首页 / 专利库 / 驱动系统 / 直接驱动 / 包括驱动芯片凸点的显示设备

包括驱动芯片凸点的显示设备

阅读:1045发布:2020-08-10

专利汇可以提供包括驱动芯片凸点的显示设备专利检索,专利查询,专利分析的服务。并且本 申请 涉及包括驱动芯片凸点的显示设备,所述显示设备包括 显示面板 、终端焊盘、驱动芯片和非导电膜,其中,显示面板被驱动以显示图像,显示面板包括具有在其中显示图像的显示区域的衬底;终端焊盘处于在衬底上并且驱动 信号 通过终端焊盘被施加到显示区域;驱动信号通过驱动芯片施加到终端焊盘;非导电膜将驱动芯片固定至衬底。驱动芯片包括:从驱动芯片的表面凸出的非导电弹性 支撑 体;处于非导电弹性支撑体上的凸点布线,凸点布线直接 接触 终端焊盘以将驱动信号施加至终端焊盘;以及处于非导电弹性支撑体上的离散颗粒。,下面是包括驱动芯片凸点的显示设备专利的具体信息内容。

1.一种显示设备,包括:
显示面板,被驱动以显示图像,所述显示面板包括衬底,所述衬底包括显示区域,所述图像显示在所述显示区域处;
终端焊盘,处于所述衬底上,并且所述显示区域通过所述终端焊盘被施加驱动信号
驱动芯片,所述驱动信号通过所述驱动芯片施加到所述终端焊盘;以及非导电膜,将所述驱动芯片固定至所述衬底,
其中所述驱动芯片包括:
非导电弹性支撑体,从所述驱动芯片的表面凸出;
凸点布线,处于所述非导电弹性支撑体上,所述凸点布线直接接触所述终端焊盘以将所述驱动信号施加至所述终端焊盘;以及
离散颗粒,处于所述非导电弹性支撑体上。
2.根据权利要求1所述的显示设备,其中所述非导电膜处于所述驱动芯片和所述衬底之间,所述非导电膜包括热固性树脂
3.根据权利要求1所述的显示设备,其中所述离散颗粒具有以下至少一种形状:球形状、三棱锥形状、六面体形状、圆柱形状和圆锥形状。
4.根据权利要求1所述的显示设备,其中所述离散颗粒具有小于所述非导电弹性支撑体相对于所述驱动芯片的所述表面的高度的粒径。
5.根据权利要求4所述的显示设备,其中所述离散颗粒的所述粒径在1微米至5微米的范围中。
6.根据权利要求5所述的显示设备,其中所述离散颗粒处于所述非导电弹性支撑体与所述凸点布线的一部分之间。
7.根据权利要求6所述的显示设备,其中
所述终端焊盘具有凹部,所述凸点布线的所述一部分在所述凹部处直接接触所述终端焊盘,以及
所述凹部的形状与所述凸点布线的在所述离散颗粒处的所述一部分的形状对应。
8.根据权利要求7所述的显示设备,其中所述驱动芯片还包括驱动电路,所述凸点布线的所述一部分连接至所述驱动电路。
9.根据权利要求2所述的显示设备,其中所述离散颗粒处于所述非导电弹性支撑体与所述凸点布线的一部分之间。
10.根据权利要求9所述的显示设备,其中所述离散颗粒设置为多个,并且进一步处于所述非导电膜与所述驱动芯片的从所述凸点布线暴露的一部分之间。
11.根据权利要求1所述的显示设备,其中所述非导电弹性支撑体的长度延长方向和所述凸点布线的长度延长方向彼此相交。
12.根据权利要求11所述的显示设备,其中
在一个所述非导电弹性支撑体上所述凸点布线设置为多个,以及
所述凸点布线中的每一个的所述长度延长方向与所述一个非导电弹性支撑体的所述长度延长方向相交。
13.一种显示设备,包括:
显示面板,被驱动以显示图像,所述显示面板包括衬底,所述衬底包括显示区域,所述图像显示在所述显示区域中;
终端焊盘,处于所述衬底上,并且所述显示区域通过所述终端焊盘被施加驱动信号;
驱动芯片,所述驱动信号通过所述驱动芯片被施加到所述终端焊盘;以及非导电膜,将所述驱动芯片固定至所述衬底,
其中
所述驱动芯片包括凸点,所述凸点设置为多个并且在所述驱动芯片的后表面部分上布置在行方向上和与所述行方向交叉的列方向上,以及
所述凸点包括:
弹性支撑体,设置为各自在第一方向上纵长地延伸的多个;
凸点布线,设置为各自在与所述第一方向相交的第二方向上纵长地延伸的多个,所述凸点布线设置在所述弹性支撑体上;以及
离散颗粒,处于所述弹性支撑体上。
14.根据权利要求13所述的显示设备,其中所述多个凸点布置成矩阵。
15.根据权利要求13所述的显示设备,其中所述多个凸点沿着所述行方向或所述列方向以锯齿形方式进行布置。
16.根据权利要求15所述的显示设备,其中所述多个凸点包括:
第一凸点,包括处于第一弹性支撑体上的多个凸点布线,以及
第二凸点,包括处于不同于所述第一弹性支撑体的第二弹性支撑体上的多个凸点布线,
其中,所述第二凸点的所述凸点布线的数量不同于所述第一凸点的所述凸点布线的数量。
17.根据权利要求16所述的显示设备,其中所述第一凸点和所述第二凸点设置为在所述行方向或所述列方向上相互邻近。
18.根据权利要求13所述的显示设备,其中所述离散颗粒具有小于所述弹性支撑体的高度的粒径。
19.根据权利要求18所述的显示设备,其中所述离散颗粒处于所述弹性支撑体与所述凸点布线的一部分之间。
20.根据权利要求19所述的显示设备,其中,所述凸点布线的在所述离散颗粒处的所述一部分比所述凸点布线的剩余部分从所述弹性支撑体凸出得更远。

说明书全文

包括驱动芯片凸点的显示设备

[0001] 相关申请的交叉引用
[0002] 本申请要求于2016年10月13日提交的第10-2016-0132883号韩国专利申请的优先权及从所述韩国专利申请中获得的全部权益,该韩国专利申请的内容通过引用以其整体并入本文。

技术领域

[0003] 本发明示例性实施方式涉及安装在高分辨率平板显示设备中的驱动芯片,并且更具体地,涉及包括聚合物凸点(bump)以促进压痕试验的驱动芯片以及包括所述驱动芯片和连接至所述驱动芯片的显示面板的显示设备。

背景技术

[0004] 通常,平板显示设备发展为诸如液晶显示(LCD)设备、等离子体显示面板(PDP)设备、有机发光二极管(OLED)显示设备等。平板显示设备的这些示例包括图像显示面板、驱动芯片和电路板。在这样的产品中,为了安装要被电连接至图像显示面板的电极的驱动芯片,使用了各向异性导电膜。

发明内容

[0005] 本发明的示例性实施方式可指向包括连接至其的驱动芯片的显示面板,驱动芯片具有弹性凸点结构,在所述弹性凸点结构中,驱动芯片的输入/输出凸点和显示面板的衬底的终端焊盘彼此直接接触并且所述接触状态可基于压痕被识别。
[0006] 根据示例性实施方式,显示设备包括显示面板、终端焊盘、驱动芯片和非导电膜,其中,显示面板被驱动以显示图像,显示面板包括衬底,衬底包括在其中显示图像的显示区域;终端焊盘处于衬底上并且驱动信号通过终端焊盘被施加到显示区域;驱动信号通过驱动芯片被施加到终端焊盘;非导电膜将驱动芯片固定至衬底。驱动芯片包括:从驱动芯片的表面凸出的非导电弹性支撑体;在弹性支撑体上的凸点布线,凸点布线直接接触终端焊盘以将驱动信号施加至终端焊盘;以及在非导电弹性支撑体上的离散颗粒。
[0007] 非导电膜可在驱动芯片和衬底之间,非导电膜包括热固性树脂
[0008] 离散颗粒可具有球形状、三棱锥形状、六面体形状、圆柱形状和圆锥形状的至少一个形状。
[0009] 离散颗粒可具有小于非导电弹性支撑体的凸出的高度的粒径。
[0010] 离散颗粒的粒径可在约1微米(μm)至约5μm的范围中。
[0011] 离散颗粒可在非导电弹性支撑体与凸点布线的部分之间。
[0012] 终端焊盘可具有凹部,凸点布线的所述部分在所述凹部处直接接触终端焊盘,以及凹部的形状与凸点布线的所述部分在离散颗粒处的形状对应。
[0013] 驱动芯片还可包括驱动电路,凸点布线的所述部分可连接至驱动电路。
[0014] 离散颗粒可在非导电弹性支撑体与凸点布线的一部分之间。
[0015] 离散颗粒可设置为多个并且进一步在非导电膜与驱动芯片的从凸点布线暴露的部分之间。
[0016] 弹性支撑体的长度延长方向和凸点布线的长度延长方向可彼此相交。
[0017] 在一个非导电弹性支撑体上凸点布线可设置为多个,并且凸点布线中的每一个的长度延长方向与所述一个非导电弹性支撑体的长度延长方向相交。
[0018] 根据示例性实施方式,显示设备包括显示面板、终端焊盘、驱动芯片和非导电膜,其中,显示面板被驱动以显示图像,显示面板包括具有在其中显示图像的显示区域的衬底;终端焊盘在衬底上并且驱动信号通过终端焊盘被施加到显示区域;驱动信号通过驱动芯片被施加到终端焊盘;非导电膜将驱动芯片固定至衬底。驱动芯片包括凸点,凸点设置为多个并且在驱动芯片的后表面部分上布置在行方向上和与所述行方向交叉的列方向上。凸点包括弹性支撑体、凸点布线和离散颗粒,其中,弹性支撑体设置为各自在第一方向上纵长地延伸的多个;凸点布线设置为各自在与所述第一方向相交的第二方向上纵长地延伸的多个,凸点布线设置在弹性支撑体上;离散颗粒处于弹性支撑体上。
[0019] 多个凸点可布置成矩阵。
[0020] 多个凸点可沿着行方向或列方向以锯齿形方式进行布置。
[0021] 多个凸点可包括第一凸点和第二凸点,其中,第一凸点包括在第一弹性支撑体上的多个凸点布线;第二凸点包括在不同于第一弹性支撑体的第二弹性支撑体上的多个凸点布线,第二凸点的凸点布线的数量不同于第一凸点的凸点布线的数量。
[0022] 第一凸点和第二凸点可设置为在行方向或列方向上相互邻近。
[0023] 离散颗粒可具有小于弹性支撑体的高度的粒径。
[0024] 离散颗粒可在弹性支撑体与凸点布线的一部分之间。
[0025] 凸点布线的在离散颗粒处的部分比凸点布线的剩余部分从弹性支撑体凸出得更远。
[0026] 前文所述仅仅是说明性的而并非旨在以任何方式进行限制。除了上面描述的说明性的示例性实施方式和特征之外,另外的示例性实施方式和特征将通过参考附图和以下详细说明而变得显而易见。

附图说明

[0027] 通过参照附图详细描述它的示例性实施方式,本发明的更透彻的理解将变得更加明显,在附图中:
[0028] 图1是示出根据现有技术显示面板相对于驱动芯片的立体图;
[0029] 图2是示出在图1的驱动芯片的下部处的凸点的立体图;
[0030] 图3是示出图1的驱动芯片和显示面板之间的连接部分的剖视图;
[0031] 图4A是示出根据本发明的驱动芯片的凸点的示例性实施方式的立体图;
[0032] 图4B是示出终端焊盘单元和图4A的驱动芯片的凸点之间的联接的分解立体图;
[0033] 图5是示出根据本发明的显示面板和图4A和图4B的驱动芯片的凸点之间的连接部分的示例性实施方式的剖视图;
[0034] 图6A是示出根据本发明的驱动芯片的凸点的替代示例性实施方式的立体图;
[0035] 图6B是示出终端焊盘单元和图6A的驱动芯片的凸点之间的联接的分解立体图;
[0036] 图7A是示出根据本发明的驱动芯片的凸点的再一个示例性实施方式的立体图;
[0037] 图7B是示出终端焊盘单元和图7A的驱动芯片的凸点之间的联接的分解立体图;
[0038] 图8A是示出根据本发明的驱动芯片的凸点的再一个示例性实施方式的立体图;
[0039] 图8B是示出终端焊盘单元和图8A的驱动芯片的凸点之间的联接的分解立体图;
[0040] 图9A、图9B、图9C、图9D、图9E和图9F分别是示出根据本发明的驱动芯片的凸点中的离散颗粒的示例性实施方式的模拟图;
[0041] 图10是示出根据本发明的驱动芯片的凸点的再一个示例性实施方式的立体图;以及
[0042] 图11是示出沿着图10的线A-A′截取的驱动芯片的凸点的剖视图。

具体实施方式

[0043] 现在,将在下文中参照附图更充分地描述示例性实施方式。虽然本发明能以各种方式进行修改并且具有若干示例性实施方式,但是附图中示出示例性实施方式并且说明书中将主要描述示例性实施方式。然而,本发明的范围不限于示例性实施方式,并且应解释为包括包含在本发明的精神和范围中的全部改变、等同和替换。
[0044] 在附图中,为了清楚和易于其描述,以放大的方式示出多个层和区域的厚度。当层、区域或板被称为与另一元件相关(例如,在另一层、区域或板上)时,它可直接在所述另一层、区域或板上,或者其间可存在中间的层、区域或板。相反地,当层、区域或板被称为与另一元件相关(例如,直接在另一层、区域或板上)时,其间可不存在中间的层、区域或板。此外,当层、区域或板被称为与另外的元件相关(例如,在另一层、区域或板下方)时,它可直接在所述另一层、区域或板下方,或者其间可存在中间的层、区域或板。相反地,当层、区域或板被称为与另一元件相关(例如,直接在另一层、区域或板下方)时,其间可不存在中间的层、区域或板。
[0045] 为了易于描述,可在本文中使用空间相对术语“下方”、“下面”、“下部”、“上方”、“上部”等来描述一个元件或组件与另一元件或组件之间的如附图中所示的关系。将理解,除了附图中描画的定向之外,空间相对术语还旨在涵盖所述设备在使用或操作中的不同定向。例如,在附图中所示的设备翻转的情况下,定位成在另一设备下方或下面的设备可置于另一设备上方。因此,说明性术语下方既可包括下部位置又可包括上部位置。设备还可定向在其他方向上,并且因此,空间相对术语可根据定向不同地进行解释。
[0046] 在说明书通篇,当元件被称为与另一元件相关(例如,连接至另一元件)时,所述元件直接连接至所述另一元件,或者电连接至所述另一元件并且它们之间插置有一个或多个中间元件。
[0047] 本文所使用的术语仅仅出于描述具体实施方式的目的,而并非旨在进行限制。如本文所使用,除非上下文明确地另行指出,否则单数形式“一”、“一个”和“所述”旨在包括复数形式,包括“至少一个”。“至少一个”不解释为限制性的“一”或“一个”。“或”表示“和/或”。如本文所使用,术语“和/或”包括相关所列项目中的一个或多个的任意和全部组合。还将理解,术语“包括(comprises)”、“包括(comprising)”、“包括(includes)”和/或“包括(including)”在本说明书中使用时,指明存在所阐述的特征、整体、步骤、操作、元件和/或组件,但不排除存在或添加一个或多个其他的特征、整体、步骤、操作、元件、组件和/或其组合。
[0048] 将理解,虽然可在本文中使用术语“第一”、“第二”、“第三”等来描述各种元件,但是这些元件不应受这些术语限制。这些术语仅仅用于将一个元件与另一元件区分开。因此,在不脱离本文的教导的情况下,下面讨论的“第一元件”可称为“第二元件”或“第三元件”,并且“第二元件”和“第三元件”可类似地进行命名。
[0049] 考虑到有问题的测量以及与特定量的测量相关的误差(即,测量系统的局限性),如本文所使用的“约”或“近似”包括所阐述的值并且意味着在特定值的如由本领域普通技术人员所确定的可接受偏差范围内。例如,“约”可表示在一个或多个标准偏差内,或者在所阐述值的±30%、20%、10%、5%内。
[0050] 除非另有限定,否则本文使用的全部术语(包括技术术语和科学术语)具有与本发明所属领域的技术人员通常所理解的含义相同的含义。还将理解,除非本说明书中明确地限定,否则术语,诸如通常使用的词典中所限定的那些,应当解释为具有与它们在相关领域的上下文中的含义相一致的含义,并且将不以理想化或过于正式的意义进行解释。
[0051] 为了具体地描述本发明的示例性实施方式,可能不提供与描述不相关的一些部件,并且在说明书通篇相同的参考标记表示相同的元件。
[0052] 随着在芯片封装中高集成和轻重量的趋势,在显示设备内部安装驱动芯片以向显示设备的图像显示面板传输信号的方法发展为:玻璃覆晶封装(COG)方法,在其中使用带载封装(TCP)安装驱动芯片的带式自动结合(tape automated bonding)方法等。另外,随着芯片封装中电极或传导布线间距的小型化的趋势,使用焊接的传统方法难以管理,使得各向异性导电膜被大量用作替代焊料的装置。
[0053] 然而,随着显示设备发展为具有相对高的分辨率以及基本上最小化的非显示区域,传导布线的宽度减小以及布线之间的间隔变得更窄。因此,难以通过使用各向异性导电膜将例如由衬底的导电焊盘代表的传导布线与驱动芯片或驱动集成电路(IC)的凸点稳定地对齐和附接,以及难以在传导焊盘和所述凸点之间设置散布在各向异性导电膜中的导电颗粒。
[0054] 图1是示出包括显示面板100的传统显示设备1的立体图,并且更具体地,示出显示面板100相对于可连接至显示面板100的驱动芯片200的相对状态。显示面板100例如利用光生成和显示图像。构成显示面板100的结构和组件不受具体限制。显示面板100可具有与在诸如液晶显示(LCD)设备、等离子体显示面板(PDP)设备、有机发光二极管(OLED)显示设备等诸多显示设备中的任意显示设备内的使用相符合的结构和组件。
[0055] 参照图1,显示面板100划分为:其中形成和显示图像的显示区域DA以及处于显示区域DA的外部并且其中不显示图像的非显示区域NDA。非显示区域NDA处于显示区域DA的外围处并且处于显示面板100的边缘区域处。栅极焊盘单元和数据焊盘单元可设置或形成在非显示区域NDA中。栅极焊盘单元和数据焊盘单元可设置或形成在非显示区域NDA的不同区域中,或者可形成在如图1所示的一个区域中。
[0056] 在关于图1的描述中,为了简明,栅极焊盘单元和数据焊盘单元共同地称作终端焊盘单元111。终端焊盘单元111可连接至驱动芯片200和显示面板100。终端焊盘单元111可被认为是显示面板100的组件,但是本发明不限于此。驱动芯片200是驱动器集成电路(IC),并且向显示面板100的栅极线(未示出)或数据线(未示出)施加栅极信号或数据信号以控制或驱动显示面板100形成和/或显示图像。终端焊盘单元111向显示面板100的栅极线(未示出)或数据线(未示出)传输驱动芯片200的输出信号。栅极线和数据线的部分可设置在显示面板100的显示区域DA中。虽然在图1中没有明确示出,但是终端焊盘单元111可连接至显示区域DA中的栅极线和数据线。终端焊盘单元111可设置在从显示区域DA延伸至非显示区域NDA的栅极线或数据线的终端端部处,但是本发明不限于此。在示例性实施方式中,栅极线和数据线可设置在其中生成和显示图像的显示区域DA的像素中。
[0057] 终端焊盘单元111直接连接至驱动芯片200的输出凸点210并且非导电膜300将驱动芯片200的位置固定,使得驱动芯片200可不与显示面板100的、上面设置或形成有终端焊盘单元111的下部衬底110分离。显示面板100还可包括面对下部衬底110的上部显示衬底120。下部衬底110的边缘部分可例如在设置有终端焊盘单元111的区域处被上部显示衬底
120暴露。
[0058] 图2是示出形成在图1的驱动芯片200的下部处的凸点210的立体图。
[0059] 参照图2,凸点210设置为多个并且在驱动芯片200的下部处(例如在驱动芯片200的基础部或主体220的下表面处)布置成矩阵。凸点210中的每一个包括具有弹性的弹性支撑体211以及处于弹性支撑体211上的凸点布线212。弹性支撑体211包括具有弹性的聚合物树脂。凸点布线212包括设置或形成在弹性支撑体211上方的导电材料层,诸如金属层。凸点布线212通过限定在驱动芯片200中的通孔连接至嵌在驱动芯片200中的驱动电路230(例如,与所述驱动电路230直接接触),以借此输入和输出驱动信号。
[0060] 由弹性支撑体211支撑的凸点布线212的一部分区域直接接触显示面板100的待与凸点布线212电连接的终端焊盘单元111。由于具有弹性,所以即使对弹性支撑体211施加弹性支撑体211的材料的弹性极限的压,弹性支撑体211也可维持初始形状。弹性支撑体211在弹性支撑体211的末端处支撑凸点布线212的待与终端焊盘单元111电连接的部分,使得凸点布线212接触终端焊盘单元111。弹性支撑体211可包括聚酰亚胺、聚丙烯酸酯、聚酸酯、聚环、丙烯酸纤维等,或者可以是包括上述材料的共聚物。满足上述条件的共聚物的弹性模量可以是在约1.5吉帕斯卡(GPa)至约5.0GPa的范围中。
[0061] 凸点布线212可包括具有优良导电性的金属材料或金属氧化物材料。在示例性实施方式中,例如,凸点布线212可包括金、铬、、钼、、铟氧化物或铟锌氧化物。此外,凸点布线212可包括包含金、铬、银、钼、铝、铜、钛、铟锡氧化物和铟锌氧化物中的至少两者的合金
[0062] 凸点210可并非一定布置成如图2所示的矩阵形成,并且凸点210的布置可根据驱动芯片200的尺寸和形状、其输入/输出终端的数量、排布置、多排布置等不同地修改。
[0063] 图3是示出图1的驱动芯片200和显示面板100之间的连接部分的剖视图。
[0064] 参照图3,驱动芯片200包括主体220和凸点210,并且驱动电路230安装在主体220中。主体220包括绝缘材料。驱动电路230可生成适合于显示面板100的驱动信号,其中所述显示面板100使用从外部对其施加的图像信号和控制信号生成和显示图像。在示例性实施方式中,驱动电路230可包括例如通过半导体工艺形成的半导体结构。凸点210包括具有弹性的弹性支撑体211以及处于弹性支撑体211上的凸点布线212。凸点布线212可各自通过限定在主体220中的孔或者在所述孔处连接至驱动芯片200内部的驱动电路230。
[0065] 非导电膜(NCF)300可将驱动芯片200安装在下部衬底110处。在将驱动芯片200安装在下部衬底110上的过程中,在示例性实施方式中,将下部衬底110的终端焊盘单元111和驱动芯片200的凸点210彼此对齐,在初始接触区域处将非导电膜300放置于终端焊盘单元111和凸点210之间,并且之后以相对高的温度对非导电膜300执行热压工艺。经受来自热压工艺的压力的、具有预定流动性的非导电膜300因对其施加的热量而流动并且从终端焊盘单元111和凸点210之间的初始接触区域移动至驱动芯片200的主体220和下部衬底110之间的空间,并且之后被固化。在厚度方向上,驱动芯片200的主体220和显示面板100的下部衬底110之间的距离通过固化的非导电膜300固定,并且驱动芯片200的凸点210可维持与显示面板100的终端焊盘单元111物理接触。
[0066] 更具体地,显示面板100的终端焊盘单元111直接接触凸点210的凸点布线212,而且弹性支撑体211(凸点布线212处于弹性支撑体211与终端焊盘单元111之间)因为在驱动芯片200的热压工艺中被挤压而从初始形状发生变形。在变形的弹性支撑体211中生成的弹性力作用在从弹性支撑体211的后表面(例如,弹性支撑体211的在主体220处的基础部)朝向凸点布线212的前表面(例如,朝向弹性支撑体211的末端)的方向上,使得凸点布线212可维持与终端焊盘单元111连接。
[0067] 非导电膜300具有一定程度的弹性以使驱动芯片200有效附接至显示面板100的下部衬底110,例如具有在约1.5GPa至约5.0GPa的范围中的弹性模量。当非导电膜300具有比上述范围更小的弹性时,当驱动芯片200对着显示面板100被挤压时,可能因驱动芯片200和下部衬底110之间的碰撞而出现缺陷。相反,当非导电膜300具有比上述范围更大的弹性时,驱动芯片200可能不会适当附接至显示面板100。非导电膜300可包括可热固化的聚合物树脂。
[0068] 可通过压痕检查装置500来识别驱动芯片200的凸点210和显示面板100的终端焊盘单元111之间的连接状态。压痕检查装置500检查在凸点210和终端焊盘单元111彼此挤压的过程中造成的终端焊盘单元111的凹凸结构(压痕)。可通过利用光学相机检查终端焊盘单元111的后表面的照度来分析压痕。然而,当如图3中的结构那样凸点210和终端焊盘单元111在不使用各向异性导电膜(ACF)的情况下面对面彼此连接时,以平面的方式产生压痕,从而使得分析困难。
[0069] 图4A是示出根据本发明的驱动芯片200的凸点240的示例性实施方式的立体图,以及图4B是示出图4A的终端焊盘单元111和驱动芯片200的凸点240之间的联接的分解立体图。
[0070] 参照图4A和图4B,凸点240设置为多个并且设置在驱动芯片200的表面上。凸点240中的每一个包括具有弹性的弹性支撑体241、处于弹性支撑体241上的凸点布线242以及与凸点布线242重叠的离散颗粒243。
[0071] 弹性支撑体241包括具有弹性的聚合物树脂。从驱动芯片200的主体220的表面起,弹性支撑体241形成为具有约7微米(μm)的高度。所述高度可从弹性支撑体241的在主体220的表面处的基础部测量到弹性支撑体241的末端。弹性支撑体241的高度可以是弹性支撑体241参照于主体220的表面的最大尺寸。
[0072] 凸点布线242包括形成为处于弹性支撑体241上方(例如,相对于驱动芯片200的主体220的下表面处于与弹性支撑体241所处的侧部相反的侧部处)的导电金属层,并且可直接接触驱动芯片200内部的驱动电路230。驱动信号可通过凸点布线242输入至驱动芯片200以及从驱动芯片200输出。在上面设置有凸点布线242的各个表面的法线方向上,凸点布线242形成为具有在约1μm至约3μm的范围中的厚度。在俯视图中,凸点布线242可覆盖整个弹性支撑体241并且比弹性支撑体241的边缘延伸得更远,但是本发明不限于此。换言之,弹性支撑体241可以不从所述弹性支撑体241上的凸点布线242暴露。
[0073] 离散颗粒243可与凸点布线242基本上同时地设置或形成,并且可具有导电性或者可不具有导电性。离散颗粒243可具有在约1μm至约5μm的范围中的粒径。粒径可以是离散颗粒243的最大尺寸。离散颗粒243的粒径小于弹性支撑体241的高度。离散颗粒243可位于凸点布线242与终端焊盘单元111接触的区域中,以在将驱动芯片200和显示面板100彼此联结的挤压过程中,在终端焊盘单元111上留下压痕112。离散颗粒243可在各个凸点240的凸点布线242内部设置为多个。
[0074] 相比于通过在上面参照图3描述的传统显示设备1中的面到面联接造成的压痕,根据本发明的驱动芯片200的一个或多个实施方式通过离散颗粒243造成压痕112,并且这些压痕112可相对容易地被压痕检查装置500检查到,使得可清楚地识别驱动芯片200相对于显示面板100的安装状态。
[0075] 在离散颗粒243是导电颗粒的情况下,离散颗粒243可包括导电材料,例如,诸如镍、、铜、铝、锡、锌、铬、钴、银、金等金属,它们的金属氧化物,焊料以及碳。相反,在离散颗粒243是非导电颗粒的情况下,离散颗粒243可包括陶瓷、金属氧化物、或者交联或非交联的有机细颗粒或细颗粒,其包括基于聚甲基丙烯酸甲酯、聚苯乙烯、聚酯、丙烯酰基-苯乙烯共聚物(acryl-styrene copolymer)、苯代三聚氰胺(benzoguanamine)、三聚氰胺(melamine)、聚碳酸酯等的聚合物。
[0076] 在制造驱动芯片200的示例性实施方式中,凸点布线242能以化学法(electroless plating method)设置或形成在弹性支撑体241上,并且离散颗粒243可与凸点布线242基本上同时形成。可通过将离散颗粒243散布在用于电镀凸点布线242的电镀液中,基本上同时地形成离散颗粒243和凸点布线242。当基本上同时形成凸点布线242和离散颗粒243时,离散颗粒243可浸渍到凸点布线242。换言之,凸点布线242的金属层可涂覆在离散颗粒243的整个外周部分上。
[0077] 在上面设置有凸点布线242的各个表面的法线方向上,凸点布线242可具有在约1μm至约3μm的范围中的厚度,并且散布在凸点布线242内部的离散颗粒243可分别具有在约1μm至约5μm的范围中的粒径。
[0078] 参照图4B,终端焊盘单元111位于下部衬底110的上部或上表面处,其中所述下部衬底110的上部或上表面处面对驱动芯片200的下部或下表面处的凸点240。在图4B中,为了便于说明,仅仅放大终端焊盘单元111的在下部衬底110的区域处的部分。非导电膜300介于凸点240和终端焊盘单元111之间。
[0079] 在将驱动芯片200安装到下部衬底110上的过程中,在示例性实施方式中,当驱动芯片200、非导电膜300和下部衬底110对齐并且之后被热压时,介于凸点布线242和终端焊盘单元111之间的非导电膜300因压力而移除或移动,使得非导电膜300不设置在凸点布线242和终端焊盘单元111之间,并且使得其中或其上包括离散颗粒243的凸点布线242接触终端焊盘单元111。具有流动性的非导电膜300从凸点布线242和终端焊盘单元111之间移动至在俯视平面图中彼此隔开的凸点240之间的空间。通过从驱动芯片200的安装所施加的压力,凸点布线242中或凸点布线242上的离散颗粒243在与凸点布线242接触的终端焊盘单元
111上留下压痕112。换言之,由于离散颗粒243和/或凸点布线242诸如由于它们的材料在挤压过程期间基本上不变形,所以离散颗粒243和/或凸点布线242的形状被保持以形成压痕
112。
[0080] 图5是示出显示面板100和图4A和图4B的驱动芯片200的凸点240之间的连接部分的示例性实施方式的剖视图。
[0081] 参照图5,位于下部衬底110处的终端焊盘单元111直接接触驱动芯片200的凸点240。
[0082] 凸点240包括弹性支撑体241、凸点布线242和离散颗粒243,其中,弹性支撑体241处于驱动芯片200的主体220的表面上,凸点布线242穿过限定在主体220中的通孔以连接至主体220内部的驱动电路230,离散颗粒243散布在凸点布线242上和/或散布在凸点布线242中。在离散颗粒243处,离散颗粒243可限定凸点布线242的凸起,其中,凸点布线242在离散颗粒243处的厚度相比于在凸点布线242的其余部分处的厚度而言是最大的。换言之,凸点布线242可设置为在离散颗粒243处距离弹性支撑体241最远。
[0083] 非导电膜(NCF)300可将驱动芯片200安装在下部衬底110处。在将驱动芯片200安装在下部衬底110上的过程中,在示例性实施方式中,当非导电膜(NCF)300将驱动芯片200安装在下部衬底110处时,下部衬底110的终端焊盘单元111和驱动芯片200的凸点240对齐且非导电膜300在初始接触区域处设置于终端焊盘单元111和凸点240之间,并且以相对高的温度对非导电膜300执行热压工艺。经受来自热压工艺的压力的、具有预定流动性的非导电膜300因热量而从终端焊盘单元111和凸点240之间的初始接触区域移动至驱动芯片200的主体220和下部衬底110之间的空间,并且之后被固化。在厚度方向上,驱动芯片200的主体220和下部衬底110之间的距离通过固化的非导电膜300固定,并且凸点240可维持与终端焊盘单元111的物理接触。根据在挤压过程期间终端焊盘单元111与驱动芯片200的挤压,凸点240的离散颗粒243在终端焊盘单元111的表面处留下凹状压痕或凹部112。换言之,由于凸点布线242的在离散颗粒243处的不规则表面轮廓而以非平面的方式产生压痕112,从而使得更易于分析所述压痕112。
[0084] 可使用压痕检查装置500识别限定在终端焊盘单元111中的压痕112。压痕检查装置500可通过利用光学相机检查终端焊盘单元111的后表面的照度来分析所述压痕112。通过离散颗粒243限定的终端焊盘单元111的压痕112易于被检测,使得可识别驱动芯片200的安装状态。
[0085] 图6A是示出根据本发明的驱动芯片200的凸点250的替代示例性实施方式的立体图。
[0086] 图6B是示出终端焊盘单元111和图6A的驱动芯片200的凸点250之间的联接的分解立体图。
[0087] 参照图6A和图6B,驱动芯片200可包括在驱动芯片200的后表面上以矩阵形式布置为多个的凸点250。
[0088] 凸点250包括弹性支撑体251、多个凸点布线252a和252b和离散颗粒253,其中,弹性支撑体251限定凸点250在第一方向D1上延伸的长度;多个凸点布线252a和252b各自限定凸点250在与弹性支撑体251的长度延长方向交叉和相交的第二方向D2上延伸的长度,离散颗粒253与凸点布线252a和252b重叠。驱动芯片200可设置在与通过第一方向D1和第二方向D2限定的平面平行的平面中。厚度方向可定义在与通过第一方向D1和第二方向D2限定的平面正交的方向上。在与各自的长度延长方向正交的方向上,各元件的宽度限定为小于其长度。
[0089] 弹性支撑体251可在多个凸点布线252a和252b的底部处(例如,在凸点布线252a和252b的面对弹性支撑体251的表面处)支撑多个凸点布线252a和252b。另外,弹性支撑体251以及多个凸点布线252a和252b的长度布置为彼此交叉,使得弹性支撑体251的没有设置凸点布线252a和252b的侧表面部分可相对于驱动芯片200的主体220被固定,以防止当弹性支撑体251的侧表面部分扩张时可能出现的、凸点布线252a和252b断开连接。
[0090] 在将驱动芯片200安装在下部衬底110处的示例性实施方式中,例如,通过在约30兆帕(MPa)至约150MPa的压力下、利用加热至约130摄氏度(℃)至约180℃的加压器(未示出)挤压约2秒至约15秒,来执行将驱动芯片200安装在下部衬底110处的挤压过程。在挤压过程期间,弹性支撑体251随着位于其上的凸点布线252a和252b接触终端焊盘单元111而经受向上的压力,使得弹性支撑体251的侧表面部分(例如,短边和/或长边)扩张。在凸点布线252a和252b设置或形成在弹性支撑体251的侧表面部分的整个扩张部分上的情况下,可能因这种扩张而发生断开连接。然而,根据示例性实施方式,沿着弹性支撑体251的侧表面部分彼此隔开的凸点布线252a和252b不覆盖弹性支撑体251的侧表面部分的整个扩张部分,从而留出弹性支撑体251的未覆盖部分或暴露部分,并且因此可基本上最小化凸点布线
252a和252b的断开连接。
[0091] 另外,凸点250可包括离散颗粒253。离散颗粒253可与凸点布线252a和252b基本上同时设置或形成,并且可具有导电性或者可不具有导电性。参照上面的讨论,在挤压过程期间离散颗粒253可在下部衬底110的终端焊盘单元111上留下压痕112,使得可通过压痕检查装置500检查驱动芯片200的终端的安装状态。
[0092] 参照图6B,终端焊盘单元111位于下部衬底110的、面对凸点250的上部或上表面处,其中所述凸点250形成在驱动芯片200的下部或下表面处。非导电膜300介于凸点250和终端焊盘单元111之间。多个凸点布线252a和252b与终端焊盘单元111以对应的方式彼此连接。
[0093] 图7A是示出根据本发明的驱动芯片200的凸点250的再一个示例性实施方式的立体图。
[0094] 图7B是示出终端焊盘单元111和图7A的驱动芯片200的凸点250之间的联接的示意图。
[0095] 参照图7A和图7B,凸点250可相对于一个方向在驱动芯片200的表面上设置成交错的(例如,锯齿形的)图案,并且在与所述一个方向交叉的另一方向上对齐。非导电膜300的流动通道形成为沿着从凸点250之间的预定点A朝向驱动芯片200的外侧表面B、C、D和E的箭头的方向。流动通道是指这样的路径或通道,最初在驱动芯片200和下部衬底110之间、被加热至范围从约130℃至180℃的温度的非导电膜300在被挤压时沿着该路径或通道以液相移动。
[0096] 如图7A所示,由于凸点250的交错布置而具有弯曲形状的流动通道可减小或有效地防止非导电膜300在直线方向上移动至驱动芯片200的外部。凸点250的交错布置结构可允许非导电膜300停留在驱动芯片200和下部衬底110之间的空间中,使得当非导电膜300被挤压时,非导电膜300可填充未填充有非导电膜300的区域。因此,驱动芯片200和下部衬底110可彼此牢固地固定。
[0097] 凸点250还可包括离散颗粒253。
[0098] 参照图7B,终端焊盘单元111位于下部衬底110的、面对凸点250的上部或上表面处,其中所述凸点250形成在驱动芯片200的下部或下表面处。由于凸点250布置成交错的图案,所以与凸点250对应的终端焊盘单元111也布置成交错的图案。
[0099] 图8A是示出根据本发明的驱动芯片200的凸点250和260的再一个示例性实施方式的立体图。
[0100] 图8B是示出终端焊盘单元111和图8A的驱动芯片200的凸点250和260之间的联接的分解立体图。
[0101] 参照图8A和图8B,驱动芯片200包括第一凸点250和第二凸点260,其中,第一凸点250包括第一弹性支撑体251和两个凸点布线252a和252b,第二凸点260包括第二弹性支撑体261和三个凸点布线262a、262b和262c。第一凸点250和第二凸点260中的每一个设置为布置成行和列的多个。第一凸点250和第二凸点260设置为在行方向和列方向上相互邻近。
[0102] 分别包括各自具有不同长度的第一弹性支撑体251和第二弹性支撑体261的第一凸点250和第二凸点260可交替地布置在行方向和列方向上。第一弹性支撑体251和第二弹性支撑体261的不同长度有效地形成交错的图案。流动通道沿着从预定点A朝向驱动芯片200的外侧表面B、C、D、E和F的箭头的方向形成在第一凸点250和第二凸点260之间,使得非导电膜300可通过所述流动通道移动。流动通道因第一凸点250和第二凸点260的布置形状可具有弯曲通道。由于第一凸点250和第二凸点260的布置结构的影响,非导电膜300可不直接向驱动芯片200外部流动,并且停留在驱动芯片200和下部衬底110之间的空间中以填充未填充有非导电膜300的区域,使得驱动芯片200和下部衬底110可牢固地彼此固定。
[0103] 第一凸点250和第二凸点260分别还可包括离散颗粒253和离散颗粒263。
[0104] 参照图8B,终端焊盘单元111位于下部衬底110的、面对第一凸点250和第二凸点260的上部或上表面处,其中所述第一凸点250和所述第二凸点260形成在驱动芯片200的下部或下表面处。由于第一凸点250和第二凸点260布置成交错的图案,所以与第一凸点250和第二凸点260对应的终端焊盘单元111也布置成交错的图案。
[0105] 图9A、图9B、图9C、图9D、图9E和图9F是分别示出根据本发明的驱动芯片200的凸点250中的离散颗粒253的示例性实施方式的模拟图。下面将离散颗粒253作为示例讨论,但是图9A至图9F中的形状中的任意形状可应用于离散颗粒263。
[0106] 参照图9A、图9B、图9C、图9D和图9E,离散颗粒253可具有球形状(图9A)或者诸如三棱锥形状(图9B)、六面体形状(图9C)、圆柱形状(图9D)或圆锥形状(图9E)的多面体结构。
[0107] 离散颗粒253可以是导电颗粒或者可以是非导电颗粒。
[0108] 在离散颗粒253是导电颗粒的情况下,离散颗粒253可包括诸如镍(Ni)、铁(Fe)、铜(Cu)、铝(Al)、锡(Sn)、锌(Zn)、铬(Cr)、钴(Co)、金(Au)或银(Ag)的金属材料或者其金属合金。
[0109] 在离散颗粒253是导电颗粒的情况下,在挤压过程中离散颗粒253可提高凸点布线252a和252b和终端焊盘单元111之间的导电性。然而,期望离散颗粒253设置在凸点布线
252a和252b的区域中,使得根据所散布的位置不会致使相互邻近的凸点布线252a和252b之间连接。
[0110] 在离散颗粒253是非导电颗粒的情况下,离散颗粒253可包括玻璃、聚合物或陶瓷。聚合材料的示例可包括聚四氟乙烯(PTFE,诸如商标品牌 )或聚乙烯,并且陶瓷材
料的示例可包括矾土、二氧化硅、玻璃或碳化硅。
[0111] 在离散颗粒253是非导电颗粒的情况下,期望非导电离散颗粒253的散布浓度(dispersion concentration)小于导电颗粒的散布浓度,使得凸点布线252a和252b和终端焊盘单元111之间的导电性不会因非导电离散颗粒253而降低。
[0112] 制造具有多边形三维结构的离散颗粒253的方法的示例包括:使用通过激光加工形成的铸模进行铸造,其中,具有流动性的树脂被注入到铸模中然后被固化。可替代地,基于印刷电子技术,可通过例如将含氟聚合物印刷到母铸模中来复现母铸模。通过铸造方法制造离散颗粒253的有利之外在于,可提供统一尺寸的离散颗粒253。
[0113] 离散颗粒253可通过将树脂打碎来形成。优选地,离散颗粒253具有包括尖点的多边形三维结构而不是球形颗粒,以便更容易地形成压痕112。碎的树脂颗粒趋于具有形态上不规则的多面体结构。由于不具有统一的形状,所以碎的树脂颗粒可经历初步的筛选过程。在颗粒尺寸太小的情况下,树脂颗粒可能不会留下压痕,并且在颗粒尺寸太大的情况下,树脂颗粒可能干扰终端焊盘单元和凸点之间的接触。通常,离散颗粒253的尺寸可具有在约1μm至约5μm的范围中的长度或最大尺寸。
[0114] 参照图9F,离散颗粒253可具有其中非导电涂覆膜255设置在导电核254上,例如涂覆在导电核254上的结构。导电核254可包括诸如镍(Ni)、铁(Fe)、铜(Cu)、铝(Al)、锡(Sn)、锌(Zn)、铬(Cr)、钴(Co)、金(Au)或银(Ag)的金属材料,或者其金属合金。非导电涂覆膜255可包括:热塑性聚合物树脂,诸如聚乙烯树脂、聚丙烯树脂、聚丁烯树脂、聚甲基丙烯酸树脂、亚甲基(methylene)树脂、聚苯乙烯树脂、丙烯腈-苯乙烯树脂、丙烯腈-苯乙烯-丁二烯树脂、乙烯基树脂、二乙烯基苯(divinylbenzene)树脂、聚酰胺树脂、聚酯树脂、聚碳酸酯树脂、聚(polyacetal)树脂、聚醚砜树脂、聚苯醚(polyphenylene oxide)树脂、聚苯硫醚树脂、聚砜树脂和聚氨酯树脂;以及热固性聚合物树脂,诸如,苯酚树脂、尿素树脂、三聚氰胺树脂、氟树脂、聚酯树脂、环氧树脂、硅树脂、聚酰亚胺树脂、聚氨酯树脂、丙烯树脂和聚烯树脂。
[0115] 就包括图9F的被涂覆的导电核254的离散颗粒253而言,在驱动芯片200的挤压过程中非导电涂覆膜255可在凸点布线252a和252b和终端焊盘单元111之间被破坏,以及导电核254可暴露至外部,以电接触凸点布线252a和252b和终端焊盘单元111以及在终端焊盘单元111上留下压痕112。另外,在挤压过程中位于无压力位置的离散颗粒253可维持绝缘状态,以防止相互邻近的凸点布线252a和252b之间不正确地电接触。
[0116] 图9A、图9B、图9C、图9D和图9E所示的离散颗粒253的形状仅仅是说明性的,并且离散颗粒253可包括具有图9A、图9B、图9C、图9D和图9E的形状之中的任意形状的离散颗粒253的混合物,并且可包括导电离散颗粒和非导电离散颗粒的混合物。
[0117] 图10是示出根据本发明的驱动芯片200的凸点250的再一示例性实施方式的立体图。
[0118] 图11是示出沿着图10的线A-A′截取的驱动芯片200的凸点250的剖视图。
[0119] 参照图10和图11,包括一个弹性支撑体251和两个凸点布线252a和252b的凸点250可在驱动芯片200的后表面上以矩阵形式布置为多个。离散颗粒253可散布在驱动芯片200的、被凸点250暴露的后表面的全部部分处以及散布在凸点250的弹性支撑体251上。虽然图10和图11没有明确示出,但是在驱动芯片200的暴露的后表面处的离散颗粒253将设置在驱动芯片200和非导电膜300之间(参照图5)。多个凸点布线252a和252b可在与弹性支撑体251的长度延伸方向相交的方向上纵向延伸,以及可设置在弹性支撑体251和离散颗粒253上。
[0120] 在制造驱动芯片200的示例性实施方式中,离散颗粒253可通过在驱动芯片200的后表面上涂覆包括离散颗粒253的溶液而设置在驱动芯片200的后表面上。通常,溶液可包括聚合物树脂、表面活性剂和分散溶剂。以诸如喷涂的方法将其中散布有离散颗粒253的溶液涂覆在驱动芯片200的后表面上,并且之后通过热处理或干燥处理移除溶剂,使得离散颗粒253可保持均匀地散布在驱动芯片200的后表面上并且固定至驱动芯片200的后表面。另外,可掩盖驱动芯片200的一部分,并且之后在涂覆之后移除掩模,使得可调整离散颗粒253的分布区域。通过涂覆方法分布的离散颗粒253可设置在凸点布线252a和252b和弹性支撑体251之间。
[0121] 如上文所阐述,在根据一个或多个示例性实施方式的分辨率相对高的显示面板中,应用了包括离散颗粒的聚合物凸点的多通道驱动芯片安装在显示面板的衬底上以直接接触所述衬底,并且可利用压痕检查装置来检查安装状态。
[0122] 虽然已经参照其示例性实施方式示出和描述了本发明,但是对于本领域普通技术人员而言将显而易见,在不脱离本发明的精神和范围的情况下,可在形式和细节方面对本发明进行各种改变。
相关专利内容
标题 发布/更新时间 阅读量
直接驱动的静压变速器 2020-05-12 556
直接驱动的回转机 2020-05-12 887
永磁直接驱动绞车 2020-05-12 94
直接驱动的洗衣机 2020-05-13 140
直接驱动的风力涡轮机 2020-05-12 278
电机直接驱动的奶泡机 2020-05-12 821
旋转的直接驱动装置 2020-05-13 960
直接驱动电机 2020-05-11 772
直接驱动电机 2020-05-11 531
直接驱动电机 2020-05-11 191
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈