首页 / 专利库 / 驱动系统 / 并联混合动力系统 / 并联式汽车油电混合动力系统

并联式汽车油电混合动系统

阅读:418发布:2020-05-14

专利汇可以提供并联式汽车油电混合动系统专利检索,专利查询,专利分析的服务。并且本 发明 是一种并联式 汽车 油电 混合动 力 系统 。它包括一个 发动机 、一个 电机 、一个变速箱,主要改进是电机轴的一端通过一个单向 离合器 和一个限力矩离合器与所述发动机的轴相联,电机轴的另一端与变速箱的 输入轴 相联,变速箱的 输出轴 与 车轮 的 驱动轴 相联。本发明行驶间启动发动机时,只需控制限力矩离合器或三挡离合器耦合这一个动作,简化了控制过程,大大缩短了启动时间,只需0.3~0.4秒,比已有技术缩短了二至四倍,同时,启动期间不用断开主离合器,仍保持电机的动力输出,使车辆平稳,不会降低车辆的驱动性能。本发明用智能 控制器 实现了油电混合系统的各项功能,使系统驱动性能优良。本发明还具有结构简单、附加重量轻、体积小和成本低的优点。,下面是并联式汽车油电混合动系统专利的具体信息内容。

1.一种并联式汽车油电混合动系统,
A、它包括一个发动机(1)、一个电机(2)、一个变速箱(3)、所述电机(2)轴的一端通过耦合机构与所述发动机(1)的轴相联,所述电机(2)轴的另一端与变速箱(3)的输入轴相联,所述变速箱(3)的输出轴车轮驱动轴相联,其特征是:
B、所述的耦合机构由一个单向离合器(4)和一个限力矩离合器(5)并联构成,它们的一端与发动机轴相联,另一端与电机轴相联,所述的单向离合器(4)在发动机转速低于电机转速时处于离开状态而允许两轴之间自由转动,而在发动机转速趋向于超过电机转速时处于闭合状态而将两轴在一起,所述的限力矩离合器(5)用于在车辆行驶中启动发动机时传递一个预先设定的耦合力矩,它既可以启动发动机,又可以避免发动机轴和电机轴两轴锁定时强烈的冲量矩;或者所述的耦合机构是一个具有分离挡、限力矩耦合挡和全力矩耦合挡的三挡离合器(5’),它的一端与发动机轴相联,另一端与电机轴相联;
C、它还包括转速信号采集器(6)、驾驶信号采集器(7)、智能控制器(8)、电池(9)和逆变器(10),所述的智能控制器(8)主要用于控制电机输出扭矩的大小和方向及控制发动机(1)在一些工况下的启、停及所述限力矩离合器(5)或三挡离合器(5’)的离、合动作,所述的转速信号采集器(6)和所述的驾驶信号采集器(7)与智能控制器(8)的信号输入接口相接,所述智能控制器(8)的电机输出扭矩大小及方向控制信号输出端与逆变器(10)的控制信号输入端相接,所述智能控制器(8)的离合控制信号输出端与限力矩离合器(5)或三挡离合器的离合控制端相接,所述智能控制器(8)的发动机启、停控制信号输出端与发动机喷油器的控制端相接,所述的逆变器(10)的直流输入端与所述蓄电池(9)相接,所述逆变器(10)的交流输出端与电机(2)的供电端相接。
2.根据权利要求1所述的并联式汽车油电混合动力系统,其特征是:所述的智能控制器(8)是一个以电机控制器为核心的单片机系统,它主要由单片机(8-1)、内部集成的实时处理单元、外挂的只读存储器(EPROM)和随机存储器(RAM)及A/D转换器(8-2)构成,所述的驾驶信号采集器(7)通过A/D转换器与单片机的输入接口相接,所述转速信号采集器(6)与单片机(8-1)的信号输入端(ch13、ch14、ch15)相接,单片机(8-1)的并行输出端(ch1~ch12)通过驱动电路单元(8-3)与逆变器(10)的半导体开关管的控制端(A1、A2、B1、B2、C1、C2)相接,单片机(8-1)的一个串行输出端与一个驱动解码电路(8-3)的输入端相接,所述的驱动解码电路(8-3)的一个输出端与限力矩离合器(5)或三挡离合器的离合控制端相接,所述智能控制器(8)的一个信号输出端与发动机喷油器的控制端相接。

说明书全文

并联式汽车油电混合动系统

技术领域

[0001] 本发明涉及一种油电混合动力系统,具体地说,本发明涉及一种并联式油电混合动力系统。

背景技术

[0002] 在已有技术中,并联式油电混合系统主要是将发动机输出的力矩和电机输出的力矩用机械方式耦合在一起,使电机可以协助发动机机械助推车辆。最简单的并联系统是将电机轴固联在发动机输出轴上,然后再通过变速箱中的离合器变速器相连。这种系统只使用一个电机,结构简单,能量传递效率高,附加重量轻、体积小,成本低。但是,由于电机轴与发动机轴相连,两者总是同时工作,使系统不能实现纯电力驱动工况,限制了系统的功能和节能。
[0003] 为克服上述缺点,美国专利6,655,484介绍了一种并联式油电混合系统。参见该专利的图1,其改进点是在发动机12轴和电机16轴之间增加了一个离合器17,通过该离合器的离合,电机轴可以脱开发动机轴而单独驱动车辆。这样,在道路阻塞而走走停停的情况下,系统可以关闭发动机而用纯电驱动车辆,从而避免频繁地启动和关闭发动机,达到节省燃油的目的;当道路畅通后,再启动发动机加速。这是油车混合动力系统最适于城市交通的一大优点。但是,该系统存在一个问题:系统在行驶中启动发动机时需要完成的步骤多,控制复杂,参见该专利的图1,即先要使主离合器15分离,然后控制电机减速到零速度,再控制离合器17耦合,再加速电机带动发动机轴转动,发动机启动后,再将主离合器15耦合。整个过程需要大约1~2秒钟,且在此期间,系统无动力输出,乘者有明显感觉,使车辆的驱动性能下降。

发明内容

[0004] 本发明的目的是针对已有技术中问题,提供一种改进的并联式汽车油电混合动力系统,它可以在行驶间时直接、快速启动发动机,从而达到控制简单、用时短、车辆平稳的效果。
[0005] 为实现上述目的,本发明的技术方案如下:
[0006] 它包括一个发动机、一个电机、一个变速箱、所述电机轴的一端通过耦合机构与所述发动机的轴相联,所述电机轴的另一端与变速箱的输入轴相联,所述变速箱的输出轴与车轮驱动轴相联,其特征是:所述的耦合机构由一个单向离合器和一个限力矩离合器并联构成,它们的一端与发动机轴相联,另一端与电机轴相联,所述的单向离合器在发动机转速低于电机转速时处于开离状态而允许两轴之间自由转动,而在发动机转速趋向于超过电机转速时处于闭合状态而将两轴在一起,所述的限力矩离合器用于在车辆行驶中启动发动机时传递一个预先设定的耦合力矩,它既可以启动发动机,又可以避免发动机轴和电机轴两轴锁定时强烈的冲量矩;或者所述的耦合机构是一个具有分离挡、限力矩耦合挡和全力矩耦合挡的三挡离合器,它的一端与发动机轴相联,另一端与电机轴相联;它还包括转速信号采集器、驾驶信号采集器、智能控制器电池和逆变器,所述的智能控制器主要用于控制电机输出扭矩的大小和方向及控制发动机在一些工况下的启、停及所述限力矩离合器或三挡离合器的离、合动作,所述的转速信号采集器和所述的驾驶信号采集器与智能控制器的信号输入接口相接,所述智能控制器的电机扭矩及方向控制信号输出端与逆变器的控制信号输入端相接,所述智能控制器的离合控制信号输出端与限力矩离合器或三挡离合器的离合控制端相接,所述智能控制器的发动机启、停控制信号输出端与发动机喷油器的控制端相接,所述的逆变器的直流输入端与所述蓄电池相接,所述逆变器的交流输出端与电机的供电端相接。
[0007] 本发明进一步改进的技术方案如下:
[0008] 所述的智能控制器是一个以电机控制器为核心的单片机系统,它主要由单片机、内部集成的实时处理单元、外挂的只读存储器和随机存储器及A/D转换器构成,所述的驾驶信号采集器通过A/D转换器与单片机的输入接口相接,所述转速信号采集器与单片机的信号输入端口相接,单片机的并行输出端口通过驱动电路单元与逆变器的半导体开关管的控制端相接,单片机的一个串行输出端与一个驱动解码电路的输入端相接,所述的驱动解码电路的一个输出端与限力矩离合器或三挡离合器的离合控制端相接,所述智能控制器的一个信号输出端与发动机喷油器的控制端相接。
[0009] 本发明与已有技术相比具有以下优点:
[0010] 一、本发明用于一个单向离合器和一个限力矩离合器或三挡离合器代替了接在发动机轴和电机轴之间的普通离合器,在行驶间启动发动机时,系统用限力矩离合器将电机轴与发动机轴耦合在一起,由于限力矩离合器的耦合力矩是预先设定限量值,因此,当它耦合时可以防止了两轴产生强烈的碰撞力矩,同时,又能通过它将电机输出的一部分正向力矩传递到发动机轴,使发动机启动,当发动机启动后,发动机的转速趋于超过电机转速,这时,单向离合器或三挡离合器全力矩耦合,将发动机轴与电机轴锁定在一起,使发动机输出的力矩全部传递到驱动轴,来驱动车辆。因此,本发明行驶间启动发动机时,只需控制限力矩离合器或三挡离合器耦合这一个动作,简化了控制过程,大大缩短了启动时间,只需0.3~0.4秒,比已有技术缩短了二至四倍;同时,启动期间不用断开主离合器,仍保持电机的动力输出,使车辆平稳,不会降低车辆的驱动性能。
[0011] 二、本发明用智能控制器实现了油电混合系统的各项功能,使系统驱动性能优良。
[0012] 三、本发明保持了已有技术的优势,即只使用一个电机,结构简单,能量传递效率高,附加重量轻、体积小,成本低。
[0013] 综上所述,本发明与已有技术相比,其系统性能更加优越。附图说明
[0014] 图1、本发明的系统方框图
[0015] 图2、滚柱式单向离合器的具体结构示意图。
[0016] 图3、弹簧压力、湿式多片限力矩离合器的具体结构示意图。
[0017] 图4、三挡离合器的具体结构示意图。
[0018] 图5、智能控制器的电路原理图。

具体实施方式

[0019] 参见图1,它包括一个发动机1、一个电机2、一个变速箱3,所述电机2轴的一端通过一个单向离合器4和一个限力矩离合器5(或一个三挡离合器)与发动机轴相联,所述电机2轴的另一端与变速箱3的输入轴相联,变速箱的输出轴与车轮的驱动轴相联,其中单向离合器4和限力矩离合器5为并联连接,它们的一端与发动机轴相接,另一端与电机轴相接。单向离合器4在发动机转速低于电机转速时处于离开状态,可以允许两轴之间自由转动,而在发动机转速趋于超过电机转速时处于闭合状态,即将两轴锁在一起,使两轴以一个速度转动,这时,发动机输出的力矩可以通过变速箱直接传递到驱动轴(即变速箱3的输出轴)。限力矩离合器5用于在行驶间启动发动机时直接将发动机轴和电机轴耦合,使电机可以拖动发动机启动,耦合时它传递的是一个预先设定的有限力矩,这样既可以拖动发动机启动、又可以避免静止的发动机轴与转动的电机轴耦合时产生的强烈冲量矩,从而使行驶间启动发动机时保持车辆平稳。
[0020] 参见图1、5,本系统还包括转速信号采集器6、驾驶信号采集器7、智能控制器8、蓄电池9和逆变器10。其中转速采集器6应具有发动机、电机和驱动轴的转速采集,一般的动力车上都设有发动机和电机的转速传感器,由它们提供发动机和电机的转速信号;驱动轴转速信号可以采用两种方式进行采集,一种是用转速传感器直接测轴速,一种是根据变速箱给出的挡位信号用变速箱输入和输出轴的传速比计算出来。所述的驾驶信号采集器7应包括油门踏板制动踏板、钥匙、离合踏板(或主离合器)的信号采集,一般动力车上都设有上述驾驶动作的传感器,它们可以提供这些驾驶传感信号。所述的智能控制器8是一个以电机控制器为核心的单片机系统,下面以Motorola生产的MC68332器件为例说明智能控制器8的结构及其工作原理,与MC68332器件相类似的电机微处理控制集成器件还有Motorola公司的MC68HC708器件和TexasInstruments公司的TMS320C24及SGS-Thomason Microelectrics公司的ST92141K4器件等,它们都可作为MC68332器件的代换器件。智能控制器8主要由单片机8-1、内部集成的实时处理单元(主要用于生成逆变器输出频率的控制信号)、外挂的只读存储器(EPROM)和随机存储器(RAM)及A/D转换器8-2构成。所述的驾驶信号7与A/D转换器的输入接口相接,由A/D转换器8-2将驾驶信号转换成数字信号送入单片机8-1,所述转速信号6从单片机8-1的输入端口ch13、ch14、ch15送入。单片机8-1根据这些传感信号判断电机所需的驱动扭矩(或速度)和方向,然后通过实时处理单元给出逆变器相应频率(或相位)的控制信号,从其并行输出端口ch1~ch12输出,并通过驱动门电路单元8-3的驱动和单片机的“使能”控制分别送入逆变器10的半导体开关管的控制端A1、A2、B1、B2、C1、C2,从而控制逆变器10输出的电流频率,通过改变逆变器电流的频率可控制电机输出扭矩的大小和正、反向的转动。同时,单片机8-1还要根据这些传感信号来控制车辆在某些工况下发动机的启、停及限力矩离合器的离、合等,限力矩离合器的控制信号通过驱动解码电路8-3输出,并与限力矩离合器5的控制端相接,发动机的启、停控制信号与其喷油器的控制端相接。
[0021] 电机2具有电动和发电两个工作模式,也就是说,当定子绕组旋转磁场的转速高于转子转速时(或者当定子绕组旋转磁场的相位超前于转子磁场相位时),电机呈电动状态,反之,电机则呈发电状态。同时,逆变器10可以将蓄电池输出的直流电变成交流电而为电机2供电,也可以将电机发出的交流电变成直流电而存入蓄电池。通过调整逆变器的电流频率或相位,可控制电机进入电动或发电状态和控制其输出功率大小。利用电机和逆变器的上述两种特性,可以用蓄电池9为电机供电实现电动驱动功能,而电机制动时,电机又可将驱动轴的动能转换成电能存入蓄电池。
[0022] 本系统的变速箱3采用一种带有主离合器3-1的变速箱,它可以是手动或自动的。
[0023] 下面以手动变速箱为例说明本系统各工况的工作过程。
[0024] 一、启动系统:
[0025] 踩下主离合器3-1(分离),钥匙转到启动位置,然后放松,钥匙回到行驶位置,这时,智能控制器8通过电平检测器13对蓄电池9进行检测,当检测到电力充足时,系统不动作,使其处于停车待机状态,即不启动发动机,电机2待机;当检测到蓄电池9的电力不足时,则系统动作,即智能控制器8控制限力矩离合器5(或离合器5’)耦合,同时,启动电机(即输出相应频率的控制信号送入逆变器,则蓄电池输出的直流经逆变器变成交流后为电机供电,使其启动),由电机2拖动发动机,同时控制发动机喷油器喷油,发动机1启动,反过来带动电机2转动,两轴通过单向离合器4(或三挡离合器5’全力矩挡)锁在一起,这时控制电机进入发电状态,电机输出的电能通过逆变器10向蓄电池9充电。充电结束后,智能控制器8控制发动机喷油器停止喷油,从而关闭发动机1,系统进入上述停车待机状态。
[0026] 二、发动机转动时驱动车辆起步:
[0027] 踩下主离合器3-1,钥匙转到启动位置,智能控制器8控制限力矩离合器5耦合,并启动电机2拖动发动机转动,则发动机启动而进入怠速状态,同时带动电机一起转动,两轴由单向离合器4(或三挡离合器5’全力矩挡)锁在一起;如果驾驶者挂变速箱挡(前进或倒退),则系统可以驱动车辆起步,即挂挡后踩一下油门(增加发动机的力量,避免熄火),同时,慢慢放松主离合器3-1的踏板,使其缓慢耦合,则发动机输出的力矩可以通过变速箱传递到驱动轴(即变速箱3的输出轴),车辆缓慢起步;当变速箱输入轴的速度增大到与发动机轴的速度相等时,可以完成放松主离合器的踏板,使主离合器3-1完全耦合,即将发动机轴和变速箱输入轴锁在一起,驱动车辆前进。在该起步过程中,智能控制器8也可以控制电机输出力矩,辅助发动机驱动车辆,从而加速车辆的起步。起步后,智能控制器8可根据情况控制电机实现电动助力、发电或空转。
[0028] 上述车辆起步的操作与常规手排挡车相同。
[0029] 三、电动起步和纯电驱动:
[0030] 启动时,钥匙置到行驶位,发动机处于停止状态,踩下主离合器3-1,挂变速箱挡(前进挡或倒挡),这时,限力矩离合器5处于分离状态,再释放主离合器3-1的踏板,使主离合器耦合;踩下油门,智能控制器8控制电机启动,电机2转动,它输出的力矩通过主离合器3-1、变速器传递到驱动轴,则车辆起步和行驶。由于该工况下限力矩离合器5是分离的,又因为发动机转速为零(即低于电机转速),故单向离合器也是分离的,所以电机输出的力矩不会传递到发动机轴上,发动机始终处于停止状态,从而实现电动起步和纯电驱动。
[0031] 四、纯电驱动行驶时启动发动机:
[0032] 车辆处于以下情况时系统需要在行驶时启动发动机:
[0033] 1、电动起步时,当车辆达到一定的速度,需要启动发动机;
[0034] 2、纯电驱动行驶中,蓄电池电力不足时,需要启动发动机;
[0035] 3、为节省燃油,在低速滑行(或走走停停)时系统关闭了发动机,再重新加速时,需要启动发动机。
[0036] 当智能控制器8通过各传感信号判断系统需要启动发动机时,先控制限力矩离合器5耦合,这时,电机2正在正向转动驱动车辆,它输出的一部分正向力矩会通过限力矩离合器5(或三挡离合器5’限力矩挡)传递到发动机轴,从而拖动发动机转动,当发动机的转速达到怠速时,控制发动机喷油器喷油,发动机启动,发动机启动后,限力矩离合器仍保持耦合,当发动机转速趋于超过电机转速时,两轴通过单向离合器4(或三挡离合器5’全力矩挡)锁在一起,发动机和电机呈现并联状态。在该状态下,智能控制器8可根据各传感信号判断发动机的工作状态,从而确定是否需用电机助推,如果需要助推,智能控制器8将控制电机输出相应的扭矩,与发动机一起驱动车辆;如果不需要助推,则电机空转,用发动机单独驱动车辆或巡航;如果需要发电,智能控制器8控制电机进入发电状态,为蓄电池充电或为车上供电。
[0037] 在上述限力矩离合器5耦合时,发动机1是静止的,而电机2正在以一定的速度转动而驱动车辆,因此,耦合时发动机轴与电机轴之间存在较大的速度差,如果用普通离合器将发动机和电机轴耦合,将会产生强烈的碰撞力矩,对车辆形成冲击,这是不能被接受的。同时,由于发动机的惯性力矩和摩擦力,在上述耦合过程中,必然有一个由此而产生的负扭矩施加在电机轴上,这个负力矩传递到驱动轴上,就会引起意料外的减速,还可能引发安全事故,这也是不能接受的。
[0038] 为了解决上述问题,本发明一是采用了限力矩离合器5,限制了两轴耦合时的耦合力矩,通俗的说,是限制离合器的握持力在较低的平上,从而消除了上述冲击力矩,二是增大电机输出的扭矩,使其大于或等于限力矩离合器的耦合力矩,使电机产生的正向扭矩抵消发动机产生的负扭矩。因此,可保证上述启动发动机的过程车辆平稳。
[0039] 五、电机制动和再生发电:
[0040] 1、当车速较高、限力矩离合器5和单向离合器4闭合、发动机轴和电机轴锁定在一起时,驾驶者抬起油门而踩下制动踏板时,智能控制器8控制电机2输出制动扭矩到驱动轴,同时,发动机的摩擦和气力矩也传递到驱动轴而参与制动,这时,电机呈发电状态,它输出的电能通过逆变器送入蓄电池储存起来。当制动结束又踩下油门加速时,发动机立即进入驱动状态,确保行车安全。
[0041] 2、当车速中等、限力矩离合器和单向离合器处于分离状态、发动机怠速(其转速低于电机转速)时,驾驶者抬起油门而踩下制动踏板时,智能控制器8控制电机输出制动力矩到驱动轴,这时,电机呈发电状态,它输出的电能通过逆变器送存入蓄电池;当制动结束又踩下油门踏板加速时,智能控制器8立即控制电机立刻进入电动状态,提供驱动力矩,同时,发动机迅速增速,当达到电机的速度时,发动机和电机轴通过单向离合器锁定在一起,驱动车辆加速。
[0042] 3、当车速低速、进入纯电驱动的速度范围、智能控制器8控制发动机关闭,不再消耗能量,限力矩离合器和单向离合器处于分离状态,这时,驾驶者抬起油门踩下制动踏板时,智能控制器8控制电机输出制动力矩,电机呈发电状态,它输出的电能通过逆变器存入蓄电池;当制动结束又踩下油门踏板加速时,智能控制器8立即控制电机进入电动状态,提供扭矩驱动车辆加速,如果测得需要启动发动机时,系统重复上述行驶中启动发动机的过程。
[0043] 系统的换挡等其他工况的操作与常规动力汽车相似,不一一赘述。
[0044] 如果上述变速箱为自动变速箱,其工作过程与手动变速箱基本相同,只是变速箱的主离合器和换挡操作由系统控制完成。
[0045] 参见图2,所述的单向离合器4可以采用多种现有的单向离合器结构。本例采用如图2所示的滚柱式单向离合器,它的内轴4-1与电机轴相联,其外轴4-2与发动机轴相联。当发动机轴低于电机转速时,两轴可以自由转动,当发动机趋于高于电机转速时,两轴之间被滚柱4-3顶住而不能相对转动,则发动机轴带动电机轴一起转动,从而实现两轴的锁定功能。
[0046] 参见图3,所述的限力矩离合器5也可以采用多种现有的结构。本例采用如图中所示的弹簧压力、湿式多片离合器。它的输入轴5-1与发动机轴相联,它的输出轴5-2与电机2的轴相联,在输入轴和输出轴上分别固联一个转盘架5-3、5-4,交错叠放的摩擦片5-5和隔离片5-6分别安装在转盘架5-3、5-4的花键上,并可沿花键轴向移动;它还设有一个推盘
5-7和动作器5-8。分离时,作动器5-8向右拉推盘5-7,压缩弹簧5-10,使摩擦片5-5与隔离片5-6分离;耦合时,动作器释放推盘5-7,弹簧5-10将推盘左推,使摩擦片和隔离片压在一起,相互产生摩擦力矩,从而实现扭矩传递。可传递的扭矩量值与弹簧的压力成正比,预先设置好弹簧压力,就可以决定本离合器的最大耦合力矩。当输入扭矩超过最大耦合力矩时,摩擦片和隔离片就会产生相对滑动,离合器仍然传递预先设定的扭矩,起到限制传递力矩大小的作用。图中5-9为机壳。
[0047] 参见图4,所述三挡离合器5’与图3中限力矩离合器的结构相近,其中动作器5’-8用液压控制,并分为三个挡,一个是分离挡,即动作器位于释放位置,分离弹簧5’-10将推盘5’-7向右推开,释放摩擦片5’-5,使其无扭矩传递;一个是限力矩挡,即动作器通过推力轴承5’-8将推盘5’-7左推,使摩擦片和隔离片压在一起,但左推的压力由液压控制在一个设定的较低压力上,从而传递一个预设的有限扭矩;再一个是全力矩挡,仍然是用动作器左推推盘5’-7,并使摩擦片和隔离片压在一起,但左推的压力由液压控制在一个较高的压力上,使其能够传递一个较大的扭矩,从而将两轴紧锁在一起。在发动机不工作或怠速时,智能控制器控制该离合器位于分离挡,使发动机与电机两轴5’-1、5’-2自由转动;当发动机工作并输出扭矩时,智能控制器控制该离合器全力矩耦合,使两轴锁定在一起;当行驶间启动发动机时,智能控制器控制该离合器限力矩耦合,传递启动发动机所需的扭矩,并消除两轴碰撞的冲量矩。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈