
[0036] 上述催化剂可以具有厚度为0.5~10μm的中空结构,优选地,厚度为1~8μm的中空结构,上述中空比率可以为50体积%以上。并且,上述催化剂的表观密度可以为0.05~0.70g/mL。
[0037] 在本说明书中使用的术语“中空结构”是指内部为空的立体结构,例如,内部为空的球形或多面体结构,上述中空结构可被解释为包括所有中空都封闭的封闭结构(closed structure)、中空中一部分开放的开放结构(open structure)或其组合。
[0038] 在内部填满的现有球形催化剂的情况下,表观密度高于约0.7g/mL,因此难以应用于用于大量生产碳纳米管的连续流化床化学气相沉积方法,且碳纳米管仅在催化剂的外表面上生长,因此难以将产率提高到一定水平以上。
[0039] 对此,上述催化剂具有中空结构,与现有催化剂相比,表观密度较低,因此可以应用于连续流化床化学气相沉积方法,且碳纳米管不仅可以从上述中空结构的外表面向外侧方向生长,还可以从上述中空结构的内表面向内侧方向生长,因此可以显著改善碳纳米管的合成产率。
[0040] 本发明的另一方面提供一种用于制备多壁碳纳米管的催化剂的制备方法,该方法包括:步骤(a),将金属前体溶解在溶剂中以制备前体溶液;及步骤(b),将上述前体溶喷射到反应器中并进行热解,以形成催化剂。
[0041] <公式1>
[0042] Ma:Mb=x:y
[0043] 在上述公式中,Ma为选自Fe、Ni、Co、Mn、Cr、Mo、V、W、Sn及Cu中的两种以上的金属,Mb为选自Mg、Al、Si及Zr中的一种以上的金属,x和y分别表示Ma和Mb的摩尔分数,x+y=10,2.0≤x≤7.5,2.5≤y≤8.0。
[0044] 在上述步骤(a)中,可以制备构成上述催化剂的每种金属元素的前体溶液。上述金属前体可以是选自由硝酸盐、硫酸盐、醇盐、氯化物、乙酸盐、碳酸盐及其两种或更多种的混合物组成的组中的一种,但不限于此。
[0045] 在上述步骤(a)中,上述溶剂可以是极性溶剂。上述极性溶剂的实例包括水、甲醇、乙醇、丙醇、异丙醇、丁醇或其两种或更多种的混合溶剂,优选地,可以使用水,更优选地,可以使用去离子水。
[0046] 当溶解每种前体以制备上述前体溶液时,通过使用去离子水作为溶剂来可以使前体溶液中的杂质最小化,从而提高最终制备的催化剂的纯度。提高上述催化剂的纯度可以意味着提高碳纳米管的纯度。
[0047] 在上述步骤(b)中,可以将上述前体溶液喷射到反应器中并进行热解,以形成催化剂。上述步骤(b)可以包括:步骤(i),通过供应2~5atm的空气作为载气并引入外部空气,以将前体溶液喷射到反应器中;及步骤(ii),在600~1,200℃下热解所喷涂的上述前体溶液,以形成催化剂。
[0048] 在上述步骤(i)中,可以将上述前体溶液喷雾到反应器中并转化成更细的液滴(droplet),以控制催化剂的粒径,表观密度等。
[0049] 当喷雾上述前体溶液时,可以将压调节在2~5atm的范围内。若上述喷涂压力小于2atm,则无法将催化剂的粒径和表观密度等控制在预定范围内,从而通过其合成的碳纳米管的纯度会降低。另一方面,若上述喷雾压力大于5atm,则液滴的粒度过小,由此获得的催化剂可能彼此凝聚。
[0050] 当克服上述前体溶液的表面张力且将惯性力(inertia force)有效地转移到溶液中时,可以更精确地控制液滴尺寸,由此,可以精确地控制催化剂的粒径、表观密度等。
[0051] 由此,可以在喷雾上述前体溶液的同时喷射气体来形成液滴,或者也可以在喷雾上述前体溶液之后喷射气体来形成液滴。
[0052] 然而,当依次进行前体溶液和气体的喷雾时,可以更精确地控制液滴的尺寸,因此,上述催化剂的制备方法可以在上述步骤(ii)之前进一步包括将气体喷雾到上述反应器内部的步骤。
[0053] 此时,上述气体的实例可以为空气、氮气、氩气或其两种或更多种的混合气体,优选可以为空气。另外,可以向上述气体喷雾添加静电吸引力,以提高形成上述液滴的效率。
[0054] 在喷雾上述前体溶液后进一步喷射气体的情况下,与同时喷雾的情况相同地,可以将喷射气体的压力调节在2~5atm的范围内,在上述压力超出上述范围时的影响如上面所述。
[0055] 在步骤(ii)中,通过加热上述液滴以蒸发溶剂并分解前体来最终制备催化剂。此时,上述反应器的温度可以是600~1200℃,优选地,可以是700~900℃。
[0056] 当上述反应器的温度低于600℃时,催化剂的干燥状态差,需要额外的工艺,因此在经济方面是不利的,且通过该方法制备的碳纳米管的纯度或物理性质会劣化。另外,若上述反应器的温度超过1200℃,则导致装置或设备的构建成本过高,造成经济损失,而且由于形成固溶体晶体结构变形,催化剂的性能也会降低。
[0057] 本发明的另一方面提供一种碳纳米管集合体,其特征在于,包括束状碳纳米管,上述束状碳纳米管由在上述用于制备碳纳米管的催化剂上生长的多个多壁碳纳米管构成。
[0058] 上述束状碳纳米管可以基本上以多个碳纳米管相互凝聚的形式存在,优选地,以多个多壁碳纳米管相互凝聚的形式存在。每个多壁碳纳米管及其聚集体可以呈直线形、曲线形或其混合形式。
[0059] 上述束状碳纳米管的平均束直径(bundle diameter)可以为0.5~20μm,上述束状碳纳米管的平均束长度(bundle length)可以为10~200μm。并且,上述多壁碳纳米管的拉曼光谱强度比(IG/ID)可以为0.7~1.5,上述多壁碳纳米管的平均直径可以为5~50nm,上述多壁碳纳米管的表观密度可以为0.01~0.07g/mL。
[0060] 下面,对本发明的实施例进行详细说明。
[0061] 实施例和比较例
[0062] 在Fe(NO3)3.9H2O,Co(NO3)3.6H2O,(NH4)6Mo7O24.4H2O,NH4VO3,(NH4)10H2(W2O7)6.9H2O,Al(NO3)3,9H2O,Mg(NO3)2.6H2O及ZrO(NO3)2.2H2O中,将下表1中的催化剂组成所需的各个前体溶解在去离子水中,以制备前体溶液。通过将每小时3L的上述前体溶液和空气喷射到反应器中以进行热解,从而获得催化剂粉末。此时,在热解条件中,空气压力为3atm,反应器内部温度为750℃,且连续运行120分钟。
[0063] 【表1】
[0064]
[0065]
[0066]
[0067] 比较例5的催化剂的成分和组成与实施例5的催化剂的成分和组成相同,但催化剂是通过喷雾干燥制备的,其催化剂的制备方法不同于实施例5的催化剂的制备方法。具体而言,在比较例5的情况下,将前体溶液喷雾在与实施例5的喷雾热解方法相比相对很低的200℃的温度下的反应器中来制备催化剂粉末,然后在700℃下的、在空气气氛中的热处理炉中进行热处理1小时,从而制备出内部填满的球形催化剂粉末。比较例6、7的催化剂分别通过共沉淀法和燃烧法制备,并且它们各自具有如图2所示的板状。比较例8的催化剂是在催化剂成分中使用完全不溶于水中的(Al2O3)粉末作为Al的前体来制备的催化剂。
[0068] 图1和图2分别为根据实施例和比较例的用于制备多壁碳纳米管的催化剂的SEM图像。
[0069] 首先,参照图1,可知实施例1的所有催化剂粉末具有核-壳结构的球形或部分破碎的球形,尤其,在部分破碎的球形的情况下,都以在中空结构的表面中50%以上的区域上形成有由金属成分构成的壳的薄片存在。
[0070] 与此相反,参照图2,比较例6、7的催化剂粉末的形状与实施例1相比非常不均匀,没有观察到具有核-壳结构的完整球形的催化剂粉末,而且发现薄片的形状是平板状或具有一定曲率的弯面状,因此可知实际上不具有中空结构。
[0071] 实验例
[0072] 使用根据上述实施例和比较例的催化剂粉末来合成碳纳米管。具体而言,将各个催化剂粉末投入到直径为350mm的流化床化学气相沉积反应器中,并在氮气氛中将温度升高到700~800℃并保持温度。之后,以每分钟150L的速率供应氮气和乙烯的混合气体来进行反应40分钟,以合成在各个催化剂粉末上生长的碳纳米管。
[0073] 上述催化剂粉末的表观密度是通过在量筒中填充催化剂粉末并测量重量,然后将测量的重量除以量筒的体积而获得的。以相同的方式测量碳纳米管的表观密度。另外,根据式“[合成的碳纳米管的重量(g)]/[注入的催化剂粉末的重量(g)]*100”计算碳纳米管的合成产率。测量结果如下表2所示。
[0074] 【表2】
[0075]
[0076]
[0077] 参照上表2,当使用实施例1至10的催化剂来通过流化床化学气相沉积反应器合成碳纳米管时,可以获得1200%或更高的高合成产率,因此,可以确认适合于碳纳米管的大量生产。然而,当使用比较例的催化剂时,碳纳米管的合成产率低于1000%,因此不适合于大量生产。从这些结果可以确认,比较例的催化剂不是适合于流化床化学气相沉积反应器的类型的催化剂。尤其,比较例4、5、6及8的催化剂的情况下,催化剂粉末的表观密度为0.70g/mL以上,因此存在通过用反应气体使催化剂粉末漂浮来合成碳纳米管的流化床化学气相沉积方法难以使催化剂漂浮的问题。
[0078] 上述的本发明的说明只是例示性的,只要是本发明所属技术领域的普通技术人员,就能理解在不变更本发明的技术思想或必要特征的情况下,也能轻易变形为其他具体形态。因此,以上所述的实施例在各方面仅是例示性的,但并不局限于此。例如,作为单一型进行说明的各结构部件也能分散进行实施,同样,使用分散的进行说明的结构部件也能以结合的形态进行实施。
[0079] 本发明的范围是通过所附权利要求书来表示,而并非通过上述详细的说明,而由权利要求书的意义、范围及其均等概念导出的所有变更或变形的形态应解释为包括在本发明的范围内。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈