首页 / 专利库 / 引擎 / 发动机 / 热机 / 内燃机 / 氨燃烧内燃机

燃烧内燃机

阅读:1031发布:2020-08-06

专利汇可以提供燃烧内燃机专利检索,专利查询,专利分析的服务。并且在 燃烧室 内使 氨 良好地燃烧。向燃烧室(5)内除了供给氨以外还供给在改性器(20)中改性了的改性气体。在改性器(20)的改性能 力 为预定的改性能力以下时,使氨比率相比于根据 内燃机 的运行状态而被预先设定的暖机完成后的氨比率增大,并从二次空气供给装置(37)向排气 净化 催化剂(19)上游的内燃机排气通路内供给二次空气。,下面是燃烧内燃机专利的具体信息内容。

1.一种燃烧内燃机,作为燃料使用氨,该氨燃烧内燃机具备将氨改性而生成含有氢的改性气体的改性器,除了氨以外还向燃烧室内供给改性气体,在内燃机排气通路内配置有排气净化催化剂,并且在该排气净化催化剂上游的内燃机排气通路内配置有二次空气供给装置,根据内燃机的运行状态预先设定了表示暖机完成后的供给氨量相对于总供给燃料量的比例的氨比率,在所述改性器的改性能为预定的改性能力以下时,使氨比率相比于根据内燃机的运行状态而被预先设定的暖机完成后所述氨比率增大,并且从所述二次空气供给装置向排气净化催化剂上游的内燃机排气通路内供给二次空气。
2.根据权利要求1所述的氨燃烧内燃机,暖机完成后的氨比率作为内燃机负荷和内燃机转速的函数而被预先设定。
3.根据权利要求1所述的氨燃烧内燃机,在所述改性器的改性能力为预定的改性能力以下时,使内燃机负荷增大,并使氨供给量增大。
4.根据权利要求1所述的氨燃烧内燃机,在所述改性器的改性能力为预定的改性能力以下时,使空燃比为浓。
5.根据权利要求1所述的氨燃烧内燃机,在所述改性器的改性能力变为预定的改性能力以上时,使空燃比为稀并且向排气净化催化剂上游的内燃机排气通路内供给辅助燃料直到排气净化催化剂活化为止。
6.根据权利要求1所述的氨燃烧内燃机,在所述改性器的改性能力变为预定的改性能力以上时,向排气净化催化剂上游的内燃机排气通路内供给二次空气和辅助燃料直到排气净化催化剂活化为止。
7.根据权利要求1所述的氨燃烧内燃机,检测从燃烧室排出的排气中的氨浓度,在该氨浓度超过预定的容许浓度时,向内燃机排气通路内供给二次空气。
8.根据权利要求1所述的氨燃烧内燃机,在排气净化催化剂的温度超过预定的极限温度时,使空燃比为浓并且向内燃机排气通路内供给二次空气。

说明书全文

燃烧内燃机

技术领域

[0001] 本发明涉及氨燃烧内燃机。

背景技术

[0002] 自以往在内燃机中作为燃料主要使用化石燃料。可是该情况下当使燃料燃烧时会发生推进地球温室化的CO2。与此相对,当使氨燃烧时完全不产生CO2,因此作为燃料使用氨使得不产生CO2的内燃机是公知的(参照专利文献1)。
[0003] 可是,氨与化石燃料相比难以燃烧,因此在作为燃料使用氨的情况下,需要用于使氨容易燃烧的一些功夫。于是,在上述的内燃机中,通过利用排气热来对氨进行改性从而生成包含氢和氮的改性气体,并且使所生成的改性气体中的氢贮留于储氢合金中,向燃烧室内除了供给氨还供给贮留于储氢合金中的氢,由此即使是作为燃料使用氨的情况也能够容易地燃烧。
[0004] 现有技术文献
[0005] 专利文献
[0006] 专利文献1特开平5-332152号公报

发明内容

[0007] 可是,若使用储氢合金则不仅重量变重,还需要进行使储氢合金吸藏氢的控制和使所吸藏的氢从储氢合金释放的控制,因此用于处理氢的系统变得复杂,因此尽可能地不使用储氢合金是实情。可是若不使用储氢合金则如内燃机起动时那样改性器的温度低、因此改性器的改性能低时,不能够得到所需要的充分的氢,这样一来变得需要一些对策。
[0008] 因此,本发明为一种氨燃烧内燃机,作为燃料使用氨,该氨燃烧内燃机具备将氨改性而生成含有氢的改性气体的改性器,除了氨以外还向燃烧室内供给改性气体,在内燃机排气通路内配置有排气净化催化剂,并且在排气净化催化剂上游的内燃机排气通路内配置有二次空气供给装置,根据内燃机的运行状态预先设定了表示暖机(预热)完成后的供给氨量相对于总供给燃料量的比例的氨比率,在改性器的改性能力为预定的改性能力以下时,使氨比率相比于根据内燃机的运行状态而被预先设定的暖机完成后的氨比率增大,并且从二次空气供给装置向排气净化催化剂上游的内燃机排气通路内供给二次空气。
[0009] 改性器的改性能力为预定的改性能力以下时,使氨比率相比于根据内燃机的运行状态而被预先设定的暖机完成后的氨比率增大,即使是在改性器中未生成充分的氢的情况,也可得到良好的燃烧,此时从燃烧室排出的未燃氨增加,但该未燃氨被从二次空气供给装置供给的二次空气化。附图说明
[0010] 图1是内燃机的总体图。
[0011] 图2是表示氨比率RA的图。
[0012] 图3是表示氨比率RA等的变化的时间图。
[0013] 图4是用于进行运行控制的流程图
[0014] 图5是表示氨比率RA等的变化的时间图。
[0015] 图6是用于进行运行控制的流程图。
[0016] 图7是用于进行运行控制的流程图。
[0017] 图8是用于进行运行控制的流程图。

具体实施方式

[0018] 参照图1,1表示内燃机主体、2表示气缸体、3表示气缸盖、4表示活塞、5表示燃烧室、6表示配置于燃烧室5的顶面中央部,释放出等离子流的等离子流火花塞、7表示进气、8表示进气口、9表示排气阀、10表示排气口。进气口8经由进气支管11与平衡罐(surge tank)12连接,在各进气支管11上配置有用于朝向各自对应的进气口8内喷射气态氨的氨喷射阀13。
[0019] 平衡罐12经由进气导管14与空气滤清器15连接,在进气导管14内配置有由促动器驱动的节流阀(throttle valve)16和使用了例如热射线的吸入空气量检测器17。另一方面,排气口10经由排气歧管18与具有氧化功能的排气净化催化剂19连接。图1所示的实施例中,在该排气净化催化剂19下游的排气通路内配置有改性器20以及气化器21。
[0020] 气化器21经由氨流入管22与燃料罐23连接,在该氨流入管22内设置有在内燃机运行时开阀而在内燃机停止时闭阀的截止阀24以及调压阀25。燃料罐23内充满0.8MPa至1.0MPa程度的高压的液态氨,燃料罐23内的液态氨经由氨流入管22被供给到气化器21内。图1所示的实施例中,气化器21以由排气加热的方式形成,因此供给到气化器21内的液态氨在气化器21内被气化。
[0021] 在气化器21内气化的气态氨,经由氨流出管26被供给到氨气罐27。氨气罐27内的气态氨经由气态氨供给管28被供给到氨喷射阀13,气态氨从氨喷射阀13向对应的进气口8内喷射。
[0022] 另一方面,气化器21经由氨流出管29与改性器20连接,在该氨流出管29内直列地配置有在改性器20进行改性作用时开阀的改性器控制阀30和能够从气化器21只向改性器20流通的止回阀(逆止阀)31。当改性器控制阀30开阀,并且改性器20内的压力变得比气化器21内的压力低时,气化器21内的气态氨经由氨流出管29被供给到改性器20内。
[0023] 图1所示的实施例中,改性器20以由排气加热的方式形成,而且,该改性器20具备电加热器32。另外,在该改性器20内配置有用于促进氨改性作用的催化剂。在该改性器20中配置有用于检测改性器20内的温度的温度传感器33。
[0024] 当改性器20内的温度变为进行氨改性作用的温度以上、例如数百度时,从气化器21供给到改性器20内的氨分解成氢和氮(2NH3→N2+3H2)、即被改性。其结果,在改性器20内生成含有氢的改性气体。若氨分解成氢和氮则摩尔数变为2倍,而且也施加了由加热作用所致的改性气体的热膨胀,改性器20内的压力上升。该压力上升了的改性气体,经由改性气体供给管34被送入改性气体贮藏罐35内。
[0025] 如图1所示,在各进气支管11上配置有用于向各自对应的进气口8内喷射改性气体的改性气体喷射阀36,贮藏于改性气体贮藏罐35内的改性气体向改性气体喷射阀36供给。改性气体从各改性气体喷射阀36向各自对应的进气口8内喷射。
[0026] 如图1所示,在排气净化催化剂19上游的内燃机排气通路内、即排气歧管18内配置有二次空气供给装置37。该二次空气供给装置37,包括用于向排气歧管18内供给二次空气的二次空气供给阀38和用于向该二次空气供给阀38供给二次空气的空气39。而且在排气歧管18内配置有辅助燃料供给阀40,在图1所示的实施例中,改性气体贮藏罐35内的改性气体向辅助燃料供给阀40供给。另外,在排气歧管18内配置有用于检测从燃烧室5排出的排气中的氨浓度的氨浓度传感器41,在排气净化催化剂19上安装有用于检测排气净化催化剂19的温度的温度传感器42。
[0027] 电子控制单元50包含数字计算机,具备:由双向总线51相互连接的ROM(只读存储器)52、RAM(随机存取存储器)53、CPU(微处理器)54、输入端口55和输出端口56。吸入空气量检测器17的输出信号、氨浓度传感器41的输出信号以及各温度传感器33、42的输出信号,经由对应的AD转换器57输入到输入端口55。另外,产生与加速踏板60的踩踏量成比例的输出电压的负荷传感器61与加速踏板60连接,负荷传感器61的输出电压经由对应的AD转换器57输入到输入端口55。而且,曲轴每旋转例如30°就产生输出脉冲的曲轴转传感器62与输入端口55连接。另一方面,输出端口56与等离子流火花塞6的点火电路63连接,而且输出端口56经由对应的驱动电路58,与氨喷射阀13、节流阀16的驱动用促动器、截止阀24、调压阀25、改性器控制阀31、电加热器32、改性气体喷射阀36、二次空气供给阀38、空气泵39和辅助燃料供给阀40连接。
[0028] 图2表示暖机完成后的供给氨量相对于总供给燃料量的比例的氨比率RA(%)。图2中的各实线RA1、RA2、…RAi表示等氨比率线,随着从RA1朝向RAi,氨比率变大。再者,在图2中,纵轴L表示内燃机负荷,横轴N表示内燃机转速。
[0029] 氨与改性气体相比难以燃烧,因此为了在燃烧室5内使氨与改性气体的混合气体良好地着火而燃烧,点火时的混合气体温度越低则需要使氨比率越小。因此在本发明的实施例中,如图2所示,内燃机负荷L越降低,则使氨比率RA越降低,内燃机转速N越高,则使氨比率RA越降低。
[0030] 即,内燃机负荷L越降低,使节流阀16的开度越小,因此内燃机负荷L越降低,燃烧室5内的压缩端压力就越低。因此内燃机负荷L越降低,进行点火的压缩行程末期的燃烧室5内的混合气体的温度就越低,这样,如图2所示,当内燃机负荷L降低时,使氨比率RA降低。
[0031] 另一方面,内燃机转速N越高,越提前点火正时,因此内燃机转速N越高,进行点火时的燃烧室5内的压力越低。因此内燃机转速N越高,进行点火时的燃烧室5内的混合气体的温度越低,这样,如图2所示,当内燃机转速N变高时,使氨比率RA降低。在本发明的实施例中,该图2所示的氨比率RA,预先存储于ROM52内,在暖机完成后,作为氨比率,使用该存储的氨比率RA。
[0032] 接着,参照图3所示的时间图对本发明的运行控制的第1实施例进行说明。再者,图3示出从内燃机刚起动后开始的排气净化催化剂19的催化剂温度TC、改性器20的温度TB、向燃烧室5内供给的燃料的氨比率RA、燃烧室5内的空燃比A/F、从二次空气供给阀38供给的二次空气量Q以及从辅助燃料供给阀40供给的辅助燃料、即改性气体的供给量M的变化。再者,在图3中TCX表示排气净化催化剂19的活化温度。另外,在本发明中,判断改性器20是否变得具有预定的改性能力、例如改性器20是否变得具有可生成预定的量的氢的改性能力,在本发明的实施例中,在改性器20的温度TB超过图3所示的预定的设定温度TBX时,判断为改性器20变得具有预定的改性能力。
[0033] 那么,内燃机刚起动后,如图3所示,催化剂温度TC低,改性器20的温度TB也低。即,内燃机刚起动后,改性器20的改性能力为预定的改性能力以下,因此在改性器20中不能生成充分的量的氢。此时从改性气体喷射阀36喷射贮藏于改性气体贮藏罐35内的改性气体,但可贮藏于改性气体贮藏罐35内的改性气体量也存在限度。即,在内燃机刚起动后改性气体会不足。
[0034] 另一方面,由图2可知,可得到良好的燃烧的氨比率RA由内燃机的运行状态、即内燃机负荷L和内燃机转速N决定。可是,在改性气体不足时,即使使氨比率为由内燃机的运行状态确定的氨比率RA,也不能确保需要的改性气体量,因此不能够进行良好的燃烧。
[0035] 因此,在本发明中,在改性器20的改性能力为预定的改性能力以下时,使氨比率相比于图3中用虚线表示的根据内燃机的运行状态而被预定的暖机完成后的氨比率RA增大,即相比于图2的图所示的氨比率RA增大。当氨比率RA增大时,需要的改性气体量减少,这样就能够充分确保需要的改性气体量。
[0036] 另一方面,由图2可知,在氨比率RA增大了时为了得到良好的燃烧,需要提高内燃机负荷L。因此,在本发明的实施例中,在增大了氨比率RA时,使内燃机负荷L增大。该内燃机负荷L的增大,通过增大节流阀16的开度来进行。另外,在本发明的实施例中,这样地增大了氨比率RA时,如图3中实线所示,空燃比A/F被设定为理论空燃比。
[0037] 另一方面,在改性器20的改性能力为预定的改性能力以下时,如图3中虚线所示,也可以使空燃比为浓。此时,增大氨供给量。另外,此时,也增大内燃机负荷L。
[0038] 另一方面,当这样地增大氨比率RA时,从燃烧室5排出的未燃氨量增大。因此,在本发明中,为了使该未燃氨氧化,在增大了氨比率RA时,从二次空气供给装置37向排气净化催化剂19上游的内燃机排气通路内供给二次空气。此时,排气净化催化剂19未活化,但即使排气净化催化剂19未活化,若供给二次空气,则未燃氨也就比较良好地氧化。
[0039] 另一方面,在该第1实施例中,在改性器20的改性能力变为预定的改性能力以上时,使空燃比A/F为稀并且从辅助燃料供给阀40向排气净化催化剂19上游的内燃机排气通路内供给辅助燃料直到排气净化催化剂19活化为止,即直到排气净化催化剂19的温度TC超过活化温度TCX为止。即,此时,排气含有过剩的氧,因此所供给的辅助燃料在排气净化催化剂19上被氧化,由于此时的氧化反应热,排气净化催化剂19的温度上升。
[0040] 图4表示用于实行图3所示的第1实施例的运行控制程序。
[0041] 参照图4,首先起初在步骤70中判别改性器20的温度TB是否比预定的设定温度TBX低。在TB<TBX时进入到步骤71,将改性器20的电加热器32通电,由此开始改性器20的加热作用。接着,在步骤72中,算出氨比率RA。该氨比率RA为比图2所示的暖机完成后的氨比率大的值。
[0042] 接着,在步骤73中,算出即使是算出的氨比率RA也可得到良好的燃烧的要求负荷。接着,在步骤74中,控制节流阀16的开度使得内燃机负荷满足该要求负荷。此时节流阀16的开度变大,内燃机负荷也变大。接着,在步骤75中,算出目标空燃比。该目标空燃比是理论空燃比或浓空燃比。接着,在步骤76中,由吸入空气量检测器17的输出信号算出吸入空气量。
[0043] 接着,在步骤77中,基于算出的氨比率RA、目标空燃比、吸入空气量算出从氨喷射阀13应喷射的氨量以及从改性气体喷射阀36应喷射的改性气体量,基于这些算出值,氨以及改性气体各自从氨喷射阀13以及改性气体喷射阀36喷射。接着,在步骤78中,从二次空气供给阀38供给二次空气。
[0044] 另一方面,在步骤70中判别为TB≥TBX时,即改性器20开始了氢的生成时,进入到步骤79。此时停止向电加热器32的通电。在步骤79中,判别催化剂温度TC是否比活化温度TCX低。在TC<TCX时进入到步骤80,由图2所示的图算出氨比率RA。接着,在步骤81中,算出目标空燃比。此时使目标空燃比为稀空燃比。接着,在步骤82中,由吸入空气量检测器17的输出信号算出吸入空气量。
[0045] 接着,在步骤83中,基于算出的氨比率RA、目标空燃比、吸入空气量,算出从氨喷射阀13应喷射的氨量以及从改性气体喷射阀36应喷射的改性气体量,基于这些算出值,氨以及改性气体各自从氨喷射阀13以及改性气体喷射阀36喷射。接着,在步骤84中,节流阀16的开度被控制为与内燃机负荷相应的节流阀开度。接着,在步骤85中,从辅助燃料供给阀40供给辅助燃料。
[0046] 另一方面,若在步骤79中判别为TC≥TCX,即排气净化催化剂19活化的话,则进入到步骤86,由图2所示的图算出氨比率RA。接着,在步骤87中,算出目标空燃比。此时使目标空燃比为理论空燃比。接着,在步骤88中,由吸入空气量检测器17的输出信号算出吸入空气量。
[0047] 接着,在步骤89中,基于算出的氨比率RA、目标空燃比、吸入空气量,算出从氨喷射阀13应喷射的氨量以及从改性气体喷射阀36应喷射的改性气体量,基于这些算出值,氨以及改性气体各自从氨喷射阀13以及改性气体喷射阀36喷射。接着,在步骤90中,节流阀16的开度被控制为与内燃机负荷相应的节流阀开度。
[0048] 图5示出第2实施例。在该第2实施例中,与图3所示的第1实施例不同之处是:在变得TB≥TBX之后,直到TC≥TCX的期间,使空燃比A/F为理论空燃比,供给二次空气。
即,在该第2实施例中,在改性器20的改性能力变为预定的改性能力以上时,向排气净化催化剂19上游的内燃机排气通路内供给二次空气以及辅助燃料直到排气净化催化剂19活化为止。
[0049] 图6表示用于实行该第2实施例的运行控制程序。该图6所示的运行控制程序和图4所示的运行控制程序不同之处只是图4所示的步骤81和步骤85,因此仅对这些不同的部分进行说明。
[0050] 即,在图4的步骤81中,使目标空燃比为稀空燃比,与此相对,在图6的步骤81中,使目标空燃比为理论空燃比。另一方面,在图6中,代替图4的步骤85,设置有两个步骤85a、85b。该情况下,在步骤85a中,从二次空气供给阀38供给二次空气,在步骤85b中,从辅助燃料供给阀40供给辅助燃料。
[0051] 接着,对第3实施例进行说明。在该第3实施例中,从燃烧室5排出的排气中的氨浓度由氨浓度传感器41检测,在该氨浓度超过预定的容许浓度时,向内燃机排气通路内供给二次空气。即,在该第3实施例中,即使在排气净化催化剂19活化了之后,为了使未燃氨氧化也供给二次空气。
[0052] 图7表示用于实行该第3实施例的运行控制程序。图7所示的运行控制程序中的步骤70至步骤90,与图6所示的运行控制程序中的步骤70至步骤90完全相同,图7所示的程序和图6所示的程序不同之处仅是在图7中在步骤90之后追加了两个步骤91、92。
[0053] 即,在图7所示的程序中,在步骤91中判别从燃烧室5排出的氨浓度D是否比预定的容许浓度DX高。在D>DX时进入到步骤91,从二次空气供给阀38供给二次空气。
[0054] 接着,对第4实施例进行说明。在该第4实施例中,在排气净化催化剂19的温度TC超过预定的极限温度Tmax时,为了防止排气净化催化剂19热劣化,使空燃比为浓。当使空燃比为浓时,在燃烧室5内的未燃燃料量增大,由于为了提高这些未燃燃料的温度会消耗燃烧热,因此排气温度降低。这样就能够阻止排气净化催化剂19热劣化。但是,当使空燃比为浓时,从燃烧室5内排出的未燃氨的量增大,因此为了使这些未燃氨氧化,向内燃机排气通路内供给二次空气。
[0055] 图8表示用于实行该第4实施例的运行控制程序。图8所示的运行控制程序中的步骤70至步骤90,与图6所示的运行控制程序中的步骤70至步骤90完全相同,图8所示的程序和图6所示的程序不同之处仅是在图8中在步骤90之后追加了三个步骤93、94、95。
[0056] 即,在图8所示的程序中,在步骤93中判别排气净化催化剂19的温度TC是否超过了预定的极限温度Tmax。在TC>Tmax时进入到步骤94,增加从氨喷射阀13喷射的氨量以及从改性气体喷射阀36喷射的改性气体量,使空燃比为浓。接着,在步骤95中,从二次空气供给阀38供给二次空气。
[0057] 附图标记说明
[0058] 5 燃烧室
[0059] 7 进气阀
[0060] 8 进气口
[0061] 13 氨喷射阀
[0062] 19 排气净化催化剂
[0063] 20 改性器
[0064] 21 气化器
[0065] 23 燃料罐
[0066] 27 氨气罐
[0067] 35 改性气体贮藏罐
[0068] 36 改性气体喷射阀
[0069] 37 二次空气供给装置
[0070] 40 辅助燃料供给阀
相关专利内容
标题 发布/更新时间 阅读量
一种内燃机配间组合环保系统 2020-05-13 26
一种内燃机配套组合装置 2020-05-13 1001
内燃机用润滑油 2020-05-11 1017
一种内燃机气门座圈 2020-05-11 407
一种内燃机空气泵 2020-05-12 54
多汽缸内燃机 2020-05-11 460
一种内燃机机体成套加工设备 2020-05-13 635
一种新型内燃机摇臂 2020-05-12 398
内燃机车冷却器 2020-05-11 879
内燃机摇臂支座 2020-05-11 154
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈