首页 / 专利库 / 制冷技术 / 制冷压缩机 / 空调器及其能效计算方法

空调器及其能效计算方法

阅读:432发布:2023-03-04

专利汇可以提供空调器及其能效计算方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种 空调 器及其能效计算方法,其中,能效计算方法包括:获取空调器的当前工况、 压缩机 的功率和空调器耗电功率;获取各个 温度 点的温度;根据对应温度生成温度t1、t7、t8;当空调器的当前工况为制冷工况时,根据对应温度点的温度分别生成各个温度点对应的制冷剂 焓 值和 润滑油 焓值;根据制冷剂焓值和润滑油焓值分别生成h1、h2、h4、h7、h8’和h8”;根据压缩机的功率和各个混合物焓值生成空调器的制冷量;以及,根据空调器耗电功率和制冷量生成空调器的能效,可以实时获得能效情况,优化运行状态。,下面是空调器及其能效计算方法专利的具体信息内容。

1.一种空调器的能效计算方法,其特征在于,包括以下步骤:
获取空调器的当前工况、压缩机的功率和空调器耗电功率;
获取压缩机中排气口的排气口温度t2、室外换热器第一端的室外换热器第一端温度t4、室内换热器第二端的室内换热器第二端温度t5、室内换热器中部的室内换热器中部温度t6、室内温度t10;
根据所述室内换热器中部温度t6生成压缩机中回气口的回气口温度t1;
根据所述室内换热器中部温度t6和所述室内温度t10生成室内换热器第一端的室内换热器第一端温度t7;
根据所述室外换热器第一端温度t4和所述室内换热器第二端温度t5生成压缩机补气入口的补气温度t8;
当所述空调器的当前工况为制冷工况时,根据所述压缩机中回气口的回气口温度t1生成回气口的制冷剂值h1,制冷剂和润滑油焓值h1,润滑油,根据所述压缩机中排气口的排气口温度t2生成排气口的制冷剂焓值h2,制冷剂和润滑油焓值h2,润滑油,根据所述室外换热器第一端的室外换热器第一端温度t4生成室外换热器第一端的制冷剂焓值h4,制冷剂和润滑油焓值h4,润滑油,根据所述室内换热器第一端的室内换热器第一端温度t7生成室内换热器第一端的制冷剂焓值t7,制冷剂和润滑油焓值h7,润滑油,根据所述压缩机补气入口的补气温度t8生成补入压缩机的气态制冷剂焓值h8’,制冷剂和润滑油焓值h8’,润滑油,以及,根据所述压缩机补气入口的补气温度t8生成闪蒸器的液态制冷剂焓值h8”,制冷剂和润滑油焓值h8”,润滑油;
根据所述回气口的制冷剂焓值h1,制冷剂和润滑油焓值h1,润滑油生成回气口的混合物焓值h1,根据所述排气口的制冷剂焓值h2,制冷剂和润滑油焓值h2,润滑油生成排气口的混合物焓值h2,根据所述室外换热器第一端的制冷剂焓值h4,制冷剂和润滑油焓值h4,润滑油生成室外换热器第一端的混合物焓值h4,根据所述室内换热器第一端的制冷剂焓值t7,制冷剂和润滑油焓值h7,润滑油生成室内换热器第一端的混合物焓值h7,根据所述补入压缩机的气态制冷剂焓值h8’,制冷剂和润滑油焓值h8’,润滑油、生成补入压缩机混合物焓值h8’,以及,根据所述闪蒸器的液态制冷剂焓值h8”,制冷剂和润滑油焓值h8”,润滑油生成闪蒸器的混合物焓值h8”;
根据所述压缩机的功率、所述回气口的混合物焓值h1、所述排气口的混合物焓值h2、所述室外换热器第一端的混合物焓值h4、所述补入压缩机混合物焓值h8’和所述闪蒸器的混合物焓值h8”和所述室内换热器第一端的混合物焓值h7生成空调器的制冷量;以及
根据所述空调器耗电功率和所述制冷量生成所述空调器的能效。
2.如权利要求1所述的空调器的能效计算方法,其特征在于,根据所述压缩机中回气口的回气口温度t1生成回气口的制冷剂焓值h1,制冷剂具体包括:
根据所述回气口温度t1和室内换热器中部温度t6生成吸气过热度Δt1;
根据所述室内换热器中部温度t6生成吸气温度下饱和制冷剂的焓值h吸气饱和;
根据所述吸气过热度Δt1和室内换热器中部温度t6生成回气口制冷剂焓值的修正因子D1;
根据所述回气口制冷剂焓值的修正因子D1、所述饱和制冷剂的焓值h吸气饱和生成所述制冷剂焓值h1,制冷剂。
3.如权利要求2所述的空调器的能效计算方法,其特征在于,根据以下公式生成所述吸气温度下饱和制冷剂的焓值h吸气饱和:
其中,a1-a5为制冷剂对应的饱和区系数。
4.如权利要求2所述的空调器的能效计算方法,其特征在于,根据以下公式生成所述回气口制冷剂焓值的修正因子D1:
其中,d1-d6为制冷剂对应的过热区系数。
5.如权利要求3所述的空调器的能效计算方法,其特征在于,根据所述室内换热器第一端的室内换热器第一端温度t7生成室内换热器第一端的制冷剂焓值h7,制冷剂具体包括:
根据所述室内换热器第一端温度t7和所述室内换热器中部温度t6生成过热度Δt7;
根据所述过热度Δt7和所述室内换热器中部温度t6生成室内换热器第一端制冷剂焓值的修正因子D7;
根据所述室内换热器第一端制冷剂焓值的修正因子D7和所述饱和制冷剂的焓值h吸气饱和生成所述制冷剂焓值h7,制冷剂。
6.如权利要求5所述的空调器的能效计算方法,其特征在于,根据以下公式生成室内换热器第一端制冷剂焓值的修正因子D7:
其中,d1-d6为制冷剂对应的过热区系数。
7.如权利要求1所述的空调器的能效计算方法,其特征在于,所述根据所述压缩机中排气口的排气口温度t2生成所述排气口的制冷剂的焓值h2,制冷剂具体包括:
获取室外温度t9;
根据所述室外温度t9和所述室外换热器第一端温度t4生成室外换热器中部温度t3;
根据所述室外换热器中部温度t3生成排气温度下饱和制冷剂的焓值h排气饱和;
根据所述压缩机中排气口的排气口温度t2和所述室外换热器中部温度t3生成排气过热度Δt2;
根据所述排气过热度Δt2和所述室外换热器中部温度t3生成排气口制冷剂焓值的修正因子D2;
根据所述修正因子D2、所述排气温度下饱和制冷剂的焓值h排气饱和生成所述排气口的制冷剂的焓值h2,制冷剂。
8.如权利要求7所述的空调器的能效计算方法,其特征在于,根据以下公式生成排气口制冷剂焓值的修正因子D2:
其中,d1-d6为制冷剂对应的过热区系数。
9.如权利要求1所述的空调器的能效计算方法,其特征在于,根据以下公式生成所述室外换热器第一端的制冷剂焓值h4,制冷剂:
其中,c1-c4为制冷剂对应的过冷区系数。
10.如权利要求1所述的空调器的能效计算方法,其特征在于,根据以下公式生成空调器的制冷量:
其中,Q制冷量为所述空调器制冷
量,P压缩机为压缩机的功率。
11.如权利要求1所述的空调器的能效计算方法,其特征在于,根据以下公式计算各个温度检测点的润滑油焓值hi,润滑油,其中,i为正整数,
hi,润滑油=-0.0808+1.7032ti+0.0025ti2,
其中,ti为温度检测点的温度。
12.如权利要求1所述的空调器的能效计算方法,其特征在于,根据以下公式计算各个点的混合物焓值hi,其中,i为正整数,
hi=(1-Cg)hi,制冷剂+Cghi,润滑油,
其中,Cg=f/104,Cg为含油率,f为压缩机的运行频率
13.一种空调器,其特征在于,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现如权利要求1-12中任一所述的方法。
14.一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1-12中任一所述的方法。
15.一种空调器的能效计算方法,其特征在于,包括以下步骤:
获取空调器的当前工况、压缩机的功率和空调器耗电功率;
获取所述压缩机中排气口的排气口温度t2、室外换热器第一端的室外换热器第一端温度t4、室内换热器中部的室内换热器中部温度t6、室内换热器第二端的室内换热器第二端温度t5、室内温度t10;
根据所述室外换热器第一端温度t4生成压缩机中回气口的回气口温度t1;
根据所述室内换热器中部温度t6和室内温度t10生成室内换热器第一端的室内换热器第一端温度t7;
根据所述室外换热器第一端温度t4和室内换热器第二端温度t5生成压缩机补气入口的补气温度t8;
当所述空调器的当前工况为制热工况时,根据所述压缩机中回气口的回气口温度t1生成回气口的制冷剂焓值h1,制冷剂和润滑油焓值h1,润滑油,根据所述压缩机中排气口的排气口温度t2生成排气口的制冷剂焓值h2,制冷剂和润滑油焓值h2,润滑油,根据所述室内换热器第二端的室内换热器第二端温度t5生成室内换热器第二端的制冷剂焓值h5,制冷剂和润滑油焓值h5,润滑油,根据所述室内换热器第一端的室内换热器第一端温度t7生成室内换热器第一端的制冷剂焓值t7,制冷剂和润滑油焓值h7,润滑油,根据所述压缩机补气入口的补气温度t8生成补入压缩机的气态制冷剂焓值h8’,制冷剂和润滑油焓值h8’,润滑油,以及,根据所述压缩机补气入口的补气温度t8生成闪蒸器的液态制冷剂焓值h8”,制冷剂和润滑油焓值h8”,润滑油;
根据所述回气口的制冷剂焓值h1,制冷剂和润滑油焓值h1,润滑油生成回气口的混合物焓值h1,根据所述排气口的制冷剂的焓值h2,制冷剂和润滑油焓值h2,润滑油生成排气口的混合物焓值h2,根据所述室内换热器第二端的制冷剂焓值h5,制冷剂和润滑油焓值h5,润滑油生成室内换热器第二端的的混合物焓值h5,根据所述室内换热器第一端的制冷剂焓值h7,制冷剂和润滑油焓值h7,润滑油生成室内换热器第一端的混合物焓值h7,根据所述补入压缩机的气态制冷剂焓值h8’,制冷剂和润滑油焓值h8’,润滑油生成补入压缩机混合物焓值h8’,以及,根据所述闪蒸器的液态制冷剂焓值h8”,制冷剂和润滑油焓值h8”,润滑油生成补入压缩机混合物焓值h8’以及,根据所述闪蒸器的液态制冷剂焓值h8”,制冷剂和润滑油焓值h8”,润滑油生成闪蒸器的混合物焓值h8”;
根据所述压缩机的功率、所述回气口的混合物焓值h1、所述排气口的混合物焓值h2、所述室内换热器第二端的混合物焓值h5和所述室内换热器第一端的混合物焓值h7、所述补入压缩机混合物焓值h8’和所述闪蒸器的混合物焓值h8”生成空调器的制热量;以及根据所述空调器耗电功率和所述制热量生成所述空调器的能效。
16.如权利要求15所述的空调器的能效计算方法,其特征在于,所述根据所述压缩机中回气口的回气口温度t1生成回气口的制冷剂焓值h1,制冷剂具体包括:
获取室外温度t9;
根据所述室外温度t9和所述室外换热器第一端温度t4生成室外换热器中部温度t3;
根据所述回气口温度t1和所述室外换热器中部温度t3生成吸气过热度Δt1;
根据所述吸气过热度Δt1和所述室外换热器中部温度t3生成回气口制冷剂焓值的修正因子D1;
根据所述室外换热器中部温度t3生成吸气温度下饱和制冷剂的焓值h吸气饱和;
根据所述回气口制冷剂焓值的修正因子D1、所述吸气温度下饱和制冷剂的焓值h吸气饱和生成所述回气口的制冷剂焓值h1,制冷剂。
17.如权利要求16所述的空调器的能效计算方法,其特征在于,根据以下公式生成所述吸气温度下饱和制冷剂的焓值h吸气饱和:
其中,a1-a5为制冷剂对应的饱和区系数。
18.如权利要求16所述的空调器的能效计算方法,其特征在于,根据以下公式生成所述回气口制冷剂焓值的修正因子D1:
其中,d1-d6为制冷剂对应的过热区系数。
19.如权利要求16所述的空调器的能效计算方法,其特征在于,所述根据所述压缩机中排气口的排气口温度t2生成排气口的制冷剂的焓值h2,制冷剂具体包括:
根据所述室内换热器中部的室内换热器中部温度t6和所述压缩机中排气口的排气口温度t2生成排气过热度Δt2;
根据所述排气过热度Δt2和所述室内换热器中部温度t6生成排气口制冷剂焓值的修正因子D2;
根据所述室内换热器中部温度t6生成排气温度下饱和制冷剂的焓值h排气饱和;
根据所述排气口制冷剂焓值的修正因子D2、所述排气温度下饱和制冷剂的焓值h排气饱和生成所述排气口的制冷剂焓值h2,制冷剂。
20.权利要求19所述的空调器的能效计算方法,其特征在于,根据以下公式生成所述排气口制冷剂焓值的修正因子D2:
其中,d1-d6为制冷剂对应的过热区系数。
21.如权利要求19所述的空调器的能效计算方法,其特征在于,所述根据所述室内换热器第一端的室内换热器第一端温度t7生成室内换热器第一端的制冷剂焓值h7,制冷剂具体包括:
根据所述室内换热器中部的室内换热器中部温度t6和所述室内换热器第一端温度t7生成过热度Δt7;
根据所述过热度Δt7和所述室内换热器中部温度t6生成室内换热器第一端制冷剂焓值的修正因子D7;
根据所述室内换热器第一端制冷剂焓值的修正因子D7、所述排气温度下饱和制冷剂的焓值h排气饱和生成所述室内换热器第一端的制冷剂焓值h7,制冷剂。
22.如权利要求21所述的空调器的能效计算方法,其特征在于,根据以下公式生成所述室内换热器第一端制冷剂焓值的修正因子D7:
其中,d1-d6为制冷剂对应的过热区系数。
23.如权利要求15所述的空调器的能效计算方法,其特征在于,根据以下公式计算所述室内换热器第二端的制冷剂焓值h5,制冷剂:
其中,c1-c4为制冷剂对应的过冷区系数。
24.如权利要求15所述的空调器的能效计算方法,其特征在于,根据如下公式生成所述空调器的制热量:
其中,Q制热量为所述空调器制热
量,P压缩机为压缩机的功率。
25.如权利要求15所述的空调器的能效计算方法,其特征在于,根据以下公式计算各个温度检测点的润滑油焓值hi,润滑油,其中,i为正整数,
hi,润滑油=-0.0808+1.7032ti+0.0025ti2,其中,ti为温度检测点的温度。
26.如权利要求15所述的空调器的能效计算方法,其特征在于,根据以下公式计算各个点的混合物焓值hi,其中,i为正整数,
hi=(1-Cg)hi,制冷剂+Cghi,润滑油,
其中,Cg=f/104,Cg为含油率,f为所述压缩机的运行频率。
27.一种空调器,其特征在于,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现如权利要求15-26中任一所述的方法。
28.一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求15-26中任一所述的方法。

说明书全文

空调器及其能效计算方法

技术领域

[0001] 本发明涉及电器制造技术领域,特别涉及一种空调器的能效计算方法和空调器。

背景技术

[0002] 随着对节能的越来越重视,空调器是否节能舒适越来越受到用户的关注。
[0003] 目前的空调器在运行时由于无法获知能效的变化情况,因而难以维持在较佳的运行状态,制冷制热效果和节能性能均不够理想。

发明内容

[0004] 本发明旨在至少在一定程度上解决上述技术中的技术问题之一。为此,本发明实施例提出一种空调器的能效计算方法,能够实时准确地检测到空调器的能效。本发明实施例还提出一种空调器,以及,本发明再一方面实施例还提出一种空调器的能效计算方法和空调器。
[0005] 为了解决上述问题,本发明一方面实施例提出的空调器的能效计算方法,包括:获取空调器的当前工况、压缩机的功率和空调器耗电功率;获取压缩机中排气口的排气口温度t2、室外换热器第一端的室外换热器第一端温度t4、室内换热器第二端的室内换热器第二端温度t5、室内换热器中部的室内换热器中部温度t6、室内温度t10;根据所述室内换热器中部温度t6生成压缩机中回气口的回气口温度t1;根据所述室内换热器中部温度t6和室内温度t10生成室内换热器第一端的室内换热器第一端温度t7;根据所述室外换热器第一端温度t4和室内换热器第二端温度t5生成压缩机补气入口的补气温度t8;当所述空调器的当前工况为制冷工况时,根据所述压缩机中回气口的回气口温度t1生成回气口的制冷剂值h1,制冷剂和润滑油焓值h1,润滑油,根据所述压缩机中排气口的排气口温度t2生成排气口的制冷剂焓值h2,制冷剂和润滑油焓值h2,润滑油,根据所述室外换热器第一端的室外换热器第一端温度t4生成室外换热器第一端的制冷剂焓值h4,制冷剂和润滑油焓值h4,润滑油,根据所述室内换热器第一端的室内换热器第一端温度t7生成室内换热器第一端的制冷剂焓值t7,制冷剂和润滑油焓值h7,润滑油,根据所述压缩机补气入口的补气温度t8生成补入压缩机的气态制冷剂焓值h8’,制冷剂和润滑油焓值h8’,润滑油,以及,根据所述压缩机补气入口的补气温度t8生成闪蒸器的液态制冷剂焓值h8”,制冷剂和润滑油焓值h8”,润滑油;根据所述回气口的制冷剂焓值h1,制冷剂和润滑油焓值h1,润滑油生成回气口的混合物焓值h1,根据所述排气口的制冷剂焓值h2,制冷剂和润滑油焓值h2,润滑油生成排气口的混合物焓值h2,根据所述室外换热器第一端的制冷剂焓值h4,制冷剂和润滑油焓值h4,润滑油生成室外换热器第一端的混合物焓值h4,根据所述室内换热器第一端的制冷剂焓值t7,制冷剂和润滑油焓值h7,润滑油生成室内换热器第一端的混合物焓值h7,根据所述补入压缩机的气态制冷剂焓值h8’,制冷剂和润滑油焓值h8’,润滑油、生成补入压缩机混合物焓值h8’,以及,根据所述闪蒸器的液态制冷剂焓值h8”,制冷剂和润滑油焓值h8”,润滑油生成闪蒸器的混合物焓值h8”;根据所述压缩机的功率、所述回气口的混合物焓值h1、所述排气口的混合物焓值h2、所述室外换热器第一端的混合物焓值h4、所述补入压缩机混合物焓值h8’和所述闪蒸器的混合物焓值h8”和所述室内换热器第一端的混合物焓值h7生成空调器的制冷量;以及,根据所述空调器耗电功率和所述制冷量生成所述空调器的能效。
[0006] 根据本发明实施例的空调器的能效计算方法,通过获取空调器的当前工况、压缩机的功率和空调器耗电功率,并获取压缩机中排气口、室外换热器第一端和室内换热器第二端、室内换热器中部和室内的温度,并根据相应温度生成回气口温度、室内换热器第一端温度以及压缩机补气入口的补气温度,以及,在空调器处于制冷工况时根据上述各个温度检测点的温度生成上述各个温度检测点的制冷剂焓值和润滑油焓值,并进一步生成各个温度检测点的混合物焓值,然后结合压缩机的功率、上述各个温度检测点的混合物焓值和空调器耗电功率得到空调器的能效,由此,能够实时准确地检测到空调器制冷运行时的能效,从而便于根据空调器的实时能效优化空调器的制冷运行状态,达到节能和提高制冷效果的目的。
[0007] 另外,根据本发明上述实施例提出的空调器的能效计算方法还可以具有如下附加的技术特征:
[0008] 在本发明的一些实施例中,根据所述压缩机中回气口的回气口温度t1生成回气口的制冷剂焓值h1,制冷剂具体包括:根据所述回气口温度t1和室内换热器中部温度t6生成吸气过热度Δt1;根据所述室内换热器中部温度t6生成吸气温度下饱和制冷剂的焓值h吸气饱和;根据所述吸气过热度Δt1和室内换热器中部温度t6生成回气口制冷剂焓值的修正因子D1;根据所述回气口制冷剂焓值的修正因子D1、所述饱和制冷剂的焓值h吸气饱和生成所述制冷剂焓值h1,制冷剂。
[0009] 在本发明的一些实施例中,根据以下公式生成所述吸气温度下饱和制冷剂的焓值h吸气饱和: 其中,a1-a5为制冷剂对应的饱和区系数。
[0010] 在本发明的一些实施例中,根据以下公式生成所述回气口制冷剂焓值的修正因子D1: 其中,d1-d6为制冷剂对应的过热区系数。
[0011] 在本发明的一些实施例中,根据所述室内换热器第一端的室内换热器第一端温度t7生成室内换热器第一端的制冷剂焓值h7,制冷剂具体包括:根据所述室内换热器第一端温度t7和所述室内换热器中部温度t6生成过热度Δt7;根据所述过热度Δt7和所述室内换热器中部温度t6生成室内换热器第一端制冷剂焓值的修正因子D7;根据所述室内换热器第一端制冷剂焓值的修正因子D7和所述饱和制冷剂的焓值h吸气饱和生成所述制冷剂焓值h7,制冷剂。
[0012] 在本发明的一些实施例中,根据以下公式生成室内换热器第一端制冷剂焓值的修正因子D7: 其中,d1-d6为制冷剂对应的过热区系数。
[0013] 在本发明的一些实施例中,所述根据所述压缩机中排气口的排气口温度t2生成所述排气口的制冷剂的焓值h2,制冷剂具体包括:获取室外温度t9;根据所述室外温度t9和所述室外换热器第一端温度t4生成室外换热器中部温度t3;根据所述室外换热器中部温度t3生成排气温度下饱和制冷剂的焓值h排气饱和;根据所述压缩机中排气口的排气口温度t2和所述室外换热器中部温度t3生成排气过热度Δt2;根据所述排气过热度Δt2和所述室外换热器中部温度t3生成排气口制冷剂焓值的修正因子D2:根据所述修正因子D2、所述排气温度下饱和制冷剂的焓值h排气饱和生成所述排气口的制冷剂的焓值h2,制冷剂。
[0014] 在本发明的一些实施例中,根据以下公式生成排气口制冷剂焓值的修正因子D2:其中,d1-d6为制冷剂
对应的过热区系数。
[0015] 在本发明的一些实施例中,根据以下公式生成所述室外换热器第一端的制冷剂焓值h4,制冷剂: 其中,c1-c4为制冷剂对应的过冷区系数。
[0016] 在本发明的一些实施例中,根据以下公式生成空调器的制冷量:
[0017] 其中,Q制冷量为所述空调器制冷量,P压缩机为压缩机的功率。
[0018] 在本发明的一些实施例中,根据以下公式计算各个温度检测点的润滑油焓值hi,润滑油,其中,i为正整数,hi,润滑油=-0.0808+1.7032ti+0.0025ti2,其中,ti为温度检测点的温度。
[0019] 在本发明的一些实施例中,根据以下公式计算各个点的混合物焓值hi,其中,i为正整数,hi=(1-Cg)hi,制冷剂+Cghi,润滑油,其中,Cg=f/104,Cg为含油率,f为压缩机的运行频率
[0020] 对应上述实施例,本发明还提出一种空调器。
[0021] 本发明实施例的空调器,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时,可实现本发明上述实施例提出的空调器的能效计算方法。
[0022] 根据本发明实施例的空调器,能够实时准确地对能效进行检测,根据实时能效进行运行状态优化,达到节能和提高制冷效果的目的。
[0023] 对应上述实施例,本发明还提出一种非临时性计算机可读存储介质。
[0024] 本发明实施例的非临时性计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时,可实现本发明上述实施例提出的空调器的能效计算方法。
[0025] 根据本发明实施例的非临时性计算机可读存储介质,通过执行其存储的计算机程序,能够实时准确地检测到空调器的能效,从而便于根据空调器的实时能效优化空调器的运行状态,达到节能和提高制冷效果的目的。
[0026] 为了解决上述问题,本发明再一方面实施例的空调器的能效计算方法,包括以下步骤:获取空调器的当前工况、压缩机的功率和空调器耗电功率;获取所述压缩机中排气口的排气口温度t2、室外换热器第一端的室外换热器第一端温度t4、室内换热器中部的室内换热器中部温度t6、室内换热器第二端的室内换热器第二端温度t5、室内温度t10;根据所述室外换热器第一端温度t4生成压缩机中回气口的回气口温度t1;根据所述室内换热器中部温度t6和室内温度t10生成室内换热器第一端的室内换热器第一端温度t7;根据所述室外换热器第一端温度t4和室内换热器第二端温度t5生成压缩机补气入口的补气温度t8;当所述空调器的当前工况为制热工况时,根据所述压缩机中回气口的回气口温度t1生成回气口的制冷剂焓值h1,制冷剂和润滑油焓值h1,润滑油,根据所述压缩机中排气口的排气口温度t2生成排气口的制冷剂焓值h2,制冷剂和润滑油焓值h2,润滑油,根据所述室内换热器第二端的室内换热器第二端温度t5生成室内换热器第二端的制冷剂焓值h5,制冷剂和润滑油焓值h5,润滑油,根据所述室内换热器第一端的室内换热器第一端温度t7生成室内换热器第一端的制冷剂焓值t7,制冷剂和润滑油焓值h7,润滑油,根据所述压缩机补气入口的补气温度t8生成补入压缩机的气态制冷剂焓值h8’,制冷剂和润滑油焓值h8’,润滑油,以及,根据所述压缩机补气入口的补气温度t8生成闪蒸器的液态制冷剂焓值h8”,制冷剂和润滑油焓值h8”,润滑油;根据所述回气口的制冷剂焓值h1,制冷剂和润滑油焓值h1,润滑油生成回气口的混合物焓值h1,根据所述排气口的制冷剂的焓值h2,制冷剂和润滑油焓值h2,润滑油生成排气口的混合物焓值h2,根据所述室内换热器第二端的制冷剂焓值h5,制冷剂和润滑油焓值h5,润滑油生成室内换热器第二端的的混合物焓值h5,根据所述室内换热器第一端的制冷剂焓值h7,制冷剂和润滑油焓值h7,润滑油生成室内换热器第一端的混合物焓值h7,根据所述补入压缩机的气态制冷剂焓值h8’,制冷剂和润滑油焓值h8’,润滑油生成补入压缩机混合物焓值h8’,以及,根据所述闪蒸器的液态制冷剂焓值h8”,制冷剂和润滑油焓值h8”,润滑油生成补入压缩机混合物焓值h8’以及,根据所述闪蒸器的液态制冷剂焓值h8”,制冷剂和润滑油焓值h8”,润滑油生成闪蒸器的混合物焓值h8”;根据所述压缩机的功率、所述回气口的混合物焓值h1、所述排气口的混合物焓值h2、所述室内换热器第二端的混合物焓值h5和所述室内换热器第一端的混合物焓值h7、所述补入压缩机混合物焓值h8’和所述闪蒸器的混合物焓值h8”生成空调器的制热量;以及,根据所述空调器耗电功率和所述制热量生成所述空调器的能效。
[0027] 根据本发明实施例的空调器的能效计算方法,通过获取空调器的当前工况、压缩机的功率和空调器耗电功率,并获取压缩机中排气口、室外换热器第一端和室内换热器第二端、室内换热器中部和室内的温度,并根据相应温度生成回气口温度、室内换热器第一端温度以及压缩机补气入口的补气温度,以及,在空调器处于制冷工况时根据上述各个温度检测点的温度生成上述各个温度检测点的制冷剂焓值和润滑油焓值,并进一步生成各个温度检测点的混合物焓值,然后结合压缩机的功率、上述各个温度检测点的混合物焓值和空调器耗电功率得到空调器的能效,由此,能够实时准确地检测到空调器制热运行的能效,从而便于根据空调器的实时能效优化空调器的制热运行状态,达到节能和提高制热效果的目的。
[0028] 在本发明的一些实施例中,所述根据所述压缩机中回气口的回气口温度t1生成回气口的制冷剂焓值h1,制冷剂具体包括:获取室外温度t9;根据所述室外温度t9和所述室外换热器第一端温度t4生成室外换热器中部温度t3;根据所述回气口温度t1和所述室外换热器中部温度t3生成吸气过热度Δt1;根据所述吸气过热度Δt1和所述室外换热器中部温度t3生成回气口制冷剂焓值的修正因子D1;根据所述室外换热器中部温度t3生成吸气温度下饱和制冷剂的焓值h吸气饱和;根据所述回气口制冷剂焓值的修正因子D1、所述吸气温度下饱和制冷剂的焓值h吸气饱和生成所述回气口的制冷剂焓值h1,制冷剂。
[0029] 在本发明的一些实施例中,根据以下公式生成所述吸气温度下饱和制冷剂的焓值h吸气饱和: 其中,a1-a5为制冷剂对应的饱和区系数。
[0030] 在本发明的一些实施例中,根据以下公式生成所述回气口制冷剂焓值的修正因子D1: 其中,d1-d6为制冷剂对应的过热区系数。
[0031] 在本发明的一些实施例中,所述根据所述压缩机中排气口的排气口温度t2生成排气口的制冷剂的焓值h2,制冷剂具体包括:根据所述室内换热器中部的室内换热器中部温度t6和所述压缩机中排气口的排气口温度t2生成排气过热度Δt2;根据所述排气过热度Δt2和所述室内换热器中部温度t6生成排气口制冷剂焓值的修正因子D2;根据所述室内换热器中部温度t6生成排气温度下饱和制冷剂的焓值h排气饱和;根据所述排气口制冷剂焓值的修正因子D2、所述排气温度下饱和制冷剂的焓值h排气饱和生成所述排气口的制冷剂焓值h2,制冷剂。
[0032] 在本发明的一些实施例中,根据以下公式生成所述排气口制冷剂焓值的修正因子D2: 其中,d1-d6为制冷剂对应的过热区系数。
[0033] 在本发明的一些实施例中,所述根据所述室内换热器第一端的室内换热器第一端温度t7生成室内换热器第一端的制冷剂焓值h7,制冷剂具体包括:根据所述室内换热器中部的室内换热器中部温度t6和所述室内换热器第一端温度t7生成过热度Δt7;根据所述过热度Δt7和所述室内换热器中部温度t6生成室内换热器第一端制冷剂焓值的修正因子D7;根据所述室内换热器第一端制冷剂焓值的修正因子D7、所述排气温度下饱和制冷剂的焓值h排气饱和生成所述室内换热器第一端的制冷剂焓值h7,制冷剂。
[0034] 在本发明的一些实施例中,根据以下公式生成所述室内换热器第一端制冷剂焓值的修正因子D7:
[0035] 其中,d1-d6为制冷剂对应的过热区系数。
[0036] 在本发明的一些实施例中,根据以下公式计算所述室内换热器第二端的制冷剂焓值h5,制冷剂: 其中,c1-c4为制冷剂对应的过冷区系数。
[0037] 在本发明的一些实施例中,根据如下公式生成所述空调器的制热量:
[0038] 其中,Q制热量为所述空调器制热量,P压缩机为压缩机的功率。
[0039] 在本发明的一些实施例中,根据以下公式计算各个温度检测点的润滑油焓值hi,润滑油,其中,i为正整数,hi,润滑油=-0.0808+1.7032ti+0.0025ti2,其中,ti为温度检测点的温度。
[0040] 在本发明的一些实施例中,根据以下公式计算各个点的混合物焓值hi,其中,i为正整数,hi=(1-Cg)hi,制冷剂+Cghi,润滑油,其中,Cg=f/104,Cg为含油率,f为所述压缩机的运行频率。
[0041] 对应上述实施例,本发明还提出另一种空调器。
[0042] 本发明实施例的空调器,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时,可实现本发明上述实施例提出的另一种空调器的能效计算方法。
[0043] 根据本发明实施例的空调器,能够实时准确地对能效进行检测,根据实时能效进行运行状态优化,达到节能和提高制热效果的目的。
[0044] 对应上述实施例,本发明还提出一种非临时性计算机可读存储介质。
[0045] 本发明实施例的非临时性计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时,可实现本发明上述实施例提出的另一种空调器的能效计算方法。
[0046] 根据本发明实施例的非临时性计算机可读存储介质,通过执行其存储的计算机程序,能够实时准确地检测到空调器的能效,从而便于根据空调器的实时能效优化空调器的运行状态,达到节能和提高制热效果的目的。附图说明
[0047] 图1为根据本发明实施例的空调器的能效计算方法的流程图
[0048] 图2为根据本发明实施例的空调器的制冷剂循环系统的示意图;以及
[0049] 图3为根据本发明实施例的空调器的能效计算方法。
[0050] 附图标记:
[0051] 压缩机100、四通200、室外换热器300、节流阀400和节流阀600、闪蒸器700和室内换热器500。
[0052] 排气口温度传感器2、室外换热器第一端温度传感器4、室内换热器第二端温度传感器5、室内换热器中部温度传感器6、室内温度传感器10。

具体实施方式

[0053] 下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
[0054] 下面结合附图来描述本发明实施例的空调器及其能效计算方法。
[0055] 图1为根据本发明实施例的空调器的能效计算方法的流程图。
[0056] 如图1所示,本发明实施例的空调器的能效计算方法,包括以下步骤:
[0057] S1,获取空调器的当前工况、压缩机的功率和空调器耗电功率。
[0058] 在本发明的实施例中,空调器可为双级蒸汽压缩式空调器,如图2所示,本发明实施例的空调器可包括压缩机100、四通阀200、室外换热器300、节流元件例如节流阀400和节流阀600、闪蒸器700和室内换热器500。
[0059] 在本发明的实施例中,可通过空调器的电控系统实时监测空调器的当前工况、压缩机的功率Pcom和空调器耗电功率P耗电。例如,图2中所示,可以通过在设置功率检测装置M以检测压缩机的功率。
[0060] S2,获取压缩机中排气口的排气口温度t2、室外换热器第一端的室外换热器第一端温度t4、室内换热器第二端的室内换热器第二端温度t5、室内换热器中部的室内换热器中部温度t6、室内温度t10。
[0061] 在本发明的一些实施例中,可通过在对应温度检测点分别设置温度传感器以检测该温度检测点的温度。具体地,如图2所示,可通过在压缩机中排气口处设置排气口温度传感器2以检测排气口温度t2、在室外换热器第一端处设置室外换热器第一端温度传感器4以检测室外换热器第一端温度t4、在室内换热器第二端处设置室内换热器第二端温度传感器5以检测室内换热器第二端温度t5、在室内换热器中部设置室内换热器中部温度传感器6以检测室内换热器中部温度t6,以及,在室内换热器的翅片处设置室内温度传感器10以检测室内温度t10。
[0062] 其中,每个温度传感器均与对应温度检测点的制冷剂管壁有效接触,并对制冷剂管壁,尤其是设置温度传感器的位置采取保温措施。例如,可将温度传感器紧贴管设置,并通过保温胶带对铜管进行缠绕密封。由此,能够提高温度检测的可靠性和准确性。
[0063] S3,根据室内换热器中部温度t6生成压缩机中回气口的回气口温度t1。
[0064] 在本发明的实施例中,在制冷模式下,回气口温度t1可以根据室内换热器中部温度t6和压缩机的运行频率获得,例如,通过以下公式获得:
[0065] t1=m1*t6+n1*f,其中,f为压缩机的运行频率,m1和n1为拟合系数,可以根据大量实验数据获得,并进行保存。
[0066] S4,根据室内换热器中部温度t6和室内温度t10生成室内换热器第一端的室内换热器第一端温度t7。
[0067] 在本发明的实施例中,可以通过以下公式获得室内换热器第一端温度t7:
[0068] t7=m2*t10+n2*t6+k2*f,其中,f为压缩机的运行频率,m2、n2和k2均为拟合系数,可以根据大量实验数据获得,并进行保存。
[0069] S5,根据室外换热器第一端温度t4和室内换热器第二端温度t5生成压缩机补气入口的补气温度t8。
[0070] 补气温度t8介于室外换热器第一端温度t4与室内换热器中部温度t6之间,可以通过高压侧温度例如包括室外换热器中部温度、室外换热器第一端温度t4以及低压侧温度例如包括室内换热器第二端温度t5、室内换热器中部温度t6、室内换热器第一端温度t7以及压缩机运行频率获得,例如,在本发明的一个实施例中,通过以下公式获得补气温度t8:
[0071] t8=m3*t4+n3*t5+k3*f,其中,f为压缩机的运行频率,m3、n3和k3均为拟合系数,可以根据大量实验数据获得,并进行保存。
[0072] 以上各点温度获得方法也可以由其他方法、经验获得。例如,一般在制冷模式时,室内换热器第一端温度与室内换热器中部温度接近,而制热模式时室内换热器第一端温度与排气温度较为接近,通过近似相等的方式计算也可获得对应点的温度。
[0073] S6,当空调器的当前工况为制冷工况时,根据压缩机中回气口的回气口温度t1生成回气口的制冷剂焓值h1,制冷剂和润滑油焓值h1,润滑油,根据压缩机中排气口的排气口温度t2生成排气口的制冷剂焓值h2,制冷剂和润滑油焓值h2,润滑油,根据室外换热器第一端的室外换热器第一端温度t4生成室外换热器第一端的制冷剂焓值h4,制冷剂和润滑油焓值h4,润滑油,根据室内换热器第一端的室内换热器第一端温度t7生成室内换热器第一端的制冷剂焓值t7,制冷剂和润滑油焓值h7,润滑油,根据压缩机补气入口的补气温度t8生成补入压缩机的气态制冷剂焓值h8’,制冷剂和润滑油焓值h8’,润滑油,以及,根据压缩机补气入口的补气温度t8生成闪蒸器的液态制冷剂焓值h8”,制冷剂和润滑油焓值h8”,润滑油。
[0074] 在此需要说明的是,当空调器的当前工况为制冷工况时,室外换热器作冷凝器,室外换热器第一端为冷凝器出口,室内换热器作蒸发器,室内换热器第一端为蒸发器出口,室内换热器第二端为蒸发器入口。
[0075] 由于不同温度检测点的制冷剂和润滑油的混合物的状态不同,因此不同温度检测点的制冷剂焓值和润滑油焓值均不同。在本发明的一个实施例中,可根据经验公式计算得到制冷剂焓值和润滑油焓值。
[0076] 下面分别说明根据经验公式得到回气口的制冷剂焓值h1,制冷剂和润滑油焓值h1,润滑油、排气口的制冷剂焓值h2,制冷剂和润滑油焓值h2,润滑油、室外换热器第一端的制冷剂焓值h4,制冷剂和润滑油焓值h4,润滑油、室内换热器第一端的制冷剂焓值h7制冷剂和润滑油焓值h7,润滑油、补入压缩机的气态制冷剂焓值h8’,制冷剂和润滑油焓值h8’,润滑油、闪蒸器的液态制冷剂焓值h8”,制冷剂和润滑油焓值h8”,润滑油的具体过程。
[0077] 对于压缩机中回气口的制冷剂焓值h1,制冷剂,当空调器的当前工况为制冷工况时,压缩机的回气口的制冷剂过热,可结合吸气过热度计算回气口的制冷剂焓值h1,制冷剂。
[0078] 具体地,可根据回气口温度t1和室内换热器中部温度t6生成吸气过热度Δt1,并根据吸气过热度Δt1和室内换热器中部温度t6生成回气口制冷剂焓值的修正因子D1,以及根据室内换热器中部温度t6生成吸气温度下饱和制冷剂的焓值h吸气饱和。其中,吸气过热度Δt1为回气口温度t1和室内换热器中部温度t6之差,即Δt1=t1-t6。
[0079] 在本发明的一个实施例中,回气口制冷剂焓值的修正因子D1可通过以下公式生成:其中,d1-d6为制冷
剂对应的过热区系数,可以根据具体情况进行预设。
[0080] 在本发明的一个实施例中,可以通过以下公式获得吸气温度下饱和制冷剂的焓值h吸气饱和: 其中,a1-a5为制冷剂对应的饱和区系数。
[0081] 在生成回气口制冷剂焓值的修正因子D1、饱和制冷剂的焓值h吸气饱和后,可进一步根据回气口制冷剂焓值的修正因子D1、饱和制冷剂的焓值h吸气饱和生成制冷剂焓值h1,制冷剂,h1,制冷剂=D1·h吸气饱和+d7,其中,d7为制冷剂对应的过热区系数。
[0082] 同样地,对于室内换热器第一端的制冷剂焓值h7,制冷剂,当空调器的当前工况为制冷工况时,室内换热器第一端的制冷剂过热,可结合该位置制冷剂的过热度计算室内换热器第一端的制冷剂焓值h7,制冷剂。
[0083] 具体地,可根据室内换热器第一端温度t7和室内换热器中部温度t6生成过热度Δt7,并根据过热度Δt7和室内换热器中部温度t6生成室内换热器第一端制冷剂焓值的修正因子D7,以及根据生成的室内换热器第一端制冷剂焓值的修正因子D7和饱和制冷剂的焓值h吸气饱和生成制冷剂焓值h7,制冷剂。其中,Δt7=t7-t6,在本发明的一些实施例中,可以通过以下公式获得修正因子D7:进而可以计算室内换热器第一端的制冷剂焓值h7,制冷剂:h7,制冷剂=D7·h吸气饱和+d7,其中,d1-d7为制冷剂对应的过热区系数。
[0084] 对于压缩机中排气口的制冷剂焓值h2,制冷剂,当空调器的当前工况为制冷工况时,压缩机的排气口的制冷剂过热,可结合排气过热度计算排气口的制冷剂焓值h2,制冷剂。
[0085] 具体地,可获取室外温度t9,例如,如图2所示,室外温度t9可通过在室外换热器的翅片处设置的室外温度传感器检测得到。根据室外温度t9和室外换热器第一端温度t4生成室外换热器中部温度t3。在本发明的一个实施例中,通过以下公式生成室外换热器中部温度t3:t3=m4*t9+n4*t4+k4*f,其中,f为压缩机的运行频率,m4、n4和k4均为拟合系数,可以根据大量实验数据获得,并进行保存。
[0086] 然后,可根据压缩机中排气口的排气口温度t2和室外换热器中部温度t3生成排气过热度Δt2,并根据排气过热度Δt2和室外换热器中部温度t3生成排气口制冷剂焓值的修正因子D2,以及根据室外换热器中部温度t3生成排气温度下饱和制冷剂的焓值h排气饱和。其中,排气过热度Δt2为压缩机中排气口的排气口温度t2和室外换热器中部温度t3之差,即Δt2=t2-t3。
[0087] 在本发明的一个实施例中,通过以下公式生成排气口制冷剂焓值的修正因子D2:其中,d1-d6为制冷剂
对应的过热区系数。在本发明的一个实施例中,排气温度下饱和制冷剂的焓值h排气饱和=a1+a2t3+a3t23+a4t33+a5,其中,a1-a5为制冷剂对应的饱和区系数。
[0088] 在生成排气口制冷剂焓值的修正因子D2、排气温度下饱和制冷剂的焓值h排气饱和后,可进一步根据排气口制冷剂焓值的修正因子D2、排气温度下饱和制冷剂的焓值h排气饱和生成排气口的制冷剂焓值h2,制冷剂:h2,制冷剂=D2·h排气饱和+d7,其中,d7为制冷剂对应的过热区系数。
[0089] 对于室外换热器第一端的制冷剂焓值h4,制冷剂,当空调器的当前工况为制冷工况时,室外换热器第一端的制冷剂过冷,可直接计算室外换热器第一端的制冷剂焓值h4,制冷剂:其中,c1-c4为制冷剂对应的过冷区系数。
[0090] 表1
[0091]
[0092] 在本发明的一些实施例中,可以通过以下公式计算补入压缩机的气态制冷剂焓值h8’,制冷剂: 其中,a1、a2、a3、a4和a5分别为制冷剂对应的饱和区系数。
[0093] 在本发明的一些实施例中,可以通过以下公式计算闪蒸器的液态制冷剂焓值h8”,制冷剂: 其中,c1、c2、c3和c4分别为制冷剂对应的过冷区系数。
[0094] 上述的制冷剂对应的饱和区系数、过热区系数和过冷区系数与制冷剂的种类有关,表1中分别示出了R410A制冷剂和R32制冷剂所对应的饱和区系数、过热区系数和过冷区系数。
[0095] 由此,可根据制冷剂的种类和如表1的对应关系得到各系数值,以计算各个温度检测点的制冷剂焓值。
[0096] 在本发明的其他实施例中,还可直接调用软件的计算结果,或通过其他途径获取各个温度检测点的制冷剂焓值。举例而言,当空调器的当前工况为制冷工况时,还可根据空调器中的低压压、回气口温度t1、室内换热器第一端温度t7分别得到回气口的制冷剂焓值h1和室内换热器第一端的制冷剂焓值h7,并可根据空调器中的高压压力、排气口温度t2、室外换热器第一端温度t4分别得到排气口的制冷剂焓值h2,制冷剂和室外换热器第一端的制冷剂焓值h4,制冷剂,以及根据补气温度或者压力可以获得该状态下饱和气体焓值h8’,制冷剂以及饱和液体焓值h8”,制冷剂。
[0097] 对于各个温度检测点的润滑油焓值hi,润滑油,可根据以下公式进行计算:
[0098] hi,润滑油=-0.0808+1.7032ti+0.0025t2i,
[0099] 其中,i为正整数,ti为温度检测点的温度。由此,可计算得到出回气口的润滑油焓值h1,润滑油=-0.0808+1.7032t1+0.0025t21、排气口的润滑油焓值h2,润滑油=-0.0808+1.7032t2+0.0025t22、室外换热器第一端的润滑油焓值h4,润滑油=-0.0808+1.7032t4+0.0025t24和室内换热器第一端的润滑油焓值h7,润滑油=-0.0808+1.7032t7+0.0025t27、补入压缩机的润滑油焓
2
值h8’,润滑油=-0.0808+1.7032t8+0.0025t 8、闪蒸器的润滑油焓值h8”,润滑油=-0.0808+
1.7032t8+0.0025t28。
[0100] S7,根据回气口的制冷剂焓值h1,制冷剂和润滑油焓值h1,润滑油生成回气口的混合物焓值h1,根据排气口的制冷剂焓值h2,制冷剂和润滑油焓值h2,润滑油生成排气口的混合物焓值h2,根据室外换热器第一端的制冷剂焓值h4,制冷剂和润滑油焓值h4,润滑油生成室外换热器第一端的混合物焓值h4,根据室内换热器第一端的制冷剂焓值t7,制冷剂和润滑油焓值h7,润滑油生成室内换热器第一端的混合物焓值h7,根据补入压缩机的气态制冷剂焓值h8’,制冷剂和润滑油焓值h8’,润滑油、生成补入压缩机混合物焓值h8’,以及,根据闪蒸器的液态制冷剂焓值h8”,制冷剂和润滑油焓值h8”,润滑油生成闪蒸器的混合物焓值h8”。
[0101] 在本发明的一些实施例中,可根据以下公式计算各个温度检测点的混合物焓值hi:hi=(1-Cg)hi,制冷剂+Cghi,润滑油,其中,Cg=f/104,Cg为混合物含油率,f为压缩机的运行频率。
[0102] 由此,可计算得到出回气口的混合物焓值h1=(1-Cg)h1,制冷剂+Cgh1,润滑油、排气口的混合物焓值h2=(1-Cg)h2,制冷剂+Cgh2,润滑油、室外换热器第一端的混合物焓值h4=(1-Cg)h4,制冷剂+Cgh4,润滑油、室内换热器第一端的混合物焓值h7=(1-Cg)h7,制冷剂+Cgh7,润滑油、补入压缩机混合物焓值h8'=(1-Cg)h8',制冷剂+Cgh8',润滑油和闪蒸器的混合物焓值h8”=(1-Cg)h8”,制冷剂+Cgh8”,润滑油。
[0103] S8,根据压缩机的功率、回气口的混合物焓值h1、排气口的混合物焓值h2、室外换热器第一端的混合物焓值h4、补入压缩机混合物焓值h8’和所述闪蒸器的混合物焓值h8”和室内换热器第一端的混合物焓值h7生成空调器的制冷量。
[0104] 在本发明的一些实施例中,可以根据以下公式生成空调器的制冷量:其中,Q制冷量为空调器的制冷量,
Pcom为压缩机的功率。
[0105] S9,根据空调器耗电功率和制冷量生成空调器的能效。
[0106] 由于空调器的当前工况为制冷工况,因而可根据空调器耗电功率和制冷量生成空调器的制冷能效,具体地,空调器的制冷能效为空调器的制冷量与耗电功率之比,即EER=Q制冷量/P耗电。
[0107] 在生成空调器的制冷能效后,还可根据空调器的制冷能效对当前空调器的运行状态进行调整。举例而言,可在空调器的制冷能效较低时提高压缩机的功率,以提高空调器的制冷能力,并相对降低空调器的能耗,从而不仅能够节能,还能够提高用户的舒适性。
[0108] 根据本发明实施例的空调器的能效计算方法,通过获取空调器的当前工况、压缩机的功率和空调器耗电功率,并获取压缩机中排气口、室外换热器第一端和室内换热器第二端、室内换热器中部和室内的温度,并根据相应温度生成回气口温度、室内换热器第一端温度以及压缩机补气入口的补气温度,以及,在空调器处于制冷工况时根据上述各个温度检测点的温度生成上述各个温度检测点的制冷剂焓值和润滑油焓值,并进一步生成各个温度检测点的混合物焓值,然后结合压缩机的功率、上述各个温度检测点的混合物焓值和空调器耗电功率得到空调器的能效,由此,能够实时准确地检测到空调器的能效,从而便于根据空调器的实时能效优化空调器的运行状态,达到节能和提高制冷效果的目的。
[0109] 对应上述实施例,本发明还提出一种空调器。
[0110] 本发明实施例的空调器,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时,可实现本发明上述实施例提出的空调器的能效计算方法。
[0111] 根据本发明实施例的空调器,能够实时准确地对能效进行检测,根据实时能效进行运行状态优化,达到节能和提高制冷效果的目的。
[0112] 对应上述实施例,本发明还提出一种非临时性计算机可读存储介质。
[0113] 本发明实施例的非临时性计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时,可实现本发明上述实施例提出的空调器的能效计算方法。
[0114] 根据本发明实施例的非临时性计算机可读存储介质,通过执行其存储的计算机程序,能够实时准确地检测到空调器的能效,从而便于根据空调器的实时能效优化空调器的运行状态,达到节能和提高制冷效果的目的。
[0115] 上述实施例的空调器及其能效计算方法和系统可检测到空调器的制冷能效,为检测空调器的制热能效,本发明还提出另一种空调器的能效计算方法。
[0116] 如图3所示,本发明实施例的另一种空调器的能效计算方法,包括以下步骤:
[0117] S11,获取空调器的当前工况、压缩机的功率和空调器耗电功率。
[0118] 本发明实施例的空调器可为双级蒸汽压缩式空调器,如图2所示,本发明实施例的空调器可包括压缩机100、四通阀200、室外换热器300、节流元件例如节流阀400和节流阀600、闪蒸器700和室内换热器500。
[0119] 在本发明的实施例中,可通过空调器的电控系统实时监测空调器的当前工况、压缩机的功率Pcom和空调器耗电功率P耗电。例如,图2中所示,可以通过在设置功率检测装置M以检测压缩机的功率。
[0120] S12,获取压缩机中排气口的排气口温度t2、室外换热器第一端的室外换热器第一端温度t4、室内换热器中部的室内换热器中部温度t6、室内换热器第二端的室内换热器第二端温度t5、室内温度t10。
[0121] 在本发明的一些实施例中,可通过在对应温度检测点分别设置温度传感器以检测该温度检测点的温度。具体地,如图2所示,可通过在压缩机中排气口处设置排气口温度传感器2以检测排气口温度t2、在室外换热器第一端处设置室外换热器第一端温度传感器4以检测室外换热器第一端温度t4、在室内换热器第二端处设置室内换热器第二端温度传感器5以检测室内换热器第二端温度t5、在室内换热器中部设置室内换热器中部温度传感器6以检测室内换热器中部温度t6,以及,在室内换热器的翅片处设置室内温度传感器10以检测室内温度t10。
[0122] 其中,每个温度传感器均与对应温度检测点的制冷剂管壁有效接触,并对制冷剂管壁,尤其是设置温度传感器的位置采取保温措施。例如,可将温度传感器紧贴铜管设置,并通过保温胶带对铜管进行缠绕密封。由此,能够提高温度检测的可靠性和准确性。
[0123] S13,根据室外换热器第一端温度t4生成压缩机中回气口的回气口温度t1。
[0124] 在本发明的实施例中,在制热模式下,回气口温度t1可以根据室外换热器第一端温度t4和压缩机的运行频率获得,例如,可以通过以下公式获得:
[0125] t1=m5*t4+n5*f,其中,f为压缩机的运行频率,m5和n5为拟合系数,可以根据大量实验数据获得,并进行保存。
[0126] S14,根据室内换热器中部温度t6和室内温度t10生成室内换热器第一端的室内换热器第一端温度t7。
[0127] 在本发明的实施例中,可以通过以下公式获得室内换热器第一端温度t7:
[0128] t7=m2*t10+n2*t6+k2*f,其中,f为压缩机的运行频率,m2、n2和k2均为拟合系数,可以根据大量实验数据获得,并进行保存。
[0129] S15,根据室外换热器第一端温度t4和室内换热器第二端温度t5生成压缩机补气入口的补气温度t8。
[0130] 补气温度t8介于室外换热器第一端温度t4与室内换热器中部温度t6之间,可以通过高压侧温度例如包括室外换热器中部温度、室外换热器第一端温度t4以及低压侧温度例如包括室内换热器第二端温度t5、室内换热器中部温度t6、室内换热器第一端温度t7以及压缩机运行频率获得,例如,在本发明的一个实施例中,通过以下公式获得补气温度t8:
[0131] t8=m3*t4+n3*t5+k3*f,其中,f为压缩机的运行频率,m3、n3和k3均为拟合系数,可以根据大量实验数据获得,并进行保存。
[0132] S16,当空调器的当前工况为制热工况时,根据压缩机中回气口的回气口温度t1生成回气口的制冷剂焓值h1,制冷剂和润滑油焓值h1,润滑油,根据压缩机中排气口的排气口温度t2生成排气口的制冷剂焓值h2,制冷剂和润滑油焓值h2,润滑油,根据室内换热器第二端的室内换热器第二端温度t5生成室内换热器第二端的制冷剂焓值h5,制冷剂和润滑油焓值h5,润滑油,根据室内换热器第一端的室内换热器第一端温度t7生成室内换热器第一端的制冷剂焓值t7,制冷剂和润滑油焓值h7,润滑油,根据压缩机补气入口的补气温度t8生成补入压缩机的气态制冷剂焓值h8’,制冷剂和润滑油焓值h8’,润滑油,以及,根据压缩机补气入口的补气温度t8生成闪蒸器的液态制冷剂焓值h8”,制冷剂和润滑油焓值h8”,润滑油。
[0133] 在此需要说明的是,当空调器的当前工况为制热工况时,室外换热器作蒸发器,室内换热器作冷凝器,室内换热器第一端为冷凝器入口,室内换热器第二端为冷凝器出口。
[0134] 由于不同温度检测点的制冷剂和润滑油的混合物的状态不同,因此不同温度检测点的制冷剂焓值和润滑油焓值均不同。在本发明的一个实施例中,可根据经验公式计算得到制冷剂焓值和润滑油焓值。
[0135] 下面分别说明根据经验公式得到回气口的制冷剂焓值h1,制冷剂和润滑油焓值h1,润滑油、排气口的制冷剂焓值h2,制冷剂和润滑油焓值h2,润滑油、室内换热器第二端的制冷剂焓值h5,制冷剂和润滑油焓值h5,润滑油和室内换热器第一端的制冷剂焓值h7,制冷剂和润滑油焓值h7,润滑油、补入压缩机的气态制冷剂焓值h8’,制冷剂和润滑油焓值h8’,润滑油、闪蒸器的液态制冷剂焓值h8”,制冷剂和润滑油焓值h8”,润滑油的具体过程。
[0136] 对于压缩机中回气口的制冷剂焓值h1,制冷剂,当空调器的当前工况为制冷工况时,压缩机的回气口的制冷剂过热,可结合吸气过热度计算回气口的制冷剂焓值h1,制冷剂。
[0137] 具体地,获取室外温度t9,如图2所示,室外温度t9可通过在室外换热器翅片处设置的室外温度传感器检测得到。根据室外温度t9和室外换热器第一端温度t4生成室外换热器中部温度t3,在本发明的一个实施例中,通过以下公式生成室外换热器中部温度t3:t3=m4*t9+n4*t4+k4*f,其中,f为压缩机的运行频率,m4、n4和k4均为拟合系数,可以根据大量实验数据获得,并进行保存。
[0138] 然根据回气口温度t1和室外换热器中部温度t3生成吸气过热度Δt1,并根据吸气过热度Δt1和室外换热器中部温度t3生成回气口制冷剂焓值的修正因子D1,以及根据室外换热器中部温度t3生成吸气温度下饱和制冷剂的焓值h吸气饱和。其中,吸气过热度Δt1为回气口温度t1和室外换热器中部温度t3之差,即Δt1=t1-t3。在本发明的一些实施例中,可以通过以下公式生成回气口制冷剂焓值的修正因子:其中,d1-d6为制冷剂对
应的过热区系数,可以根据具体情况进行预设。在本发明的一些实施例中,吸气温度下饱和制冷剂的焓值h吸气饱和=a1+a2t3+a3t23+a4t33+a5,其中,a1-a5为制冷剂对应的饱和区系数。
[0139] 在生成回气口制冷剂焓值的修正因子D1、饱和制冷剂的焓值h吸气饱和后,可进一步根据回气口制冷剂焓值的修正因子D1、饱和制冷剂的焓值h吸气饱和生成制冷剂焓值h1,制冷剂,h1,制冷剂=D1·h吸气饱和+d7,其中,d7为制冷剂对应的过热区系数。
[0140] 对于压缩机中排气口的制冷剂焓值h2,制冷剂,当空调器的当前工况为制热工况时,压缩机的排气口的制冷剂过热,可结合排气过热度计算排气口的制冷剂焓值h2,制冷剂。
[0141] 具体地,可根据压缩机中排气口的排气口温度t2和室内换热器中部温度t6生成排气过热度Δt2,并根据排气过热度Δt2和室内换热器中部温度t6生成排气口制冷剂焓值的修正因子D2,以及根据室内换热器中部温度t6生成排气温度下饱和制冷剂的焓值h排气饱和。其中,排气过热度Δt2为压缩机中排气口的排气口温度t2和室内换热器中部温度t6之差,即Δt2=t2-t6。在本发明的一些实施例中,可以通过以下公式生成排气口制冷剂焓值的修正因子:
[0142] 其中 ,d1-d6为制冷剂对应的过热区系数。
[0143] 在本发明的一个实施例中,可以根据以下公式生成排气温度下饱和制冷剂的焓值h排气饱和: 其中,a1-a5为制冷剂对应的饱和区系数。
[0144] 在生成排气口制冷剂焓值的修正因子D2后,可进一步根据排气口制冷剂焓值的修正因子D2、排气温度下饱和制冷剂的焓值h排气饱和生成排气口的制冷剂焓值h2,制冷剂,h2,制冷剂=D2·h排气饱和+d7,其中,d7为制冷剂对应的过热区系数。
[0145] 同样地,对于室内换热器第一端的制冷剂焓值h7,制冷剂,当空调器的当前工况为制热工况时,室内换热器第一端的制冷剂过热,可结合该位置制冷剂的过热度计算室内换热器第一端的制冷剂焓值h7,制冷剂。
[0146] 具体地,可根据室内换热器第一端温度t7和室内换热器中部温度t6生成过热度Δt7,并根据过热度Δt7和室内换热器中部温度t6生成室内换热器第一端制冷剂焓值的修正因子D7,以及根据生成的室内换热器第一端制冷剂焓值的修正因子D7和饱和排气温度饱和制冷剂的焓值h排气饱和生成制冷剂焓值h7。其中,Δt7=t7-t6。在本发明的一些实施例中,可以通过以下公式生成室内换热器第一端的制冷剂焓值的修正因子D7:
[0147] 进而计算获得室内换热器第一端的制冷剂焓值h7,制冷剂:h7,制冷剂=D7·h排气饱和+d7,其中,其中,d1-d7为制冷剂对应的过热区系数。
[0148] 对于室内换热器第二端的制冷剂焓值h5,当空调器的当前工况为制热工况时,室内换热器第二端的制冷剂过冷,可直接计算室内换热器第二端的制冷剂焓值h5,制冷剂:其中,c1-c4为制冷剂对应的过冷区系数。
[0149] 在本发明的一些实施例中,可以通过以下公式计算补入压缩机的气态制冷剂焓值h8’,制冷剂: 其中,a1、a2、a3、a4和a5分别为制冷剂对应的饱和区系数。
[0150] 在本发明的一些实施例中,可以通过以下公式计算闪蒸器的液态制冷剂焓值h8”,制冷剂: 其中,c1、c2、c3和c4分别为制冷剂对应的过冷区系数。
[0151] 上述的制冷剂对应的饱和区系数、过热区系数和过冷区系数与制冷剂的种类有关,表1中分别示出了R410A制冷剂和R32制冷剂所对应的饱和区系数、过热区系数和过冷区系数。由此,可根据制冷剂的种类和如表1的对应关系得到各系数值,以计算各个温度检测点的制冷剂焓值。
[0152] 在本发明的其他实施例中,还可直接调用软件的计算结果,或通过其他途径获取各个温度检测点的制冷剂焓值。举例而言,当空调器的当前工况为制热工况时,还可根据空调器中的高压压力、回气口温度t1、室内换热器第一端温度t7分别得到回气口的制冷剂焓值h1,制冷剂和室内换热器第一端的制冷剂焓值h7,制冷剂,并可根据空调器中的高压压力、排气口温度t2、室内换热器第二端温度t5分别得到排气口的制冷剂焓值h2,制冷剂和室内换热器第二端的制冷剂焓值h5,制冷剂。
[0153] 对于各个温度检测点的润滑油焓值hi,润滑油,可根据以下公式进行计算:
[0154] hi,润滑油=-0.0808+1.7032ti+0.0025t2i,
[0155] 其中,i为正整数,ti为温度检测点的温度。由此,可计算得到出回气口的润滑油焓值h1,润滑油、排气口的润滑油焓值h2,润滑油、室内换热器第二端的润滑油焓值h5,润滑油和室内换热器第一端的润滑油焓值h7,润滑油、补入压缩机的和润滑油焓值h8’,润滑油、闪蒸器的润滑油焓值h8”,润滑油。
[0156] S17,根据回气口的制冷剂焓值h1,制冷剂和润滑油焓值h1,润滑油生成回气口的混合物焓值h1,根据排气口的制冷剂的焓值h2,制冷剂和润滑油焓值h2,润滑油生成排气口的混合物焓值h2,根据室内换热器第二端的制冷剂焓值h5,制冷剂和润滑油焓值h5,润滑油生成室内换热器第二端的的混合物焓值h5,根据室内换热器第一端的制冷剂焓值h7,制冷剂和润滑油焓值h7,润滑油生成室内换热器第一端的混合物焓值h7,根据补入压缩机的气态制冷剂焓值h8’,制冷剂和润滑油焓值h8’,润滑油生成补入压缩机混合物焓值h8’,以及,根据闪蒸器的液态制冷剂焓值h8”,制冷剂和润滑油焓值h8”,润滑油生成补入压缩机混合物焓值h8’以及,根据闪蒸器的液态制冷剂焓值h8”,制冷剂和润滑油焓值h8”,润滑油生成闪蒸器的混合物焓值h8”。
[0157] 在本发明的实施例中,可根据以下公式计算各个温度检测点的混合物焓值hi:hi=(1-Cg)hi,制冷剂+Cghi,润滑油,其中,Cg=f/104,Cg为混合物含油率,f为压缩机的运行频率。
[0158] 由此,可计算得到出回气口的混合物焓值h1、排气口的混合物焓值h2、室内换热器第二端的混合物焓值h5、室内换热器第一端的混合物焓值h7、补入压缩机混合物焓值h8’和闪蒸器的混合物焓值h8”。
[0159] S18,根据压缩机的功率、回气口的混合物焓值h1、排气口的混合物焓值h2、室内换热器第二端的混合物焓值h5和室内换热器第一端的混合物焓值h7、补入压缩机混合物焓值h8’和闪蒸器的混合物焓值h8”生成空调器的制热量。
[0160] 在本发明的一些实施例中,可根据以下公式生成空调器的制热量:其中,Q制热量为空调器的制热量,
Pcom为压缩机的功率。
[0161] S19,根据空调器耗电功率和制热量生成所述空调器的能效。
[0162] 由于空调器的当前工况为制热工况,因而可根据空调器耗电功率和制热量生成空调器的制热能效,具体地,空调器的制热能效为空调器的制热量与耗电功率之比,即COP=Q制热量/P耗电。
[0163] 在生成空调器的制热能效后,还可根据空调器的制热能效对当前空调器的运行状态进行调整。举例而言,可在空调器的制热能效较低时提高压缩机的功率,以提高空调器的制热能力,并相对降低空调器的能耗,从而不仅能够节能,还能够提高用户的舒适性。
[0164] 根据本发明实施例的空调器的能效计算方法,通过获取空调器的当前工况、压缩机的功率和空调器耗电功率,并获取压缩机中排气口、室外换热器第一端和室内换热器第二端、室内换热器中部和室内的温度,并根据相应温度生成回气口温度、室内换热器第一端温度以及压缩机补气入口的补气温度,以及,在空调器处于制冷工况时根据上述各个温度检测点的温度生成上述各个温度检测点的制冷剂焓值和润滑油焓值,并进一步生成各个温度检测点的混合物焓值,然后结合压缩机的功率、上述各个温度检测点的混合物焓值和空调器耗电功率得到空调器的能效,由此,能够实时准确地检测到空调器的能效,从而便于根据空调器的实时能效优化空调器的运行状态,达到节能和提高制热效果的目的。
[0165] 对应上述实施例,本发明还提出另一种空调器。
[0166] 本发明实施例的空调器,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时,可实现本发明上述实施例提出的另一种空调器的能效计算方法。
[0167] 根据本发明实施例的空调器,能够实时准确地对能效进行检测,根据实时能效进行运行状态优化,达到节能和提高制热效果的目的。
[0168] 对应上述实施例,本发明还提出一种非临时性计算机可读存储介质。
[0169] 本发明实施例的非临时性计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时,可实现本发明上述实施例提出的另一种空调器的能效计算方法。
[0170] 根据本发明实施例的非临时性计算机可读存储介质,通过执行其存储的计算机程序,能够实时准确地检测到空调器的能效,从而便于根据空调器的实时能效优化空调器的运行状态,达到节能和提高制热效果的目的。
[0171] 在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
[0172] 尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。
相关专利内容
标题 发布/更新时间 阅读量
制冷剂压缩机 2020-05-12 476
一种封闭式制冷压缩机 2020-05-11 352
制冷剂压缩机 2020-05-12 654
制冷压缩机阀板 2020-05-13 112
制冷机及压缩机 2020-05-13 794
制冷压缩机 2020-05-11 953
制冷压缩机 2020-05-12 529
制冷压缩机 2020-05-12 790
制冷压缩机 2020-05-11 610
制冷剂压缩机 2020-05-13 500
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈