等离子体蚀刻方法

阅读:623发布:2020-05-13

专利汇可以提供等离子体蚀刻方法专利检索,专利查询,专利分析的服务。并且本 发明 的目的在于,提供一种在使用微细化的图案对含有钨元素的膜进行蚀刻的 等离子体 蚀刻 方法中能够以相对于SiN膜高选择比并且高产量地对含有钨元素的膜进行蚀刻的 等离子体蚀刻 方法。本发明的特征在于,在使用等离子体对含有钨元素的膜进行蚀刻的等离子体蚀刻方法中,使用含有 硅 元素的气体、含有卤素元素的气体、以及含有 碳 元素和 氧 元素的气体对所述含有钨元素的膜进行蚀刻。,下面是等离子体蚀刻方法专利的具体信息内容。

1.一种等离子体蚀刻方法,使用等离子体对含有钨元素的膜进行蚀刻,其特征在于,通过使用含有元素的气体、含有卤素元素的气体、以及含有元素和元素的气体而生成的等离子体,对所述含有钨元素的膜进行蚀刻。
2.根据权利要求1所述的等离子体蚀刻方法,其特征在于,
所述含有碳元素和氧元素的气体是CO气体、CO2气体、COS气体、CClO气体、C2H4O气体、C3F6O气体、CH3OH气体、COF2气体或HCHO气体。
3.根据权利要求1或权利要求2所述的等离子体蚀刻方法,其特征在于,所述含有卤素元素的气体是Cl2气体、BCl3气体、HBr气体或HI气体,
所述含有硅元素的气体是SiF4气体或SiCl4气体。
4.一种等离子体蚀刻方法,使用等离子体对含有钨元素的膜进行蚀刻,其特征在于,使用Cl2气体和SiCl4气体和氧气和CO气体的混合气体、Cl2气体和SiCl4气体和氧气和CO2气体的混合气体或Cl2气体和SiCl4气体和氧气和COS气体的混合气体,对所述含有钨元素的膜进行蚀刻。

说明书全文

等离子体蚀刻方法

技术领域

[0001] 本发明涉及半导体制造、显示器制造所涉及的使用了等离子体的蚀刻方法。

背景技术

[0002] 伴随着半导体器件的高速化以及高集成化,Logic、DRAM等的单元尺寸的缩小、晶体管的栅电极、电容器膜电极的细线化以及薄膜化不断进展。作为实现该半导体器件的高速化的方法之一,对于栅电极材料,存在从多晶(Poly-Si)单层到由钨(W)、氮化钨(WN)、多晶硅的层叠构成的多金属栅结构。
[0003] 作为对构成上述多金属栅的含钨(W)膜进行蚀刻的方法,例如,在专利文献1公开了如下的方法,该方法包括:使包含蚀刻气体和化气体的第一气体混合物流入到所述腔的第一步骤,所述蚀刻气体包含氯以及氟,所述氧化气体包含氧气以及氮气;以第一等级的RF功率对所述电极施加偏置的步骤;施加使所述第一气体混合物激励为等离子体的第二等级的RF功率,由此对至少所述含钨层进行蚀刻,使得足以使所述硅层的至少一些露出的步骤,所述第二等级相对于所述第一等级的比率在4~8之间。
[0004] 在先技术文献
[0005] 专利文献
[0006] 专利文献1:日本特开2008-021975号公报
[0007] 在通过专利文献1公开的方法对微细化的栅电极进行蚀刻的情况下,作为硬掩模的SiN被F类气体细线化而致使加工尺寸减小,或者由于掩模选择比不足而致使栅电极落肩(原文:肩落ち),或者发生图案的断线、加工尺寸的偏差而引起成品率下降。

发明内容

[0008] 发明要解决的课题
[0009] 为了解决上述课题,本发明的目的在于,提供一种在使用微细化的图案对含有钨元素的膜进行蚀刻的等离子体蚀刻方法中,能够以相对于SiN膜高选择比、且高产量地对含有钨元素的膜进行蚀刻的等离子体蚀刻方法。
[0010] 用于解决课题的技术方案
[0011] 本发明的特征在于,在使用等离子体对含有钨元素的膜进行蚀刻的等离子体蚀刻方法中,使用含有硅元素的气体、含有卤素元素的气体、以及含有元素和氧元素的气体对所述含有钨元素的膜进行蚀刻。
[0012] 此外,本发明的特征在于,在使用等离子体对含有钨元素的膜进行蚀刻的等离子体蚀刻方法中,使用Cl2气体和SiCl4气体和氧气和CO气体的混合气体、Cl2气体和SiCl4气体和氧气和CO2气体的混合气体或Cl2气体和SiCl4气体和氧气和COS气体的混合气体,对所述含有钨元素的膜进行蚀刻。
[0013] 发明效果
[0014] 根据本发明,在使用微细化的图案对含有钨元素的膜进行蚀刻的等离子体蚀刻方法中,能够以相对于SiN膜高选择比、且高产量地对含有钨元素的膜进行蚀刻。附图说明
[0015] 图1是在本发明的一个实施例中使用的等离子体蚀刻装置的概略剖视图。
[0016] 图2是在本发明的一个实施例中使用的具有多金属栅结构的晶片的立体图。
[0017] 图3是通过本发明的等离子体蚀刻方法形成了图2所示的多金属栅结构的栅电极的结果的图。
[0018] 图4是通过以往的等离子体蚀刻方法形成了图2所示的多金属栅结构的栅电极的结果的图。
[0019] 图5是以实施例和比较例对氮化钨(WN)和氮化硅膜(SiN)各自的蚀刻速率和选择比进行比较的结果。
[0020] 图6是示出相对于氮化钨(WN)和氮化硅(SiN)的蚀刻速率以及氮化钨(WN)的选择比的COS气体的添加量依赖性的图。
[0021] 图7是针对氮化钨和氮化硅的蚀刻速率以及选择比对COS气体的特性和CO2气体的特性进行了比较的结果。
[0022] 图中,101:磁控管,102:波导管,103:处理室,104:石英板,105:螺线管线圈,106:晶片,107:试样台,108:隔直电容器,109:高频电源,110:温度控制单元,201:ArF抗蚀剂膜,
202:防反射膜,203:氮氧化硅膜(SiON),204:有机膜,205:氮化硅膜(SiN),206:钨膜(W),
207:氮化钨膜(WN),208:多晶硅膜,209:栅极绝缘膜,210:硅基板,401:栅电极加工尺寸,
402:形状的锥形化,403:图案的断线,404:加工尺寸的偏差。

具体实施方式

[0023] 图1是为了实施本实施例而使用的等离子体蚀刻装置的概略剖视图。该等离子体蚀刻装置是电子回旋共振(Electron Cyclotron Resonance,以下称为ECR)型等离子体蚀刻装置。
[0024] 由磁控管101激发的微波经由波导管102以及石英板104入射到处理室103。在处理室103内,从处理室103的上方供给蚀刻用气体,并通过在与配置在处理室103的下部的真空(未图示)之间设置的调压(未图示)将蚀刻处理过程中的气体压维持为恒定。这样调整了压力的气体通过由螺线管线圈105在处理室103内形成的磁场与微波的相互作用而被有效地等离子体化。
[0025] 载置作为试样的晶片106的试样台107配置在处理室103内,并经由隔直电容器(Blocking capacitor)108与激发400kHz的高频的高频电源109连接。通过使由高频电源109对试样台107供给的连续的或进行了时间调制的高频功率(晶片偏置功率)变化,从而控制从等离子体中导入到晶片106的离子的能量。此外,通过与试样台107连接的温度控制单元110,再现性良好地对蚀刻处理中的晶片106的表面温度进行控制。另外,在本实施例中,将温度控制单元110的设定温度设为摄氏60度来进行实施。接着,对使用了该ECR型等离子体蚀刻装置的本实施例的等离子体蚀刻方法进行说明。
[0026] 图2(a)是在本实施例中使用的多金属栅结构的晶片的立体图。在硅基板210上从下方开始依次配置有栅极绝缘膜209、多晶硅膜208、氮化钨膜(WN)207、钨膜(W)206、氮化硅膜(SiN)205、有机膜204、氮氧化硅膜(SiON)203、防反射膜(BARC)202、以及对栅极布线进行了图案形成的ArF抗蚀剂膜201。
[0027] 首先,如图2(b)所示,对防反射膜202、氮氧化硅膜(SiON)203、有机膜204以及氮化硅膜205进行蚀刻之后,在同一处理室内用O2等离子体除去有机膜204,由此如图2(c)所示,成为对以氮化硅膜205为掩模的下层的多金属栅结构的栅电极进行蚀刻之前的状态。在此,所谓多金属栅结构的栅电极,是指钨膜(W)206、氮化钨膜(WN)207以及多晶硅膜208的层叠膜。
[0028] 接下来,对于图2(c)所示的多金属栅结构的栅电极,使用Cl2气体、SiCl4气体、以及O2气体的混合气体对钨膜(W)206进行蚀刻,使用Cl2气体、SiCl4气体、O2气体、以及COS气体的混合气体对氮化钨膜(WN)207进行蚀刻,并使用Cl2气体、O2气体、以及HBr气体的混合气体对多晶硅膜208进行了蚀刻,结果如图3所示,能够实现没有图案的断线以及加工尺寸的偏差的多金属栅结构的栅电极的形成。
[0029] 作为比较,在图4(a)示出使用专利文献1公开的Cl2气体、NF3气体、以及SiCl4气体的混合气体对图2(c)所示的多金属栅结构的栅电极进行了蚀刻的情况下的结果的立体图。此外,图4(b)是从上表面观察图4(a)的图案的俯视图。由于作为硬掩模的氮化硅膜205与NF3气体的反应性强,因此发生了伴随栅电极加工尺寸401的减少以及掩模选择比的下降的形状的锥形化402,引起了图案的断线403、加工尺寸的偏差404所造成的成品率下降。
[0030] 接下来,在图5示出以本实施例和比较例对氮化钨(WN)和氮化硅膜(SiN)各自的蚀刻速率和选择比进行比较的结果。另外,此处的选择比,是指氮化钨膜(WN)的蚀刻速率相对于氮化硅膜(SiN)的蚀刻速率比。作为本实施例,是在Cl2气体、O2气体、SiCl4气体的混合气体中添加了9%或23%的COS气体的情况,作为比较例,是在Cl2气体、O2气体、以及SiCl4气体的混合气体中作为氟类气体添加了9%和23%的SF6气体的情况或添加了9%和23%的CF4气体的情况下的结果。关于其它蚀刻条件,将处理压力设为0.6Pa,将微波功率设为600W,将晶片偏置功率设为20W,将试样台温度设为50℃。
[0031] 在比较例的SF6气体、CF4气体的添加中使添加量从9%变化为23%的情况下,与氮化钨同样地,氮化硅的蚀刻速率也上升,氮化钨相对于氮化硅的选择比在SF6气体的情况下从15.3减少为2.1,在CF4气体的情况下从12.6减少为6.3。另一方面,在本实施例的COS气体的添加中使添加量从9%变化为23%的情况下,结果是氮化硅的蚀刻速率没有变化,相对于氮化硅的选择比从18.2增加为19.9。
[0032] 图6是示出相对于氮化钨(WN)和氮化硅(SiN)的蚀刻速率以及氮化钨(WN)的选择比的COS气体的添加量依赖性的图。另外,COS气体的添加量设为0%、9%、17%、23%以及29%。如图6所示,相对于COS气体的添加量,氮化钨(WN)的速率单调增加,选择比从大约15增加至23左右。
[0033] 但是,在将COS气体的添加量设为29%来对图2(c)所示的多金属栅结构的栅电极进行蚀刻的情况下,沉积物附着在氮化硅膜(SiN)205的掩模附近,在被蚀刻材料的开口面积小的图案中,产生了异常形状。因此,COS气体的添加量优选在9~23%的范围内使用。
[0034] 图7是在Cl2气体、O2气体、以及SiCl4气体的混合气体中添加了9%或23%的COS气体的情况下和在Cl2气体、O2气体、以及SiCl4气体的混合气体中添加了9%或23%的CO2气体的情况下,分别求出氮化钨和氮化硅的蚀刻速率和选择比,并对COS气体和CO2气体的特性进行比较的结果。
[0035] 在CO2气体的情况下,相对于COS气体的大约3nm/min,氮化硅的速率低至大约1nm/min,因此即使添加量为9%,选择比也高至49.2。在CO2气体为23%的情况下,进一步增加为59.1。该结果示出,通过在Cl2气体、O2气体、以及SiCl4气体的混合气体中添加含有碳元素和氧元素的气体,从而能够进行具有相对于氮化硅(SiN)膜的更高的选择比的氮化钨(WN)膜的蚀刻。也就是说,即使在Cl2气体、O2气体、以及SiCl4气体的混合气体中除了CO2气体和COS气体以外添加CO气体等含有碳元素和氧元素的气体,也能够通过适当地调整添加量、处理压力、晶片偏置等从而得到与本实施例同样的效果。
[0036] 以上,根据本实施例,在使用微细化的图案进行形成包含钨(W)膜和氮化钨(WN)膜的多金属栅结构的栅电极的蚀刻时,能够实现相对于氮化硅膜高选择比、高产量的氮化钨(WN)膜的蚀刻,能够降低图案的断线以及加工尺寸的偏差,能够提高成品率。
[0037] 此外,在本实施例中,虽然以使用了Cl2气体、O2气体、SiCl4气体、以及含有碳元素和氧元素的气体的混合气体的例子进行了说明,但是含有碳元素和氧元素的气体的氧元素也担负O2气体的作用,因此O2气体不是必需的。换言之,即使使用C12气体、SiCl4气体、以及含有碳元素和氧元素的气体的混合气体,也能够得到与本实施例同样的效果。
[0038] 进而,在本实施例中虽然是氮化钨膜(WN)的蚀刻例,但是即使是钨膜(W)的蚀刻,也能够得到与本实施例同样的效果。即,本发明的等离子体蚀刻能够应用于含有钨元素的膜的蚀刻。
[0039] 此外,在本实施例中虽然以使用Cl2气体、O2气体、SiCl4气体、以及含有碳元素和氧元素的气体的混合气体的例子进行了说明,但是即使作为该混合气体的Cl2气体而使用BCl3气体、HBr气体或HI气体等含有卤素元素的气体,也能够得到与本实施例同样的效果。进而,在本实施例中虽然以使用Cl2气体、O2气体、SiCl4气体、以及含有碳元素和氧元素的气体的混合气体的例子进行了说明,但是即使作为该混合气体的SiCl4气体而使用SiF4气体等含有硅元素的气体,也能够得到与本实施例同样的效果。
[0040] 以上,根据本发明的等离子体蚀刻方法,在微细化的含有钨元素的膜的蚀刻中,能够进行相对于氮化硅膜高选择比并且高产量的含有钨元素的膜的蚀刻,能够降低图案的断线以及加工尺寸的偏差,能够提高成品率。
[0041] 此外,在应用本发明时,通过根据形成在晶片106上的电路图案(例如,以栅电极为代表的线&空间、接触孔等)、膜构造(例如,氮化硅为掩模或基底膜)、以及不仅是ECR还使用了ICP(Inductively Coupled Plasma,电感耦合等离子体)、CCP(Capacitive Coupled Plasma,电容耦合等离子体)、螺旋波或μ波的其它等离子体源,适当地调整含有碳元素以及氧元素的气体种类的选择、添加量、处理压力、晶片偏置等,从而能够得到与本实施例同样的效果。
相关专利内容
标题 发布/更新时间 阅读量
等离子体蚀刻装置 2020-05-11 286
等离子体蚀刻的方法 2020-05-11 852
等离子体蚀刻方法 2020-05-11 941
等离子体蚀刻方法 2020-05-11 10
等离子体蚀刻方法 2020-05-12 757
等离子体蚀刻方法 2020-05-12 972
等离子体蚀刻方法 2020-05-13 641
等离子体蚀刻方法 2020-05-13 770
等离子体蚀刻方法 2020-05-13 333
等离子体蚀刻方法 2020-05-11 95
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈