首页 / 专利库 / 疗法 / 癌症治疗 / 化学治疗 / 载有神经营养因子的纳米微球及制备和用途

载有神经营养因子的纳米微球及制备和用途

阅读:650发布:2023-02-05

专利汇可以提供载有神经营养因子的纳米微球及制备和用途专利检索,专利查询,专利分析的服务。并且一种载有 治疗 因子或神经营养因子的纳米微球,高分子材料是高分子材料的纳米微球,所述高分子材料由 生物 相容的带正电荷的ε-聚赖 氨 酸和带负电荷的肝素组成,ε-聚赖氨酸和肝素的 质量 比为1:20~1:1,纳米微球的平均粒径为100-400nm。由上述的ε-聚赖氨酸-肝素纳米微球作为载体,负载神经营养因子,本 发明 的纳米微球 生物相容性 好,生物化学性质稳定。尤其是本发明载有神经营养因子的纳米微球通过缓释的形式能够有效的促进细胞轴突生长。,下面是载有神经营养因子的纳米微球及制备和用途专利的具体信息内容。

1.一种载有治疗因子或神经营养因子的纳米微球,其特征是高分子材料是高分子材料的纳米微球,所述高分子材料由生物相容的带正电荷的ε-聚赖酸和带负电荷的肝素组成,ε -聚赖氨酸和肝素的质量比为1:20~1:1,纳米微球的平均粒径为100-400nm。
2.根据权利要求1所述的载有治疗因子或神经营养因子的纳米微球,其特征是由上述的ε -聚赖氨酸-肝素纳米微球作为载体,负载神经营养因子,所述的神经营养因子是神经生长因子(NGF),脑源性神经营养因子(BDNF),神经营养因子-3 (ΝΤ-3),神经营养因子-4/5和胶质细胞源神经营养因子(⑶NF),睫状神经营养因子(CNTF)或纤维细胞生长因子(FGFs)中的一种或多种。
3.根据权利要求1或2所述的载有治疗因子或神经营养因子的纳米微球的制备方法,其特征是在搅拌的条件下将ε -聚赖氨酸的溶液加入到肝素的水溶液中,继续搅拌反应30 - 120min ;形成含有高分子聚合物纳米微球的反应液,生物相容性交联剂加入到上述的反应液中反应10~24小时,反应完成后形成水相ε -聚赖氨酸-肝素纳米微球分散液;所述的生物交联剂是京尼平,它与ε-聚赖氨酸的质量比为1:4~1:1.6。
4.根据权利要求3所述的载有治疗因子或神经营养因子的纳米微球的制备方法,其特征是在室温至30°C条件下进行反应;由带正电荷的ε -聚赖氨酸和带负电荷的肝素通过静电相互作用然后交联的方式形成纳米微球,纳米微球的平均粒径为100-400nm。
5.根据权利要求3所述的载有治疗因子或神经营养因子的纳米微球的制备方法,其特征是在神经营养因子首先与加入聚赖氨酸的水溶液混合,然后加入肝素的水溶液进行搅拌、吸附,得到载有神经营养因子的ε-聚赖氨酸-肝素纳米微球。
6.权利要求1所述的纳米微球作为神经营养因子和其它治疗因子载体中的应用。
7.权利要求5所述的一种载有神经营养因子纳米微球,用作因子的载体,用于治疗周围神经损伤。
8.权利要求5所述的载有神经营养因子纳米微球作为因子药物的缓释制剂。

说明书全文

载有神经营养因子的纳米微球及制备和用途

技术领域

[0001] 本发明涉及一种可生物降解的生物大分子纳米微球,用作因子缓释载体、制备和用途。

背景技术

[0002] 由交通事故、战争或工业生产事故导致的周围神经损伤是临床上极为常见的外伤。当周围神经损伤后,通常会导致神经支配区域的永久性的运动、感觉功能性障碍。临床上,周围神经损伤后通常采用端对端外膜缝合的方式实现神经损伤的修复。当神经损伤不能通过端对端的方式缝合时,就必须依靠神经移植物来实现修复神经损伤的目的。但是,自体神经来源有限,供区永久性失神经功能障碍以及异体神经具有免疫排斥反应的问题,因此必须研究人工神经移植物来替代自体神经移植物。目前,由生物可降解人工神经移植物对于神经损伤修复具有一定的修复作用,但是对长段、粗大神经缺损修复效果非常有限。因此神经移植物不仅仅是作为神经再生的临时通道,更重要的是应具有促进轴突再生的生物学活性(如神经营养因子等)。
[0003] 神经营养因子是一组机体产生的促进神经细胞存活、生长和分化的一类多肽分子或蛋白质,不仅在发育过程中调节神经元存活,激活酶的活性发挥生理功能,而且还能阻止成年神经元损伤后的死亡,促使神经元修复、轴突再生、调节突触可塑性等神经系统的活动。神经营养因子本身具有半衰期短、在体内易降解、自身聚集以及吸收差的缺点,因此有效剂量的持续给药是构建生物活性神经移植物成功的关键。基于纳米技术的载药纳米颗粒(利用纳米技术将生物材料等作为载体,将蛋白、药物或者生物活性分子分散,包裹,吸附于1-1OOOnm范围内的纳米载体)能够比较容易的负载多种 神经营养因子,并且可实现神经营养因子的释放速率可调控以及更好的生物利用度。

发明内容

[0004] 本发明的目的在于,提供一种生物相容,可以生物降解的,可用作治疗或营养因子载体的高分子纳米微球及其应用和制备方法。
[0005] 本发明的技术方案如下:一种载有治疗因子或神经营养因子的纳米微球,是高分子材料的纳米微球,所述高分子材料由生物相容的带正电荷的e -聚赖酸和带负电荷的肝素组成,e -聚赖氨酸和肝素的质量比为1:20~1: 1,纳米微球的平均粒径为100-400nm。
[0006] 由带正电荷的聚赖氨酸和带负电荷的肝素通过静电相互作用然后交联的方式形成纳米微球。
[0007] —种制备上述载有治疗因子或神经营养因子的纳米微球的制备方法,在搅拌的条件下将e -聚赖氨酸的溶液加入到肝素的水溶液中,继续搅拌反应30~120min ;形成含有高分子聚合物纳米微球的反应液,生物相容性交联剂加入到上述的反应液中反应10~24h,反应完成后形成水相e-聚赖氨酸-肝素纳米微球分散液。本发明尤其是室温至30°C条件下进行反应。通过静电相互作用然后交联的方式制备纳米微球,纳米微球的平均粒径为100~400nm。所述纳米微球的制法,所述的生物交联剂是京尼平,它与ε -聚赖氨酸的质量比为1:4~1:1.6。上述的纳米微球可作为神经营养因子和其它治疗因子载体中的应用。
[0008] 一种载有神经营养因子纳米微球,它是由上述的ε -聚赖氨酸-肝素纳米微球作为载体,载有神经营养因子的ε-聚赖氨酸-肝素纳米微球溶液。所述的载有神经营养因子的纳米微球的制法,所述的神经营养因子是神经生长因子(NGF),脑源性神经营养因子(BDNF),神经营养因子-3 (ΝΤ-3),神经营养因子-4/5和胶质细胞源神经营养因子(⑶NF),睫状神经营养因子(CNTF),纤维细胞生长因子(FGFs)中的一种或多种。本发明的神经营养因子首先与加入聚赖氨酸的水溶液混合,然后加入肝素的水溶液进行搅拌、吸附,得到载有神经营养因子的ε-聚赖氨酸-肝素纳米微球。。 [0009] 本发明的制备方法制得的纳米微球粒径较均一,分散性好。
[0010] 本发明制备的载有神经营养因子的纳米微球可以用作因子的载体,可能用于治疗周围神经损伤或作为因子药物的缓释制剂。
[0011] 本发明的载有神经营养因子的ε -聚赖氨酸-肝素纳米微球具有很强的药物缓释功能。
[0012] 本发明有益效果:提供了一种平均粒径为100~400nm的ε -聚赖氨酸-肝素纳米微球及制备方法、用途。本发明的纳米微球生物相容性好,生物化学性质稳定。尤其是本发明载有神经营养因子的纳米微球通过缓释的形式能够有效的促进细胞轴突生长。由于神经营养因子在体内的半衰期较短,载有神经营养因子的纳米微球能够有效的延长神经营养因子的半衰期。本发明的载有神经营养因子的ε-聚赖氨酸-肝素纳米微球具有很强的因子缓释功能(可达到神经营养因子有效药效期的三倍以上)。本发明的纳米微球可以用作神经营养因子载体,用于治疗周围神经损伤,也用于其它治疗因子的载体,尤其是利用其很强的因子缓释功能。

具体实施方式

[0013] 下面结合实施例进一步阐明本发明的内容,但是这些实施例并不限制本发明的保护范围。
[0014] 实施例1: ε -聚赖氨酸-肝素纳米微球的制备
[0015] 室温下、在搅拌的条件下将ImL ε -聚赖氨酸(3mg/mL)的水溶液加入到2mL肝素(3mg/mL)的水溶液中搅拌反应lh。然后,加入生物相容性交联剂2.3mg的京尼平进行交联反应12h。反应完成后形成水相ε-聚赖氨酸-肝素纳米微球分散液。该纳米微球的粒径范围为180~350nm。
[0016] 实施例2:负载神经生长因子(NGF)的ε -聚赖氨酸-肝素纳米微球的制备
[0017] 室温下、在搅拌的条件下将ImL含有Iyg神经生长因子(NGF)的ε -聚赖氨酸(3mg/mL)水溶液加入到2mL肝素(3mg/mL)的水溶液中搅拌反应lh。然后,加入生物相容性交联剂2.3mg的京尼平进行交联反应12h。反应完成后形成负载神经营养因子的ε -聚赖氨酸-肝素纳米微球分散液。该纳米微球的粒径范围为180~350nm。神经生长因子的添加量与治疗需要的量相匹配,下同。
[0018] 实施例3:负载性成纤维生长因子(bFGF)的ε -聚赖氨酸-肝素纳米微球的制备
[0019] 室温下、在搅拌的条件下将1mL含有1 u g碱性成纤维生长因子(bFGF)的e -聚赖氨酸(3mg/mL)水溶液加入到2mL肝素(3mg/mL)的水溶液中搅拌反应lh。然后,加入生物相容性交联剂2.3mg的京尼平进行交联反应12h。反应完成后形成负载神经营养因子e -聚赖氨酸-肝素纳米微球分散液。该纳米微球的粒径范围为180~350nm。
[0020] 实施例4:负载碱性成纤维生长因子(bFGF)和神经营养因子(NGF)的e -聚赖氨酸-肝素纳米微球的制备
[0021] 室温下、在搅拌的条件下将1mL含有0.5ug碱性成纤维生长因子(bFGF)和0.5 u g神经生长因子(NGF)的e -聚赖氨酸(3mg/mL)水溶液加入到2mL肝素(3mg/mL)的水溶液中搅拌反应lh。然后,加入生物相容性交联剂2.3mg的京尼平进行交联反应12h。反应完成后形成负载神经营养因子e-聚赖氨酸-肝素纳米微球分散液。该纳米微球的粒径范围为180~350nm。
[0022] 实施例5:在370C,将含有神经营养因子的纳米微球放入1OmL磷酸盐缓冲溶液中(pH=7.4)透析,不同的时间内取点通过酶联免疫吸附剂测定的方法测定神经营养因子的浓度,在20天的时间内释放了约为61%神经生长因子和约42%碱性成纤维生长因子。
[0023] 综上所述,虽然本发明以较佳实施例揭露如上,然其并非用以限定本发明。在所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视权利要求书所界定者为准。
相关专利内容
标题 发布/更新时间 阅读量
结晶化学治疗剂 2020-05-11 905
一种电化学治疗仪 2020-05-12 733
光化学疗法治疗剂 2020-05-13 175
化学治疗应答者的确定 2020-05-12 241
电化学癌肿治疗仪 2020-05-12 699
一种电化学治疗仪 2020-05-12 629
铜离子电化学治疗仪 2020-05-12 571
铜离子电化学治疗仪 2020-05-12 400
一种电化学治疗环形圈状传感元件 2020-05-13 794
铜离子电化学治疗装置 2020-05-11 217
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈