首页 / 专利库 / 成型和铸造 / 滚塑 / 增塑聚烯烃组合物

增塑聚烯组合物

阅读:439发布:2021-09-03

专利汇可以提供增塑聚烯组合物专利检索,专利查询,专利分析的服务。并且本 发明 涉及组合物,其包含:a)1-98wt%的熔点为100℃或更高的第一丙烯 聚合物 ,b)5-98wt%的 熔化 热为70J/g或更低且立构规整度指数为75%或更高的第二丙烯聚合物,和c)0.5-75wt%的 粘度 指数为120或更高的非官能化 增塑剂 (“NFP”),基于该第一聚合物、第二聚合物和NFP的重量;以及由其得到的制品。,下面是增塑聚烯组合物专利的具体信息内容。

1.组合物,其包含:a)1-98wt%的第一丙烯聚合物,该第一丙烯聚合物的熔点为100℃或更高,熔体流动速率为0.1-200dg/min,断裂伸长率为300-700%和正割挠曲模量为
690-1720MPa;
b)5-98wt%的第二丙烯聚合物,该第二丙烯聚合物的熔化热为70J/g或更低,立构规整度指数为75%或更高;和
c)0.5-75wt%的非官能化增塑剂NFP,基于该第一聚合物、第二聚合物和NFP的重量,该NFP的粘度指数为120或更高,闪点为200℃或更高,倾点为-10℃或更低;
其中该组合物的拉伸强度大于1MPa和永久变形小于65%;以及该组合物中各组分含量之和为100wt%;
其中熔点通过DSC方法测量;熔体流动速率由ASTM 1238-D,2.16kg,230℃测定;断裂伸长率通过ASTM D 638,2in/min/50mm/min对3.18mm厚的注塑样品测量;正割挠曲模量由ASTM D-790A测量;粘度指数通过ASTM D2270测量;闪点通过ASTM D92测量;倾点通过ASTM D97测量;拉伸强度通过ASTM D638测量。
2.权利要求1的组合物,其中该组合物的永久变形小于50%。
3.权利要求2的组合物,其中该组合物的永久变形小于40%。
4.权利要求3的组合物,其中该组合物的永久变形小于30%。
5.权利要求4的组合物,其中该组合物的永久变形小于20%。
6.权利要求1的组合物,其中该NFP的粘度指数为130或更高。
7.权利要求1的组合物,其中该NFP的闪点为210℃或更高。
8.权利要求1的组合物,其中该NFP在100℃下具有10cSt或更高的运动粘度,运动粘度通过ASTM D445测量。
9.权利要求8的组合物,其中该NFP在100℃下具有35cSt或更高的运动粘度。
10.权利要求1的组合物,其中该NFP具有-20℃或更低的倾点。
11.权利要求10的组合物,其中该NFP具有-25℃或更低的倾点。
12.权利要求1的组合物,其中该NFP在25℃下具有30,000cSt或更低的运动粘度。
13.权利要求1的组合物,其中该NFP具有40℃或更低的馏程,馏程通过ASTM D86测量。
14.权利要求1的组合物,其中该NFP具有115-500℃的终沸点,终沸点由ASTM D86测量。
15.权利要求1的组合物,其中该NFP具有100-20,000g/mol的Mn。
16.权利要求1的组合物,其中该NFP在20℃下具有小于3.0的介电常数
17.权利要求1的组合物,其中该NFP在25℃下具有0.5-20cSt的运动粘度。
18.权利要求1的组合物,其中该NFP具有0℃或更低的Tg,Tg由ASTME1356测量。
19.权利要求1的组合物,其中该NFP具有0.85或更低的比重,比重通过ASTM D 4052
15.6/15.6℃测量。
20.权利要求1的组合物,其中该NFP包括在100℃下运动粘度为10cSt或更高的C5-C14烯的低聚物。
21.权利要求1-20中任一项的组合物,其中该非官能化增塑剂包括数为40-200的癸烯的低聚物。
22.权利要求1-20中任一项的组合物,其中该NFP包括碳数为200-1500的癸烯的低聚物。
23.权利要求1-20中任一项的组合物,其中该NFP包括1-戊烯、1-己烯、1-庚烯、1-辛烯、1-壬烯、1-癸烯、1-十一碳烯和/或1-十二碳烯的低聚物。
24.权利要求1-20中任一项的组合物,其中该NFP包括饱和平为90%或更高且硫含量为0.03%或更低的矿物油,饱和水平根据ASTMD2007测定,硫含量根据ASTM D2622测定。
25.权利要求1-20中任一项的组合物,其中该NFP包括含6-50个碳原子的支化链烷烃和正链烷烃的混合物且支化链烷烃与正链烷烃的比例为0.5∶1-9∶1。
26.权利要求25的组合物,其中该支化链烷烃和正链烷烃的混合物包含大于50wt%的单甲基物质。
27.权利要求25的组合物,其中该NFP包括含10-16个碳原子的支化链烷烃和正链烷烃的混合物且支化链烷烃与正链烷烃的比例为1∶1-4∶1。
28.根据权利要求1-20中任一项的组合物,其中该NFP包括线性或支化链烷烃组合物,该组合物具有500-20,000的数均分子量,具有小于10%的含4个或更多个碳的侧链,和具有以15wt%或更高的量存在的至少1或2个碳的支链,并且其中该NFP包括小于2wt%的环状链烷烃。
29.权利要求1-20中任一项的组合物,其中该非官能化增塑剂以0.5-35wt%的量存在。
30.权利要求29的组合物,其中该非官能化增塑剂以1-15wt%的量存在。
31.权利要求1-20中任一项的组合物,其中基于该组合物的重量,该组合物包含小于
0.1wt%的弹性体。
32.权利要求1-20中任一项的组合物,其中该第一聚合物包括全同立构聚丙烯。
33.权利要求1-20中任一项的组合物,其中该第一丙烯聚合物包括间同立构聚丙烯。
34.权利要求1-20中任一项的组合物,其中该第一丙烯聚合物具有130℃或更高的熔点。
35.权利要求34的组合物,其中该第一丙烯聚合物具有140℃或更高的熔点。
36.权利要求35的组合物,其中该第一丙烯聚合物具有150℃或更高的熔点。
37.权利要求1-20中任一项的组合物,其中该第一丙烯聚合物具有100,000g/mol或更高的重均分子量。
38.权利要求37的组合物,其中该第一丙烯聚合物具有200,000g/mol或更高的重均分子量。
39.权利要求1-20中任一项的组合物,其中该第一丙烯聚合物具有35%或更高的结晶度%,结晶度%由所述聚合物的熔化热除以189J/g×100得到。
40.权利要求1-20中任一项的组合物,其中该第一丙烯聚合物具有1.5-5的Mw/Mn。
41.权利要求1-20中任一项的组合物,其中该第二丙烯聚合物具有1-60J/g的熔化热。
42.权利要求41的组合物,其中该第二丙烯聚合物具有3-50J/g的熔化热。
43.权利要求42的组合物,其中该第二丙烯聚合物具有3-30J/g的熔化热。
44.权利要求43的组合物,其中该第二丙烯聚合物具有5-25J/g的熔化热。
45.权利要求1-20中任一项的组合物,其中该第二丙烯聚合物具有80%或更高的立构规整度指数。
46.权利要求45的组合物,其中该第二丙烯聚合物具有85%或更高的立构规整度指数。
47.权利要求46的组合物,其中该第二丙烯聚合物具有90%或更高的立构规整度指数。
48.权利要求1-20中任一项的组合物,其中该第二丙烯聚合物是丙烯和5-25wt%乙烯的共聚物。
49.权利要求1-20中任一项的组合物,其中该第二丙烯聚合物具有25dg/min或更低的MFR和/或30,000-1,000,000g/mol的Mw。
50.权利要求1-20中任一项的组合物,其中该第二丙烯聚合物具有在第二次熔融时
0-90℃的熔点。
51.权利要求1-20中任一项的组合物,其中该第二丙烯聚合物具有2-40%的结晶度。
52.权利要求1-20中任一项的组合物,其中该第二丙烯聚合物具有100MPa-2300MPa的
1%正割挠曲模量。
53.权利要求1-20中任一项的组合物,其中该第二丙烯聚合物具有0.3-500dg/min的熔体流动速率。
54.权利要求1-20中任一项的组合物,其中该第二丙烯聚合物包括丙烯和0.5-30wt%的一种或多种共聚单体的共聚物,该共聚单体选自乙烯、丁烯、戊烯、己烯、庚烯、辛烯、壬烯、癸烯、十二碳烯、4-甲基-1-戊烯、3-甲基-1戊烯、5-乙基-1-壬烯和3,5,5-三甲基-1-己烯。
55.权利要求1-20中任一项的组合物,其中该第二丙烯聚合物包含丙烯,0-5wt%的二烯和2wt%-25wt%的乙烯,以该聚合物的总重量计;并且具有窄组成分布;25-120℃的熔点;50J/g-3J/g的熔化热;1.5-5的Mw/Mn;以及小于20dg/min的熔融指数。
56.权利要求1-20中任一项的组合物,其中该第二丙烯聚合物具有小于50的肖氏D硬度,肖氏D硬度根据ASTM D2240测量。
57.权利要求1-20中任一项的组合物,还包含乙烯均聚物或共聚物,该均聚物或共聚物具有60%或更高的组成分布宽度指数和0.86-0.925g/cc的密度
58.权利要求57的组合物,其中该均聚物或共聚物具有90%或更高的组成分布宽度指数。
59.权利要求1-20中任一项的组合物,其中该第一丙烯聚合物是抗冲共聚物。
60.权利要求1-20中任一项的组合物,其中该NFP具有:a)200℃或更高的闪点和b)在
100℃下35cSt或更高的运动粘度,或者-25℃或更低的倾点。
61.权利要求1-20中任一项的组合物,其中该NFP包含C20-C1500链烷烃,该C20-C1500链烷烃具有在100℃下10cSt或更高的运动粘度和120或更高的粘度指数并且其中该第二丙烯聚合物具有小于50的肖氏D硬度和小于50J/g的熔化热。
62.权利要求1-20中任一项的组合物,其中该NFP包括C5-C14烯烃的低聚物,该低聚物具有在100℃下10cSt或更高的运动粘度和120的粘度指数。
63.权利要求1-20中任一项的组合物,其中该NFP包括癸烯的低聚物,该低聚物具有
560-2,800g/mol的数均分子量。
64.权利要求1-20中任一项的组合物,其中该NFP包括癸烯的低聚物,该低聚物具有
2,800-21,000g/mol的数均分子量。
65.权利要求1-20中任一项的组合物,其中该NFP具有在100℃下10cS t或更高的运动粘度和/或130或更高的粘度指数。
66.权利要求1-20中任一项的组合物,其中该NFP具有上限温度和下限温度间的差值为20℃或更小的馏程;和/或该非官能化增塑剂具有大于110℃的初沸点;和/或该NFP具有-30℃或更低的倾点;和/或其中该NFP具有在20℃下小于3.0的介电常数。
67.权利要求1-20中任一项的组合物,其中该第二丙烯聚合物包含97-75wt%的丙烯,3-25wt%的乙烯,并且具有50J/g或更低的熔化热和80%或更高的三单元组立构规整度;并且其中该增塑剂具有200℃或更高的闪点和在100℃下40cSt或更高的运动粘度,或-30℃或更低的倾点。
68.权利要求1-20中任一项的组合物,其中该第二丙烯聚合物具有5,000-5,000,000的重均分子量,5,000-3,000,000的数均分子量,10,000-5,000,000的Z均分子量。
69.权利要求1-20中任一项的组合物,其中该第二丙烯聚合物具有0.25%-15%的聚丙烯结晶度。
70.权利要求1-20中任一项的组合物,其中该第二丙烯聚合物具有由在己烷中的热分级测定的分子间组成分布满足85wt%或更多的半无定形聚合物离析成一个或两个相邻的可溶性级分,而该半无定形聚合物的其余部分在紧接其前或其后的级分中;其中这些级分中的每一个具有相对于共聚物的平均共聚单体含量wt%而言差值不大于20wt%的共聚单体含量wt%;其中在各阶段之间在8℃的温度增加下获得所述级分。
71.权利要求1-20中任一项的组合物,其中该第二丙烯聚合物具有0.1%至小于35%的结晶度;和/或该第二丙烯聚合物具有90℃或更低的熔点。
72.权利要求1-20中任一项的组合物,其中基本上不存在邻苯二甲酸酯,己二酸酯,偏苯三酸酯和聚酯。
73.权利要求1-20中任一项的组合物,其中该第二丙烯聚合物的维卡软化点大于45℃和/或该第二丙烯聚合物的肖氏A硬度大于45,维卡软化点根据ASTM D648在200克载荷下测量,肖氏A硬度根据ASTM D2240测量。
74.包含根据前述权利要求中任一项的组合物的制品。
75.权利要求74的制品,其中该制品是模制品、挤出制品、纤维或非织造织物。
76.权利要求74的制品,其中该制品是薄膜或人造短纤维。
77.权利要求74-76中任一项的制品,其中当在烘箱中在70℃下储存312小时时,该制品的重量减少小于1%。
78.权利要求74-76中任一项的制品,其中该制品的永久变形小于65%。
79.权利要求74-76中任一项的制品,其中该制品选自:炊具、储具、家具、汽车部件、船部件、玩具、运动装、医疗器材、软管、管道、运动装备、电线护套、电缆护套、缓冲器、护栅、装饰部件、仪表盘、仪表板、外部件、发动机罩部件、阻流板、挡板、毂盖、反射镜外罩、车身板、保护性侧面模制品、板条箱、容器、包装物、实验室器具、办公室地板毡、仪器试样夹、采样窗口、粘合剂底、垫片、风箱、弹纤维和密封剂
80.权利要求74-76中任一项的制品,其中该制品选自:消毒容器;用于血液或溶液的储存和IV输注的液体储存器、袋子、小包、瓶子;选自单位剂量容器、泡罩包装、泡沫包装的任何医疗器材或药物的包装材料
81.制品的制造方法,包括对权利要求1-73中任一项的组合物进行以下一种或多种处理:注塑、压塑、压铸、浇铸、挤出、热成型、吹塑、滚塑或它们的组合。

说明书全文

增塑聚烯组合物

发明领域

[0001] 本发明涉及显示机械、光学和弹性性能的良好平衡的软质聚烯烃组合物。更具体地说,本发明涉及包含高熔点丙烯均聚物或共聚物,低结晶度丙烯均聚物或共聚物以及非官能化增塑剂的半结晶聚丙烯组合物;和由此类组合物制成的制品。
[0002] 发明背景
[0003] 聚烯烃可用于许多日常用品。对于许多这些应用,包括薄膜纤维,柔韧性和柔软度以及相结合的在高终端使用温度下的性能保持(“耐热性”)是合乎需要的属性。半结晶聚烯烃用于这样的应用,原因在于它们是热塑性,这意味着结晶性质(不交联)允许它们形成有用的制品;此类材料可以形成便于处理的粒料并且使用标准塑料工业设备如挤出机进行加工。这与聚烯烃热固性材料,如乙烯-丙烯-二烯(EPDM)弹性体(还称作EPDM橡胶)相反,该聚烯烃热固性材料具有极低至没有结晶性并且具有非常高的分子量,并且为了形成有用的制品必须是高度交联的;这样的材料不能造粒并且使用标准橡胶工业设备如开炼机进行加工。
[0004] 通常,选择丙烯型半结晶聚烯烃,因为它们较高的熔化温度。然而,此类聚烯烃,尤其是富丙烯的聚烯烃的一个缺陷是它们的高硬度和刚性,这使得它们不适合用于要求软触感的应用。富丙烯聚烯烃的另一个缺陷是它们较高的玻璃化转变温度,这对韧性、尤其是低温韧性和耐冲击性有害,其通常对涉及通过模塑或挤出技术制造的部件的应用是重要的。
[0005] 使半结晶聚丙烯更软和更韧的一种方式曾是在更软的聚合物如弹性体和塑性体中共混。然而,这导致模糊的光学性能。此外,这些组合物,虽然显示软触感,但不显示任何弹性性能如在高应变之后的良好压缩形变和弹性回复。这一特性使得这些聚烯烃不能用于其中要求柔软度和弹性以及良好耐热性的多种应用。改进半结晶聚丙烯的柔韧性、柔软度、韧性和/或弹性的另一个常用方法是通过添加共聚单体降低聚合物结晶性。然而,这导致降低的熔点,并因此导致较低的耐热性和有可能差的粒料质量。通常合乎需要的是,聚烯烃显示良好的粒料形成和粒料稳定特性以使该聚烯烃容易用于加工操作。
[0006] 半结晶聚烯烃的许多应用受益于在宽的温度范围内具有有用的性能;因此,需要提供可以维持合乎需要的特性如高维卡软化温度,同时维持或改进柔软度和弹性的聚烯烃。具体来说,有利的是提供具有改进柔软度、韧性、弹性和透明性而不牺牲它的其它所需性能的丙烯型聚合物组合物。具体来说,需要的是显示优异的柔软度、韧性和/或弹性,而不牺牲耐热性、透明性和/或粒料质量的组合物。根据本发明的改性半结晶聚烯烃满足这些需要。
[0007] 低的熔体粘度(高的熔体流动速率)对几乎所有的聚烯烃制造过程是有利的,原因在于这降低了循环时间或允许更低的温度和/或能量需要。获得低熔体粘度的传统方法是降低树脂的分子量和增宽树脂的分子量分布。然而,由于低分子量聚合物的存在,这两种方法可对聚烯烃制品的最终物理性能具有不利影响。因此,进一步需要的是改进上述物理性能同时降低熔体粘度的方法。此外,在制造环境中还有利的是,连续地改变这些参数以配合变化的需要,而不是在聚烯烃的离散等级间选择和/或共混不同的聚烯烃(这需要较强的专业知识和注意以适当地控制共混物的形态和最终性能)。根据本发明的改性半结晶聚烯烃组合物满足了这些需要。
[0008] 将低分子量无定形物质添加到半结晶聚烯烃中是试图解决上述需要的一种方法。涉及此种目的的一些专利公开物是US 3201364、US3415925、US 4073782、US 4110185、US
4132698、US 4210570、US4325850、US 4960820、US 4774277、US 5869555、US 6465109、EP0448259、FR 2094870和JP 09208761。这些公开物涉及与诸如矿物油之类的材料共混的半结晶聚烯烃,所述矿物油通常包含相当大的不饱和物、芳族基团、环烷基团和/或其它官能团浓度。在具有极低至没有结晶性和具有非常高分子量的聚烯烃弹性体中添加矿物油也是熟知的;例如参见,RUBBER TECHNOLOGY HANDBOOK,Werner Hoffman(Hanser,New York,
1989),第294-305页。
[0009] 矿物油的添加倾向于改进半结晶聚烯烃的柔韧性,这样将此类化合物等同于在普通认可定义下的“增塑剂”;即改进塑料或弹性体的柔韧性、可加工性或扩张性的物质。矿物油还作为填充油或加工油,以及用于其它目的而添加到聚烯烃中。然而,使用这些添加剂化合物通常不能使光学性能(例如,颜色和/或透明性)或聚烯烃的低气味等得到保持。聚烯烃的熔点通常也不能得到保持,这降低了组合物的软化点和上限使用温度。此外,此类添加剂化合物通常具有高的倾点(大于-20℃,或甚至大于-10℃),这很少或不能达到聚烯烃的低温度性能或冲击韧性方面的改进,尤其是当没有降低玻璃化转变温度时。
[0010] 矿物油的添加通常转化成聚烯烃组合物的降低的熔体粘度和改进的可加工性。令人遗憾地,这通常导致其它问题。例如,所有或一些添加剂可迁移到表面上并以不可接受的高速率蒸发,这导致性能随着时间恶化。如果闪点足够低(例如,小于200℃),则该化合物可以引起冒烟并且在熔融加工过程中消失于大气中。它还可以从聚烯烃中浸出而损害食品、服装和其它与由该聚烯烃组合物制成的最终制品接触的制品。它还可以导致遇到最终制品的粘性或其它表面性质的问题。需要的是赋予优良低温性能同时还显示低的起霜白化、迁移、浸出和/或蒸发行为的化合物。
[0011] 典型的添加剂化合物的另一个缺点是它们通常由于饱和度和/或杂原子而包含高(大于5wt%)官能度,这倾向于使得它们呈反应性、热不稳定和/或与聚烯烃不相容等。特别地,矿物油由数千种不同的化合物构成,其中许多由于分子量或化学组成而不希望用于聚烯烃。在中至高的温度下,这些化合物可以挥发和化,即使添加氧化抑制剂仍如此。它们还可以导致在熔融加工和制造步骤过程中的问题,包括分子量的降低、交联或变色。它们还可能产生不希望的气味。
[0012] 常用的添加剂化合物如矿物油的这些属性限制了最终聚烯烃组合物的性能,并因此限制了其在许多应用中的有用性。结果,对于用作半结晶聚烯烃的改性剂而言它们不是高度合乎需要的。不遇到这些缺陷的改性剂是需要的。具体来说,需要的是这样一种改性剂,它允许配制具有改进的柔软度、柔韧性(较低的挠曲模量)和冲击韧性(尤其在低温下(小于0℃)的冲击韧性)的半结晶聚烯烃组合物,该组合物同时不显著地降低耐热性并具有最小的低分子量物质向制品表面的迁移。理想地,所述改性剂具有低的倾点,同时仍具有足够的分子量以避免不可接受的渗出和提取。它还应该不导致光学性能、颜色、气味、热稳定性、氧化稳定性等的恶化。优选地,改性聚烯烃组合物的玻璃化转变温度低于未改性的聚烯烃的玻璃化转变温度。根据本发明的改性剂和改性的半结晶聚烯烃组合物满足这些需要。
[0013] 尤其合乎需要的是通过添加简单的非反应性的化合物如链烷烃液体将半结晶富丙烯的聚烯烃改性。然而,已经教导添加脂族或链烷烃化合物损害聚烯烃的性能,并因此是不推荐的;参见,例如CHEMICALADDITIVES FOR PLASTICS INDUSTRY(1987,Radian Corp.,Noyes DataCorporation,NJ),第107-116页。其它有价值的背景参考文献包括美国6639020和ADDITIVES FOR PLASTICS,J.Stepek,H.Daoust(SpringerVerlag,New York,1983),第6-69页。
[0014] 用于非粘合剂应用的与链烷烃液体增塑剂相结合的半结晶丙烯型聚烯烃的实例包括以下那些。然而,这些公开的组合物都不具备良好的耐热性、柔软度、韧性和/或弹性的平衡;更具体地说,都不具有由压缩形变或拉伸形变测量的弹性。
[0015] US4536537公开了聚丙烯组合物,其包含密度为0.912-0.935g/cm3的LLDPE或在100 /38℃下运动粘度为约2cSt-约6cSt的聚丁烯和聚-α-烯烃液体;据报道具有粘度大于约2cSt的那些“不起作用”(第3栏第12行)。
[0016] WO 98/44041公开了用于片状结构(尤其是地板覆盖材料)的共混组合物,其包含无氯聚烯烃和在100℃下运动粘度为约4cSt-约8cSt的聚-α-烯烃低聚物。
[0017] WO 2002/18487和WO 2003/48252公开了聚丙烯组合物,其包含10-30wt%的硫化或未硫化的聚烯烃弹性体,尤其是EPDM或苯乙烯-乙烯-丁烯-苯乙烯(SEBS)嵌段共聚物,和运动粘度在100℃下为约4cSt-约8cSt的聚-α-烯烃低聚物。
[0018] US 4645791、JP 07292167、EP 0315363和WO 2002/31044都公开了在EPDM组合物中的聚-α-烯烃型材料。
[0019] JP 56095938公开了包含与聚烯烃颗粒混合的烯烃低聚物增塑剂的聚丙烯组合物。
[0020] WO 2004/14998公开了包含各种非官能化增塑剂的丙烯型聚合物组合物。
[0021] 其它有价值的参考文献包括:GB 1329915、JP 01282280、JP69029554、WO2001/18109、EP 0300689、EP 1028145。
[0022] 某些矿物油已经由美国石油学会(API)根据它们包含的饱和物和硫的量以及它们的粘度指数分类为I、II或III组烃基本原料。I组基本原料是溶剂精炼的矿物油,它们含有最高平的不饱和物和硫,并且具有低的粘度指数;它们倾向于限定了润滑剂性能的最低等级(bottomtier)。它们生产成本最低,并且目前占“常规”基本原料的大部分。II和III组基本原料是比I组基本原料更加高度精制的(例如通过加氢处理),并且通常在润滑剂应用中表现得更好。II和III组基本原料比I组基本原料含有更少的不饱和物和硫,同时III组基本原料比II组基本原料具有更高的粘度指数。其它的API基本原料类别(即IV和V组)也用于基本原料工业中。Rudnick和Shubkin在SYNTHETIC LUBRICANTSAND HIGH-PERFORMANCE FUNCTIONAL FLUIDS,第二版(MarcelDekker,New york,1999)中描述了通常如下所示的5个基本原料组:
[0023] I组-使用芳族化合物的溶剂萃取、溶剂脱蜡、加氢精制以降低硫含量来精制的矿物油,生产的矿物油的硫含量高于0.03wt%,饱和物含量60-80wt%,粘度指数(VI)约90;
[0024] II组-采用常规芳族化合物的溶剂萃取、溶剂脱蜡和更严格的加氢精制的温和加氢裂化的矿物油,将硫含量降低至低于或等于0.03wt%以及从一些烯属和芳族化合物中除去了双键,饱和物含量高于95-98wt%,且VI是约80-120;
[0025] III组-严格加氢处理的矿物油,其中一些油的饱和物含量几乎为100%,硫含量低于或等于0.03wt%(优选0.001-0.01wt%),和VI超过120;
[0026] IV组-“聚α-烯烃”,它们是由具有6个或更多个碳原子的线性α-烯烃的催化低聚所制备的烃液体;然而在实践中,该组通常被认为是通过具有4个或更多个碳的α-烯烃的低聚所生产的合成基本原料流体;和
[0027] V组-酯,聚醚,聚亚烷基二醇,并且包括没有在I、II、III和IV组中包含的所有其它基本原料。
[0028] 将矿物油添加到聚烯烃中以改进性能的先前的尝试大部分涉及添加I组和II组矿物油。即使在矿物油没有通过API组类别确定的情况下,如所谓的“加工油”、“工业用白油”、“食品级油”等的情况下,这些矿物油仍容易地仅基于VI分成两种类型:VI小于120的那些(与I组和II组矿物油相似),和VI为120或更大的那些。本发明的某些方面理想地涉及VI为120或更大的物质,其排除了I组和II组矿物油以及任何其它的VI<120的矿物油。
[0029] 发明概述
[0030] 本发明涉及包含一种或多种高熔点丙烯聚合物、一种或多种低结晶性丙烯聚合物和一种或多种非官能化增塑剂(NFP)的组合物。具体来说,本发明涉及包含以下组分的组合物:1)1-98wt%的熔点为100℃或更高的第一丙烯聚合物,2)5-98wt%的具有70J/g或更低的熔化热和75%或更高的立构规整度指数的第二丙烯聚合物,和3)0.5-75wt%的具有120或更高的粘度指数的非官能化增塑剂(“NFP”),基于该第一聚合物、第二聚合物和NFP的重量。
[0031] 具体来说,本发明涉及包含以下物质的组合物:1)具有大于100℃的熔点的第一丙烯聚合物(通过以下DSC方法测量);2)具有70J/g或更低的熔化热(通过以下DSC方法测量)和75%或更高的立构规整度指数(通过以下方法测量)的第二丙烯聚合物;和3)非官能化增塑剂,优选具有120或更高的粘度指数(VI)(通过ASTM D 2270测量)。或者,所述NFP具有0.85或更低的比重(通过ASTM D 405215.6/15.6℃测量)和-20℃或更低的倾点(通过ASTM D 97测量)。或者,所述NFP具有200℃或更高的闪点(通过ASTM D92测量)和-10℃或更低的倾点以及120或更高的粘度指数。或者,所述NFP具有200℃或更高的闪点和-20℃或更低的倾点。或者,所述NFP具有200℃或更高的闪点和100℃下
35cSt或更高的运动粘度(通过ASTM 445测量)。本发明进一步涉及由这些组合物制成的具有耐热性、柔软度、韧性和/或弹性的改进平衡的制品。
[0032] 本发明进一步涉及上述组合物,其中所述NFP包含由C5-C20烯烃制成的聚α-烯烃低聚物。它还涉及上述组合物,其中所述NFP包括具有很少至没有硫或不饱和物含量的C20-C1500线性和/或支化链烷烃。它还涉及上述组合物,其中所述NFP包括通过气体-至-液体工艺制备的线性和/或支化链烷烃。
[0033] 定义
[0034] 对于本发明和所附权利要求书来说,当提到聚合物或低聚物包括烯烃时,存在于该聚合物或低聚物中的烯烃分别是烯烃的聚合或低聚形式。同样,术语聚合物的使用意欲包括均聚物和共聚物,其中共聚物包括具有2种或更多种化学上不同的单体的任何聚合物。术语共聚物还包括具有2种或更多种化学上不同的单体类型的互聚物和嵌段共聚物。
[0035] 对于本发明和所附权利要求书来说,术语聚丙烯、丙烯聚合物和丙烯型聚合物都指包含至少50mol%(优选至少60mol%,更优选至少70mol%,更优选至少80mol%,更优选至少90mol%,甚至更优选至少95mol%或100mol%)的丙烯单元;并具有小于40mol%的乙烯单元的聚合物。因此,在此所定义的丙烯聚合物不可以是如下所定义的EP橡胶。另外,丙烯型塑性体定义为具有小于50的肖氏D硬度和小于60J/g的熔化热的丙烯聚合物。本文所使用的术语聚丙烯组合物是指包含至少一种聚丙烯组分的共混物。
[0036] 对于本发明和所附权利要求书来说,EP橡胶定义为乙烯和丙烯以及非必要的二烯单体的共聚物,其中乙烯含量为35-80wt%,二烯含量为0-15wt%,其余部分是丙烯;并且其中该共聚物具有15-100的尼粘度ML(1+4)@125℃(根据ASTM D1646测量)。
[0037] 对于本发明和所附权利要求书来说,低聚物定义为具有使用下面试验方法部分中在流体性能下规定的方法测量的10,000g/mol或更低的数均分子量(Mn)。
[0038] 对于本发明和所附权利要求书来说,I、II和III组基本原料定义为具有下列性能的矿物油:
[0039]
[0040] 饱和物含量、硫含量和粘度指数分别遵循ASTM D2007、ASTM D2622和ASTM D2270测量。
[0041] 对于本发明和所附权利要求书来说,IV组基本原料定义为聚α-烯烃,其是通过含5个或更多个碳原子,优选6个或更多个碳原子,优选8个或更多个碳原子的线性α-烯烃的催化聚合所制备的烃液体。聚α-烯烃可以通过任何立构规整度,包括全同立构规整度或间同立构规整度来表征,和/或可以是无规立构的。在另一个实施方案中,聚α-烯烃13
具有由 C-NMR测量的多于50%,优选多于60%的内消旋二分体。在另一个实施方案中,聚
13
α-烯烃具有由 C-NMR测量的多于50%,优选多于60%的外消旋二分体。
[0042] 对于本发明和所附权利要求书来说,术语链烷烃包括全部异构体如正构链烷烃(正链烷烃)、支化链烷烃、异链烷烃、环链烷烃,并且可以包括环脂族物质,和它们的共混物,并且可以通过本领域中已知的方法合成得到,或用满足为本文描述的所需改性剂描述的要求的方法从精炼原油获得。术语异链烷烃是指链烷烃链具有沿着每个链烷烃链的至少一部分分支的C1-C18(更通常C1-C10)烷基,并且可以包括具有支化侧链作为少量组分的环链烷烃。更具体地说,异链烷烃是饱和脂族烃,其分子具有至少一个与至少三个其它碳原子键接的碳原子或至少一个侧链(即,具有一个或多个叔或季碳原子的分子);通常将存在每种碳数的各种异构体(即,结构异构体)。异链烷烃还可以包括具有支化侧链的环链烷烃,通常作为该异链烷烃的少量组分存在。具有多个烷基分支的异链烷烃可以包括那些分支的区域和立体布局的任意组合。
[0043] 对于本发明和所附权利要求书来说,术语矿物油包括任何石油型油;衍生自已经经历精炼步骤(如蒸馏、溶剂加工、加氢处理和/或脱蜡)以获得最终油料的石油原油。这还包括经由严格加工处理的经过彻底纯化和/或改性的石油型油。它排除合成油,后者已通过使用催化剂和/或热将单体单元结合来制备。在聚合物加工技术中,矿物油通常称作加工油。在聚合物中用作加工油的一些可商购的矿物油的特性列于下表中。
[0044] 矿物油的市售实例
[0045]
[0046] 1从Penreco商购。
[0047] 2从ChevronTexaco商购。
[0048] 3从Sunoco商购。
[0049] 4从ExxonMobil商购。
[0050] 5从Shell商购。
[0051] 对于本发明和所附权利要求书来说,当涉及熔点或结晶点且存在熔融或结晶温度范围时,该熔点或结晶点定义为得自如下面在试验方法下描述的差示扫描量热法(DSC)轨迹的峰熔融或结晶温度,并且除非另有指出,当存在多于一个熔融或结晶峰时,它是指在主熔融峰和次熔融峰之中最大峰的峰熔融或结晶温度,与在最高温度下产生的峰相反,从而反映对材料量热响应的最大贡献。
[0052] 发明详述
[0053] 本发明涉及包含一种或多种高熔点丙烯聚合物(HMPP)、一种或多种低结晶性丙烯聚合物(丙烯型塑性体)和一种或多种非官能化增塑剂(NFP)的聚丙烯组合物。它进一步涉及由此类组合物制成的制品,包括模塑、浇铸和挤出制品,以及薄膜和纤维,这些制品具有耐热性、柔软度、韧性和/或弹性的改进平衡。
[0054] 组合物
[0055] 丙烯聚合物(例如HMPP和丙烯型塑性体两者)优选在一个实施方案中以40-99.9wt%的量,在另一个实施方案中以50-99wt%的量,在又一个实施方案中以60-98wt%的量,在又一个实施方案中以70-97wt%的量,在又一个实施方案中以
80-97wt%的量,和在又一个实施方案中以90-98wt%的量存在于本发明的组合物中,其中合乎需要的范围可以是这里所述的任何上限wt%与任何下限wt%的任意组合,并且wt%基于该组合物的NFP和总聚合物含量的重量。
[0056] 在另一个实施方案中,一种或多种HMPP可以以至多50wt%的量存在,或在另一个实施方案中以1-40wt%,或在另一个实施方案中以2-30wt%,或在另一个实施方案中以3-20wt%,或在另一个实施方案中以5-10wt%,或在另一个实施方案中以25wt%或更低,或在另一个实施方案中以15wt%或更低,或在另一个实施方案中以5wt%或更低的量存在,其中合乎需要的范围可以是这里所述的任何上限wt%与任何下限wt%的任意组合,并且wt%基于该组合物的NFP和总聚合物含量的重量。在另一个实施方案中,本发明的共混物包含60-99wt%,优选60-90wt%,优选60-85wt%,优选60-75wt%的一种或多种HMPP,基于NFP、HMPP和丙烯型塑性体的重量。
[0057] 在另一个实施方案中,一种或多种低结晶性丙烯聚合物(丙烯型塑性体)以50-99.9wt%,或者60-99wt%,或者70-98wt%,或者80-97wt%,或者90-96wt%的量存在,NFP和任何其它聚合物以50-0.1wt%,或者40-1wt%,或者30-2wt%,或者20-3wt%,或者10-4wt%的量存在,其中合乎需要的范围可以是这里所述的任何上限wt%与任何下限wt%的任意组合,并且wt%基于该组合物的NFP和总聚合物含量的重量。
[0058] 在另一个实施方案中,所述共混物包含:1)包含至少60wt%丙烯的丙烯型塑性体;以及2)以0.1-50wt%,更优选0.5-45wt%,更优选1-40wt%,更优选2-35wt%,更优选3-30wt%,更优选4-25wt%,更优选5-20wt%,更优选小于15wt%的量存在的至少一种NFP,其中合乎需要的范围可以是这里所述的任何上限wt%与任何下限wt%的任意组合,并且wt%基于该塑性体和NFP的重量。
[0059] 在另一个实施方案中,所述组合物包含:1)1-98wt%(优选5-75wt%)熔点为100℃或更高的第一丙烯聚合物,2)5-98wt%(优选5-75wt%)具有70J/g或更低的熔化热和75%或更高的立构规整度指数的第二丙烯聚合物,3)0.5-75wt%(优选5-60wt%)的粘度指数为120或更高的非官能化增塑剂(“NFP”),基于所述第一聚合物、第二聚合物和NFP的重量。
[0060] 在另一个实施方案中,本发明的组合物包含小于50wt%(优选小于40wt%,优选小于30wt%,优选小于20wt%,优选小于10wt%,更优选小于5wt%,更优选小于1wt%)EP橡胶,基于该组合物的总重量。
[0061] 在另一个实施方案中,本发明的组合物包含小于10wt%(优选小于5wt%,优选小于3wt%,优选小于2wt%,优选小于1wt%,更优选小于0.5wt%,更优选小于0.1wt%)弹性体,基于该组合物的总重量。
[0062] 在另一个实施方案中,本发明中的丙烯聚合物包含0%二烯。在另一个实施方案中,存在于组合物中的所有丙烯聚合物的总二烯含量是0%。在另一个实施方案中,所述丙烯聚合物包含小于30wt%的二烯,优选小于20wt%,优选小于10wt%,优选小于5wt%的二烯,优选小于2.5wt%,优选小于1wt%,基于所有丙烯聚合物的重量。
[0063] 在另一个实施方案中,本发明的组合物可以进一步包含乙烯和一种或多种α-烯烃的共聚物或共低聚物,如US 6,639,020中公开的那些。
[0064] 在另一个实施方案中,所述组合物包含小于40wt%(优选小于30wt%,优选小于20wt%,优选小于10wt%,优选小于5wt%,优选小于1wt%,优选0%,基于该组合物的重量)的乙烯/α-烯烃共聚物,其中该α-烯烃选自丙烯、1-丁烯、1-己烯、和/或1-辛烯并且该乙烯/α-烯烃共低聚物/共聚物是液体。
[0065] 在另一个实施方案中,本发明的组合物包含小于20wt%,优选小于10wt%,优选小于1wt%的异戊二烯和/或丁二烯的在40℃下运动粘度为10,000cSt或更低的液体均聚物或共聚物,基于该组合物的重量。在另一个实施方案中,本发明的组合物包含小于20wt%,优选小于10wt%,优选小于1wt%的异戊二烯和/或丁二烯的在40℃下运动粘度为
2,000cSt-20cSt的液体均聚物或共聚物。
[0066] 在另一个实施方案中,基本上不存在常规增塑剂(如常用于聚(氯乙烯)的那些)。具体来说,基本上不存在增塑剂如邻苯二甲酸酯、己二酸酯、偏苯三酸酯、聚酯 和在 例 如US 3,318,835;US 4,409,345;WO 02/31044 A1 和PLASTICS ADDITIVES499-504(Geoffrey Pritchard编辑,Chapman&Hall 1998)中公开的其它官能化增塑剂。所谓“基本上不存在”是指这些化合物不被有意地加入到组合物中,并且如果存在的话,以低于0.5wt%的量存在。
[0067] 在另一个实施方案中,基本上不存在“环烷”矿物油和“芳族”矿物油;即以低于本发明的组合物的0.5wt%存在。在另一个实施方案中,如果此种油存在于所述组合物中,此种油的总量为所述组合物中总NFP的至多5wt%。
[0068] 本发明的优选组合物特征在于,当通过ASTM D1203测定增塑剂持久性时(0.25mm厚片材,在干燥烘箱内在70℃下储存300小时),该改性组合物的重量减少低于3%,优选低于2%,优选低于1%。重量损失在此是指超过在相同试验条件下对于丙烯聚合物的未改性共混物测得的重量的重量减少。
[0069] 对于本发明和所附权利要求书来说,给定组合物中NFP的量通过下面试验方法部分中描述的NMR方法测定。
[0070] 非官能化增塑剂
[0071] 本发明的组合物包括至少一种非官能化增塑剂(“NFP”)。可用作非官能化增塑剂的本文描述的材料类别可以单独地使用或与其它本文描述的NFP掺合使用以获得所需性能。可用于本发明的任何NFP还可以通过本文描述的参数中的许多或任何组合来描述。
[0072] 优选地,NFP是不具有大于0℃的清晰熔点和具有30,000cSt或更低的在25℃下的运动粘度的液体。
[0073] 在一个实施方案中,本发明的NFP是含有碳和氢的化合物,不包括明显量的选自羟基、芳基和取代的芳基、卤素、烷氧基、羧酸酯、酯、不饱和碳、丙烯酸酯、氧、氮和羧基中的官能团。在又一个实施方案中,芳族结构部分(包括其分子具有苯、、菲、蒽等的环结构特征的任何化合物)基本上不存在于该NFP中。所谓“明显量”是指这些基团和含有这些基团的化合物不被有意加入到NFP中,如果存在的话,在一个实施方案中以低于NFP的5wt%,更优选低于4wt%,更优选低于3wt%,更优选低于2wt%,更优选低于1wt%,更优选低于0.7wt%,更优选低于0.5wt%,更优选低于0.3wt%,更优选低于0.1wt%,更优选低于
0.05wt%,更优选低于0.01wt%,更优选低于0.001wt%的量存在,基于该NFP的重量。所谓“基本上不存在”是指这些化合物不被有意地加入到组合物中,并且如果存在的话,以低于0.5wt%的量存在。
[0074] 在另一个实施方案中,本发明的NFP是不包含明显量的烯属不饱和物的烃。所谓“明显量的烯属不饱和物”是指包含在烯键中的碳占总碳数的小于10%,优选小于9%,更优选小于8%,更优选小于7%,更优选小于6%,更优选小于5%,更优选小于4%,更优选小于3%,更优选小于2%,更优选小于1%,更优选小于0.7%,更优选小于0.5%,更优选小于0.3%,更优选小于0.1%,更优选小于0.05%,更优选小于0.01%,更优选小于0.001%。在一些实施方案中,包含在烯键中的NFP的碳的百分率为NFP中碳原子总数的0.001-10%,优选0.01-7%,优选0.1-5%,更优选小于1%。
[0075] 在另一个实施方案中,NFP包括C6-C200链烷烃(优选C8-C100链烷烃),其中该NFP具有a)0.85或更低的比重和b)-20℃或更低的倾点。在另一个实施方案中,NFP主要由C6-C200链烷烃构成(优选该NFP主要由C8-C100链烷烃构成),其中该NFP具有a)0.85或更低的比重和b)-20℃或更低的倾点。
[0076] 在本发明的某些实施方案中,具有a)0.85或更低的比重和b)-20℃或更低的倾点的NFP具有以下性能中的一个或多个:
[0077] 1.由ASTM D86测定的馏程具有40℃或更低,优选30℃或更低,优选20℃或更低,优选10℃或更低,优选6-40℃的上限温度和下限温度间的差值;和/或
[0078] 2.115℃-500℃,优选200℃-450℃,优选250℃-400℃的由ASTMD86测定的终沸点;和/或
[0079] 3.2,000-100g/mol,优选1,500-150g/mol,更优选1,000-200g/mol的数均分子量(Mn);和/或
[0080] 4.在20℃下的小于3.0,优选小于2.8,优选小于2.5,优选小于2.3,优选小于2.1的介电常数;和/或
[0081] 5.0.5-20cSt的在25℃下的粘度(ASTM 445,25℃);和/或
[0082] 6.由ASTM E1356测定的小于0℃,优选小于-10℃,更优选小于-20℃,更优选小于-30℃,更优选小于-50℃的玻璃化转变温度(Tg),或最优选不能由ASTM E1356测定的Tg。
[0083] 在其它实施方案中,具有a)0.85或更低的比重和b)-20℃或更低的倾点的NFP优选包含至少50wt%,优选至少60wt%,优选至少70wt%,优选至少80wt%,优选至少90wt%,优选至少95wt%,优选100wt%的C6-C150异链烷烃,优选C6-C100异链烷烃,优选C6-C25异链烷烃,更优选C8-C20异链烷烃。优选地,这些异链烷烃的密度(ASTM 4052,
3
15.6/15.6℃)为0.70-0.83g/cm ;倾点为-40℃或更低,优选-50℃或更低,在25℃下的粘度(ASTM 445,25℃)为0.5-20cSt;数均分子量为100-300g/mol。适合的异链烷烃例如描TM
述在US 6,197,285,3,818,105和3,439,088中,并且可以商品名称ISOPAR (ExxonMobil Chemical)商购,它们的一些在以下表中总结:
[0084] ISOPAR系列异链烷烃
[0085]TM
[0086] 其它 适合 的异 链 烷烃 还可 以商 品名 SHELLSOL (RoyalDutch/Shell)、TM TMSOLTROL (Chevron Phillips)和SASOL (SasolLimited)商购。
[0087] 在另一个实施方案中,异链烷烃是在分子中具有6-50个碳原子,在另一个实施方案中具有10-24个碳原子的支化和正链烷烃的混合物。异链烷烃组合物具有在一个实施方案中0.5∶1-9∶1,在另一个实施方案中1∶1-4∶1的支化链烷烃与正链烷烃的比率(支化异链烷烃:正链烷烃)。在该实施方案中,所述混合物的异链烷烃含有高于50wt%(按该异链烷烃组合物的总重量计)的单甲基物质,例如2-甲基、3-甲基、4-甲基、5-甲基等,其中最低限度地形成了具有碳数大于1的取代基的分支,例如乙基、丙基、丁基等,基于该混合物中异链烷烃的总重量。在一个实施方案中,所述混合物的异链烷烃含有高于70wt%的单甲基物质,基于该混合物中异链烷烃的总重量。该异链烷烃混合物在一个实施方案中在100-350℃,而在另一个实施方案中在110-320℃沸腾。在不同等级的制备中,一般将该链烷烃混合物分馏为具有窄沸程,例如35℃沸程的馏分。这些支化链烷烃/正链烷烃共混物例如描述在US5,906,727中。
[0088] 在另一个实施方案中,本发明的NFP包括C25-C1500链烷烃,在另一个实施方案中包括C30-C500链烷烃,并且具有200℃或更高的闪点和-10℃或更低的倾点以及120或更高的粘度指数。或者,该NFP包括C25-C1500链烷烃,优选C30-C500链烷烃,并且具有200℃或更高的闪点和-20℃或更低的倾点。或者,该NFP包括C25-C1500链烷烃,优选C30-C500链烷烃,并且具有200℃或更高的闪点和35cSt或更高的在100℃下的运动粘度。在另一个实施方案中,该NFP主要由C35-C300链烷烃构成,该NFP优选主要由C40-C250链烷烃构成,并具有200℃或更高的闪点和-10℃或更低的倾点以及120或更高的粘度指数。或者,该NFP主要由C35-C300链烷烃,优选C40-C250链烷烃构成,并且具有200℃或更高的闪点和-20℃或更低的倾点。或者,该NFP主要由C35-C300链烷烃,优选C40-C250链烷烃构成,并且具有200℃或更高的闪点和35cSt或更高的在100℃下的运动粘度。或者,所述NFP具有200℃或更高的闪点和-20℃或更低的倾点。或者,该NFP具有200℃或更高的闪点和35cSt或更高的在100℃下的运动粘度。
[0089] 在另一个实施方案中,所述NFP包括C5-C20烯烃的聚α-烯烃(PAO)低聚物,在另一个实施方案中包括C6-C18烯烃的低聚物,在又一个实施方案中包括C6-C14烯烃的低聚物。在一个优选的实施方案中,所述NFP包括C8-C121-烯烃的低聚物。在一个更加优选的实施方案中,所述NFP包括线性C8-C121-烯烃的低聚物,最优选的是线性C101-烯烃的低聚物。在一个优选的实施方案中,所述NFP包括C8、C10和C121-烯烃,优选1-辛烯、1-癸烯和1-十二碳烯的低聚物。
[0090] 在另一个实施方案中,所述NFP包括含5-18个碳原子,更优选6-12个碳原子,更优选10个碳原子的线性烯烃的聚α-烯烃(PAO)低聚物,其中各种PAO或PAO的组合具有3cSt或更高,优选6cSt或更高,优选8cSt或更高,优选10cSt或更高的在100℃下的运动粘度(KV)(通过ASTMD445测量);并优选具有100或更高,优选110或更高,更优选120或更高,更优选130或更高,更优选140或更高,优选150或更高的粘度指数(VI)(通过ASTM D2270测定);并优选具有-10℃或更低,更优选-20℃或更低,更优选-30℃或更低的倾点(通过ASTM D97测定)。
[0091] 在另一个实施方案中,所述NFP包括C20-C1500(优选C35-C400,更优选C40-C250)聚α-烯烃低聚物。该PAO低聚物优选在一个实施方案中是C5-C14α-烯烃,在另一个实施方案中是C6-C14α-烯烃,在另一个实施方案中是C8-C12α-烯烃,在另一个实施方案中是C10α-烯烃的二聚物、三聚物、四聚物、五聚物等。适合的烯烃包括1-戊烯,1-己烯,1-庚烯,1-辛烯,1-壬烯,1-癸烯,1-十一碳烯和1-十二碳烯以及它们的共混物。在一个实施方案中,烯烃是1-癸烯,NFP是1-癸烯的二聚物、三聚物、四聚物和五聚物(和更高级聚合体)的混合物。在另一个实施方案中,PAO由1-辛烯、1-癸烯和1-十二碳烯的低聚物或聚合物组成。优选的PAO更具体地描述在例如US 5,171,908,和US 5,783,531,以及 SYNTHETICLUBRICANNTS AND HIGH-PERFORMANCE FUNCTIONAL FLUIDS 1-52(LeslieR.Rudnick & Ronald L.Shubkin编辑,Marcel Dekker,Inc.1999)中。可用于本发明的PAO低聚物或聚合物可以通过任何立构规整度表征,包括全同立构规整度或间同立构规整度,并13
且可以是无规立构的。在另一个实施方案中,聚α-烯烃具有由 碳NMR测量的多于50%,
13
优选多于60%的内消旋二分体。在另一个实施方案中,聚α-烯烃具有由 碳NMR测量的多于50%,优选多于60%的外消旋二分体。
[0092] 可用于本发明的PAO通常具有在一个实施方案中300-21,000g/mol,在另一个实施方案中400-20,000g/mol,在另一个实施方案中500-10,000g/mol,在另一个实施方案中500-5,000g/mol,在另一个实施方案中600-3,000g/mol,在又一个实施方案中500-1,500g/mol的数均分子量。优选的PAO具有在一个实施方案中3-3000cSt,在另一个实施方案中4-3000cSt,在另一个实施方案中6-300cSt,在另一个实施方案中8-100cSt,在另一个实施方案中10cSt或更大的在100℃下的运动粘度;并且具有在一个实施方案中小于-10℃,在另一个实施方案中小于-20℃,在另一个实施方案中小于-25℃,在另一个实施方案中小于-30℃,在另一个实施方案中小于-35℃,在又一个实施方案中小于-40℃的倾TM TM
点。合乎需要的PAO可作为SpectraSyn 和SpectraSyn Ultra (ExxonMobil Chemical,TM
以前以SHF和SuperSyn 商品名销售)商购,它们的一些在以下表中总结。
[0093] SpectraSynTM系例聚α-烯烃
[0094]
[0095] 其它有用的PAO包括以SynfluidTM的商品名由ChevronPhillipsChemical Company(Pasedena,Texas)出售,以DurasynTM的商品名由BPAmoco Chemicals(London,England)出售,以NexbaseTM的商品名由FortumCorporation(Keilaniemi,Finland)出售,以SyntonTM的商品名由Crompton Corporation(Middlebury,Connecticut)出售的那些。
[0096] 在其它实施方案中,PAO具有3cSt或更高,优选6cSt或更高,优选8cSt或更高,优选10cSt或更高,优选20cSt或更高,优选300cSt或更低,优选100cSt或更低的在100℃下的运动粘度。在另一个实施方案中,PAO具有3-1000cSt,优选6-300cSt,优选8-100cSt,优选8-40cSt的在100℃下的运动粘度。
[0097] 在其它实施方案中,PAO具有100或更高,优选110或更高,优选120或更高,优选130或更高,优选140或更高,优选150或更高,优选170或更高,优选200或更高,优选250或更高的粘度指数。
[0098] 在其它实施方案中,PAO具有-10℃或更低,优选-20℃或更低,优选-25℃或更低,优选-30℃或更低,优选-35℃或更低,优选-40℃或更低,优选-50℃或更低的倾点。
[0099] 在其它实施方案中,PAO具有200℃或更高,优选210℃或更高,优选220℃或更高,优选230℃或更高,优选240℃-290℃的闪点。
[0100] 本文所使用的尤其优选的PAO是具有以下特征的那些:a)200℃或更高(优选210℃或更高,优选220℃或更高,优选230℃或更高)的闪点;和b)小于-20℃(优选小于-25℃,优选小于-30℃,优选小于-35℃,优选小于-40℃)的倾点或者35cSt或更高(优选40cSt或更高,优选50cSt或更高,优选60cSt或更高)的在100℃下的运动粘度。
[0101] 在另一个实施方案中,NFP是具有约0.5∶1-9∶1,优选约1∶1-4∶1的支化链烷烃:正链烷烃比率的高纯度烃流体。该混合物的支化链烷烃含有大于50wt%(基于该支化链烷烃的总重量)的单甲基物质,例如2-甲基、3-甲基、4-甲基、5-甲基等,其中最小限度形成了取代基碳数大于1的分支,如乙基、丙基、丁基等;优选地,该支化链烷烃的大于70wt%是单甲基物质。该链烷烃混合物具有280-7000g/mol,优选420-5600g/mol,优选560-2800g/mol,优选350-2100g/mol,优选420-1400g/mol,更优选280-980g/mol的数均分子量;具有3-500cSt,优选6-200cSt,优选8-100cSt,更优选6-25cSt,更优选3-25cSt,更优选3-15cSt的在100℃下的运动粘度;并在100-350℃,优选110-320℃,优选150-300℃的范围内沸腾。在一个优选的实施方案中,该链烷烃混合物由费-托法产生。这些支化链烷烃/正链烷烃共混物例如描述在US 5906727中。
[0102] 在另一个实施方案中,所述NFP包括具有以下特征的链烷烃:
[0103] 1.300-10,000g/mol,优 选 400-5,000g/mol,优 选 500-2,500g/mol,优 选300-1,200g/mol的数均分子量;
[0104] 2.小于10%,优选小于8%,优选小于5%,优选小于3%,优选小于2%,优选小于1%,优选小于0.5%,优选小于0.1%的含4个或更多个碳的侧链;
[0105] 3.至少15%,优选20%或更多,优选25%或更多,优选30%或更多,优选35%或更多,优选40%或更多,优选45%或更多,优选50%或更多的含1或2个碳的侧链;
[0106] 4.小于2.5wt%的环状链烷烃(基于混合物中链烷烃的总重量),优选小于2wt%,优选小于1wt%,优选小于0.5wt%,优选小于0.1wt%,优选小于0.1wt%,优选
0.001wt%;
[0107] 5.3cSt或更高,优选6cSt或更高,优选8cSt或更高,优选3-25cSt的在100℃下的运动粘度;和
[0108] 6.110或更高,优选120或更高,优选130或更高,优选140或更高,优选150或更高,优选180或更高,优选200或更高,优选250或更高,优选300或更高的粘度指数(VI);
[0109] 7.-10℃或更低,优选-20℃或更低的倾点;和
[0110] 8.200℃或更高,优选210℃或更高,优选220℃或更高的闪点。
[0111] 在另一个实施方案中,所述NFP包括蜡异构物润滑油基本原料,其包括加氢异构化的蜡状原料(例如蜡状原料如瓦斯油、疏松蜡、燃料加氢裂化器油脚等),加氢异构化费-托烃和蜡,气体-至-液体(GTL)基本原料和基础油,和其它蜡状原料衍生的加氢异构化基本原料和基础油,或它们的混合物。费-托石蜡(费-托合成法的高沸点残余物)是具有极低硫含量的高度链烷化烃,并且在制备具有润滑粘度的烃流体的方法中是通常优选的原料。
[0112] 用于制备此类基本原料的加氢处理可以使用无定形加氢裂化/加氢异构化催化剂,如专业润滑油加氢裂化催化剂或结晶加氢裂化/加氢异构化催化剂中的一种,优选沸石催化剂。例如,一种有用的催化剂是美国专利5,075,269中描述的ZSM-48。加氢裂化/加氢异构化馏出物和加氢裂化/加氢异构化蜡的制备方法例如在美国专利号2,817,693;4,975,177;4,921,594和4,897,178以及英国专利号1,429,494;1,350,257;1,440,230和
1,390,359中进行了描述。尤其有利的方法在欧洲专利申请号464546和464547中进行了描述。使用费-托石蜡原料的方法在US 4,594,172和4,943,672中进行了描述。
[0113] 可以有利地用于本发明的气体-至-液体(GTL)基本原料和基础油,费-托烃衍生的基本原料和基础油,以及其它蜡状原料衍生的基本原料和基础油(或蜡异构物)具有约3cSt-约500cSt,优选约6cSt-约200cSt,优选约8cSt-约100cSt,更优选约3cSt-约25cSt的在100℃下的运动粘度。这些气体-至-液体(GTL)基本原料和基础油,费-托烃衍生的基本原料和基础油,以及其它蜡状原料衍生的基本原料和基础油(或蜡异构物)具有低倾点(优选小于-10℃,优选约-15℃或更低,优选约-25℃或更低,优选-30℃-约-40℃或更低);具有高粘度指数(优选110或更大,优选120或更大,优选130或更大,优选150或更大);并且具有高纯度(高的饱和物含量(优选90wt%或更高,优选95wt%或更高,优选99wt%或更高),低至无的硫含量(优选0.03wt%或更低),低至无的氮含量(优选
0.05wt%或更低),低至无的芳族化合物含量(优选0.05wt%或更低),低的溴值(优选1或更低),低的碘值(优选1或更低),和高的苯胺点(优选120℃或更高)。气体-至-液体(GTL)基本原料和基础油,费-托烃衍生的基本原料和基础油,以及蜡异构物加氢异构化基本原料和基础油的有用的组成例如在美国专利号6,080,301;6,090,989和6,165,949中进行了列举,并且在此整体地引入供参考。
[0114] 在一个优选的实施方案中,本发明的NFP包括GTL衍生的基本原料或基础油,后者具有3-500cSt,优选6-200cSt,优选8-100cSt,更优选3-25cSt的在100℃下的运动粘度;和/或300-10,000g/mol,优选400-5,000g/mol,优选500-2,500g/mol,更优选300-1,200g/mol的数均分子量(Mn)。
[0115] 在另一个实施方案中,所述NFP包括III组烃油(还称作润滑剂基本原料),其是经严格加氢处理的特殊类别的矿物油。优选地,该NFP具有90%或更高,优选92%或更高,优选94%或更高,优选95%或更高的饱和物含量;和小于0.03%,优选0.001-0.01%的硫含量;以及120或更高,优选130或更高的VI。优选地,该III组烃油具有3-100,优选4-100cSt,优选6-50cSt,优选8-20的在100℃下的运动粘度;和/或300-5,000g/mol,优选
400-2,000g/mol,更优选500-1,000g/mol的数均分子量。优选地,该III组烃油具有-10℃或更低的倾点,和200℃或更高的闪点。
[0116] 在一些实施方案中,所述NFP包括低分子量C4烯烃(包括正丁烯、2-丁烯、异丁烯和丁二烯,以及它们的混合物)。当该低聚物包括异丁烯和/或1-丁烯和/或2-丁烯时,此类材料称为“聚丁烯”液体。它常用作聚烯烃的添加剂;例如以引入粘性或作为加工助剂。C4烯烃异构体的比率可以通过制造商和通过等级改变,并且该材料在合成之后可以或可以不加以氢化。在某些情况下,该聚丁烯液体是C4残液流的聚合物。在其它情况下,它主要由聚异丁烯或聚(正丁烯)低聚物构成。通常,该聚丁烯液体具有小于15,000g/mol,通常小于5,000g/mol或甚至小于1,000g/mol的数均分子量。它们例如在SYNTHETICLUBRICANNTS AND HIGH-PERFORMANCE FUNCTIONAL FLUIDS 357-392(Leslie R.Rudnick&Ronald L.Shubkin编辑,Marcel Dekker 1999)中进行了描述。聚丁烯的商业来源包括BP(Indopol等级)和Infineum(C系列等级)。当C4烯烃只是异丁烯时,该材料称为“聚异丁烯”或PIB。PIB的商业来源包括Texas Petrochemical(TPC Enhanced PIB等级)。当C4烯烃只是1-丁烯时,该材料称为“聚正丁烯”或PNB。由C4烯烃制成的一些液体的性能概括在下表中。应指出,闪点为200℃或更高的等级还具有大于-10℃的倾点和/或小于120的VI。优选地,该NFP不是聚丁烯液体。
[0117] C4烯烃的低聚物的商业实例
[0118]
[0119] *基于在100℃和38℃下的运动粘度估算。
[0120] 在另一个实施方案中,当NFP存在时,C4烯烃的低聚物或聚合物(包括所有异构体,例如正丁烯、2-丁烯、异丁烯和丁二烯以及它们的混合物)可以存在于该组合物中。在一个优选的实施方案中,该组合物包含小于50wt%(优选小于40%,优选小于30wt%,优选小于20wt%,更优选小于10wt%,更优选小于5wt%,更优选小于1wt%,优选0wt%)的C4烯烃的聚合物或低聚物(如PIB、聚丁烯或PNB),基于该组合物的重量。
[0121] 在一个优选的实施方案,所述NFP包含小于90wt%的C4烯烃,优选异丁烯,基于NFP的重量。优选地,该NFP包含小于80wt%,优选小于70wt%,优选小于60wt%,优选小于50wt%,优选小于40wt%,优选小于30wt%,优选小于20wt%,优选小于10wt%,优选5wt%,优选小于2%,优选小于1wt%,优选0wt%的C4烯烃,优选异丁烯,基于该NFP的重量。
[0122] 在另一个实施方案中,本文描述的任何NFP具有在一个实施方案中小于-10℃,在另一个实施方案中小于-20℃,在又一个实施方案小于-25℃,在又一个实施方案中小于-30℃,在又一个实施方案小于-35℃,在又一个实施方案中小于-40℃,在又一个实施方案中小于-45℃,在又一个实施方案中小于-50℃,在又一个实施方案中小于-60℃,在又一个实施方案中大于-120℃的倾点(ASTM D97),其中合乎需要的范围可以包括本文描述的任何上限倾点与任何下限倾点。
[0123] 在另一个实施方案中,本文描述的任何NFP具有100或更高,优选105或更高,更优选110或更高,更优选115或更高,更优选120或更高,更优选125或更高,更优选130或更高,更优选150或更高的粘度指数(VI,ASTM D2270)。在另一个实施方案中,NFP具有100-300,优选120-180的VI。
[0124] 在另一个实施方案中,本文描述的任何NFP具有3-3000cSt,在另一个实施方案中6-300cSt,在另一个实施方案中6-200cSt,在又一个实施方案中8-100cSt,在又一个实施方案中4-50cSt,在又一个实施方案中小于50cSt,在又一个实施方案中小于25cSt的在100℃下的运动粘度(KV100,ASTM D445),其中合乎需要的范围可以包括本文描述的任何上限粘度与任何下限粘度。在其它实施方案中,NFP具有小于2cSt的在100℃下的运动粘度。
[0125] 在另一个实施方案中,本文描述的任何NFP具有200℃或更高,优选210℃或更高,优选220℃或更高,优选230℃或更高,优选240℃或更高,优选245℃或更高,优选250℃或更高,优选260℃或更高,优选270℃或更高,优选280℃或更高的闪点(ASTM D92)。在另一个实施方案中,NFP具有200℃-300℃,优选220℃-280℃的闪点。在其它实施方案中,NFP具有100℃-200℃的闪点。
[0126] 在另一个实施方案中,本文描述的任何NFP具有在一个实施方案中小于3.0,在另一个实施方案中小于2.8,在另一个实施方案中小于2.5,在又一个实施方案中小于2.3,在又一个实施方案中小于2.1的在20℃下测量的介电常数。聚乙烯本身具有至少2.3的根据CRC HANDBOOK OFCHEMI STRY AND PHYS ICS(David R.Lide编辑,第82版,CRC Press2001)的介电常数(1kHz,23℃)。
[0127] 在另一个实施方案中,本文描述的任何NFP具有在一个实施方案中小于0.86,在另一个实施方案中小于0.85,在另一个实施方案中小于0.84,在另一个实施方案中小于0.83,在另一个实施方案中0.80-0.86,在另一个实施方案中0.81-0.85,在另一个实施方案中0.82-0.84的比重(ASTM D4052,15.6/15.6℃),其中合乎需要的范围可以包括本文描述的任何上限比重与任何下限比重。
[0128] 在其它实施方案中,本文描述的任何NFP可以具有在一个实施方案中300℃-600℃,在另一个实施方案中350℃-500℃,在又一个实施方案中大于400℃的初沸点(ASTM D1160)。
[0129] 在其它实施方案中,本文描述的任何NFP可以具有低的色度,如通常确定为“水白色”、“上等白色”、“标准白色”或“亮且透明”;优选具有100或更低,优选80或更低,优选60或更低,优选40或更低,优选20或更低的由ASTM D 1209测定的APHA色度。
[0130] 本文描述的任何NFP优选具有在一个实施方案中21,000g/mol或更低,在又一个实施方案中优选20,000g/mol或更低,优选19,000g/mol或更低,优选18,000g/mol或更低,优选16,000g/mol或更低,优选15,000g/mol或更低,优选13,000g/mol或更低以及10,000g/mol或更低,在又一个实施方案中5,000g/mol或更低,在又一个实施方案中3,000g/mol或更低,在又一个实施方案中2,000g/mol或更低,在又一个实施方案中1500g/mol或更低,在又一个实施方案中1,000g/mol或更低,在又一个实施方案中900g/mol或更低,在又一个实施方案中800g/mol或更低,在又一个实施方案中700g/mol或更低,在又一个实施方案中600g/mol或更低,在又一个实施方案中500g/mol或更低的数均分子量(Mn)。
优选的最低Mn是至少200g/mol,优选至少300g/mol。另外,合乎需要的分子量范围可以是如上所述的任何上限分子量与任何下限分子量的任何组合。Mn根据下面试验方法部分中在流体性能下规定的方法测定。
[0131] 任何NFP还可以通过本文描述的参数中的许多或任何组合来描述。
[0132] 在一个优选的实施方案中,本文描述的任何NFP具有200℃或更高(优选210℃或更高)的闪点和-20℃或更低(优选-25℃或更低,更优选-30℃或更低,更优选-35℃或更低,更优选-45℃或更低,更优选-50℃或更低)的倾点。
[0133] 在另一个优选的实施方案中,所述NFP具有220℃或更高(优选230℃或更高)的闪点和-10℃或更低(优选-25℃或更低,更优选-30℃或更低,更优选-35℃或更低,更优选-45℃或更低,更优选-50℃或更低)的倾点。
[0134] 在另一个优选的实施方案中,所述NFP具有35cSt或更高(优选40cSt或更高,优选50cSt或更高,优选60cSt或更高)的在100℃下的运动粘度和0.87或更低(优选0.865或更低,优选0.86或更低,优选0.855或更低)的比重(15.6/15.6℃),以及200℃或更高(优选230℃或更高)的闪点。
[0135] 在另一个优选的实施方案中,所述NFP具有a)200℃或更高的闪点,b)0.86或更低的比重,和c1)-10℃或更低的倾点和120或更高的粘度指数,或c2)-20℃或更低的倾点,或c3)35cSt或更高的在100℃下的运动粘度。
[0136] 在另一个优选的实施方案中,所述NFP具有0.85或更低(优选0.80-0.85)的比重(15.6/15.6℃);以及3cSt或更高(优选4或更高,优选5cSt或更高,优选8cSt或更高,优选10cSt或更高,优选15cSt或更高,优选20cSt或更高)的在100℃下的运动粘度;和/或至少280g/mol的数均分子量(Mn)。
[0137] 在另一个优选的实施方案中,所述NFP具有0.86或更低(优选0.81-0.855,优选0.82-0.85)的比重(15.6/15.6℃);以及5cSt或更高(优选6或更高,优选8cSt或更高,优选10cSt或更高,优选12cSt或更高,优选15cSt或更高,优选20cSt或更高)的在100下的运动粘度;和/或至少420g/mol的数均分子量(Mn)。
[0138] 在另一个优选的实施方案中,所述NFP具有0.87或更低(优选0.82-0.87)的比重(15.6/15.6℃);以及10cSt或更高(优选12cSt或更高,优选14cSt或更高,优选16cSt或更高,优选20cSt或更高,优选30cSt或更高,优选40cSt或更高)的在100下的运动粘度;和/或至少700g/mol的数均分子量(Mn)。
[0139] 在另一个优选的实施方案中,所述NFP具有0.88或更低(优选0.87或更低,优选0.82-0.87)的比重(15.6/15.6℃);以及15cSt或更高(优选20cSt或更高,优选25cSt或更高,优选30cSt或更高,优选40cSt或更高)的在100℃下的运动粘度;和/或至少840g/mol的数均分子量(Mn)。
[0140] 在另一个优选的实施方案中,所述NFP具有3-3000cSt,优选6-300cSt,更优选8-100cSt的在100℃下的运动粘度;和300-21,000g/mol,优选500-5,000g/mol,更优选
600-3,000g/mol的数均分子量(Mn)。
[0141] 在另一个优选的实施方案中,所述NFP具有3-500cSt,优选6-200cSt,更优选8-100cSt,更优选3-25cSt的在100℃下的运动粘度;和300-10,000g/mol,优选400-5,000g/mol,更优选500-2,500g/mol,更优选300-1,200g/mol的数均分子量(Mn)。
[0142] 在另一个优选的实施方案中,所述NFP具有3-100cSt,优选4-50cSt,更优选6-25cSt,更优选3-15cSt的在100℃下的运动粘度;和300-3,000g/mol,优选350-2,000g/mol,更优选400-1,000g/mol,更优选300-800g/mol的数均分子量(Mn)。
[0143] 在另一个优选的实施方案中,所述NFP具有-25℃或更低,优选-30℃到-90℃的倾点,和20-5000cSt的在40℃下的运动粘度。在另一个优选的实施方案中,所述NFP具有-25℃或更低的倾点和400g/mol或更大的Mn。通常包括官能团的大多数矿物油在该相同的粘度和分子量范围下具有10℃到-25℃的倾点。
[0144] 在另一个优选的实施方案中,所述NFP具有3cSt或更大,优选6cSt或更大,更优选8cSt或更大的在100℃下的运动粘度和以下性能中一个或多个:
[0145] 1.-10℃或更低,优选-20℃或更低,优选-30℃或更低,优选-40℃或更低的倾点;和/或
[0146] 2.120或更大的粘度指数;和/或
[0147] 3.低的色度,如通常确定为“水白色”、“上等白色”、“标准白色”或“亮且透明”,优选具有100或更低,优选80或更低,优选60或更低,优选40或更低,优选20或更低,优选15或更低的由ASTM D 1209测定的APHA色度;和/或
[0148] 4.200℃或更高,优选220℃或更高,优选240℃或更高的闪点;和/或
[0149] 5.小于0.86的比重(15.6℃)。
[0150] 在相同粘度范围下的大多数矿物油具有大于-20℃的倾点,或者大于20的APHA色度,或者0.86或更高的比重(15.6℃)。
[0151] 在另一个优选的实施方案中,所述NFP具有120或更高的粘度指数和以下性能中一个或多个:
[0152] 1.-10℃或更低,优选-20℃或更低,优选-30℃或更低,优选-40℃或更低的倾点;和/或
[0153] 2.3cSt或更大,优选6cSt或更大,优选8cSt或更大,优选10cSt或更大的在100℃下的运动粘度:
[0154] 3.低的色度,如通常确定为“水白色”、“上等白色”、“标准白色”或“亮且透明”,优选具有100或更低,优选80或更低,优选60或更低,优选40或更低,优选20或更低,优选15或更低的由ASTM D 1209测定的APHA色度;和/或
[0155] 4.200℃或更高,优选220℃或更高,优选240℃或更高的闪点;和/或
[0156] 5.小于0.86的比重(15.6℃)。
[0157] 大多数矿物油具有小于120的粘度指数。
[0158] 在另一个优选的实施方案中,NFP具有-20℃或更低,优选-30℃或更低的倾点和以下性能中一个或多个:
[0159] 1.3cSt或更大,优选6cSt或更大,优选8cSt或更大,优选10cSt或更大在100℃下的运动粘度;和/或
[0160] 2.120或更大,优选130或更大的粘度指数;和/或
[0161] 3.低的色度,如通常确定为“水白色”、“上等白色”、“标准白色”或“亮且透明”,优选具有100或更低,优选80或更低,优选60或更低,优选40或更低,优选20或更低,优选15或更低的由ASTM D 1209测定的APHA色度;
[0162] 4.200℃或更高,优选220℃或更高,优选240℃或更高的闪点;和/或
[0163] 5.小于0.86的比重(15.6℃)。
[0164] 大多数矿物油当它们的倾点小于-20℃时具有小于6cSt的在100℃下的运动粘度,或大于20的APHA色度,或小于200℃的闪点。
[0165] 在另一个优选的实施方案中,所述NFP具有不能由ASTM E1356测定的玻璃化转变温度(Tg),或如果它可以测定,则根据ASTM E 1356的Tg小于0℃,优选小于-10℃,更优选小于-20℃,更优选小于-30℃,更优选小于-40℃,并且优选还具有以下性能中一个或多个:
[0166] 1.由ASTM D1160测定的大于300℃,优选大于350℃,优选大于400℃的初沸点;和/或
[0167] 2.-10℃或更低,优选-15℃或更低,优选-25℃或更低,优选-35℃或更低,优选-45℃或更低的倾点;和/或
[0168] 3.小于0.88,优选小于0.86,优选小于0.84,优选0.80-0.88,优选0.82-0.86的比重(ASTM D4052,15.6/15.6℃);和/或
[0169] 4.由ASTM D1160测定的300℃-800℃,优选400℃-700℃,优选大于500℃的终沸点;和/或
[0170] 5.30,000-400g/mol,优选15,000-500g/mol,更优选5,000-600g/mol的重均分子量(Mw);和/或
[0171] 6.10,000-400g/mol,优选5,000-500g/mol,更优选2,000-600g/mol的数均分子量(Mn);和/或
[0172] 7.由ASTM D92测量的200℃或更大的闪点,和/或
[0173] 8.在20℃下小于3.0,优选小于2.8,优选小于2.5,优选小于2.3,优选小于2.2的介电常数。
[0174] 本发明的优选的组合物特征在于,在一个实施方案中,对于存在于组合物中的每4wt%的NFP,该组合物中任何丙烯聚合物的玻璃化转变温度(Tg)降低至少2℃;在另一个实施方案中,对于存在于组合物中的每4wt%的NFP,Tg降低至少3℃;在又一个实施方案中,对于存在于组合物中的每4wt%的NFP,Tg降低至少4-10℃,同时最高熔点丙烯聚合物组分的峰熔融温度和结晶温度保持恒定(在1-2℃内)。对于本发明和所附权利要求书来说,当提到玻璃化转变温度时,它是动态机械热分析(DMTA)迹线中的峰温度。
[0175] 本发明的优选的组合物特征在于,在一个实施方案中,对于存在于组合物中的每1wt%的NFP,该组合物中的至少一种丙烯聚合物的玻璃化转变温度(Tg)降低至少2℃;优选至少3℃;优选至少4℃;优选至少5℃;优选至少6℃;优选至少7℃;优选至少8℃;优选至少9℃;优选至少10℃;优选至少11℃;优选同时最高熔点丙烯聚合物的峰熔融温度和/或结晶温度保持在所述增塑聚烯烃的1-5℃范围内,优选1-4℃范围内,优选1-3℃范围内,优选1-2℃范围内。
[0176] 本发明的优选的组合物特征在于,所述增塑组合物中至少一种丙烯聚合物的玻璃化转变温度(Tg)比纯丙烯聚合物的Tg低至少2℃,优选低至少4℃,优选低至少6℃,优选低至少8℃,优选低至少10℃,优选低至少15℃,优选低至少20℃,优选低至少25℃,优选低至少30℃,优选低至少35℃,优选低至少40℃,优选低至少45℃。
[0177] 高熔点丙烯聚合物
[0178] 对本发明来说,高熔点丙烯聚合物(HMPP)定义为具有峰熔点大于100℃(优选大于110℃,优选大于120℃,优选大于130℃,优选大于140℃,优选大于150℃),优选具有0.1-2000dg/min(优选100dg/min或更低)的熔体流动速率的丙烯聚合物。优选的HMPP具有大于35%,优选大于40%,优选大于45%,优选大于50%的百分率结晶度。
[0179] 在一个优选的实施方案中,本发明的共混物包含一种或多种HMPP,每种HMPP包含丙烯和优选0-5wt%的α-烯烃共聚单体(基于该聚合物的重量),优选0.1-4wt%,优选0.25-3wt%。优选地,该α-烯烃共聚单体是C2-C10α-烯烃,优选选自乙烯、丁烯、戊烯、己烯、庚烯、辛烯、壬烯和癸烯,优选乙烯、丁烯、己烯和辛烯,优选乙烯。(对本发明来说,当共聚物被说成是包含丙烯和一种或多种C2-C10烯烃或α-烯烃时,所述C2-C10烯烃或α-烯烃不包括C3,例如丙烯)。
[0180] 优选HMPP具有105-170℃,优选110-170℃,优选125-170℃的熔点(Tm-如上所述由DSC测量的二次熔融)。
[0181] 优选的HMPP具有0.1-200dg/min,优选0.25-100dg/min,优选0.5-50dg/min,优选0.5-20dg/min,优选1-20dg/min的熔体流动速率(ASTM 1238-D,2.16kg,230℃)。
[0182] 优选的HMPP具有700%或更低,优选300-700%的断裂伸长率(通过ASTM D 638,2 in/min/50mm/min对0.125 in(3.18mm)厚的注塑样品测量)。
[0183] 优 选 的 HMPP 具 有 由 ASTM D-790A(0.05 in/min/1.3mm/min) 测 量 的100,000psi-250,000(690-1720MPa),优选150,000psi-250,000psi(1035-1720MPa)的1°正割挠曲模量。
[0184] 也可以使用“高结晶性聚丙烯”,例如具有大于250,000psi(1720MPa)的值的那些作为本发明中的HMPP。
[0185] 具有0-5wt%的共聚单体、熔点为100-170,MFR为200dg/min或更低的任何丙烯聚合物可以用于本发明实践中作为HMPP。适合的实例包括由齐格勒-纳塔催化剂体系、金属茂体系等制备的聚合物。可以通过任何手段制备所述聚合物,包括溶液、淤浆、气相、超临界或高压。在一个尤其优选的实施方案中,本文可用的HMPP具有5或更低,优选1.5-4,优选1.5-3的分子量分布(Mw/Mn)。在另一个优选的实施方案中,在此可用的优选的HMPP包括通过金属茂催化剂体系制备的那些。在另一个实施方案中,在此可用的优选的HMPP包括组成分布宽度指数(CDBI)为60%或更高,优选70%或更高,优选80%或更高,优选90%或更高的那些。(CDBI如WO 93/03093中描述测量,作出的修改是将重均分子量(Mw)小于25,000g/mol的任何级分忽视不计)。可用于本发明实践中的优选的HMPP包括由TM
ExxonMobil Chemical Company以商品名ACHIEVE 销售的那些丙烯聚合物。尤其有用的TM
等级包括可以从Houston,Texas的ExxonMobil Chemical Company获得的ACHIEVE 3854、TM TM TM
ACHIEVE 1654E1、ACHIEVE 3825,ACHIEVE 1605。可用于在本发明实践中的其它优选的HMPP包括那些丙烯均聚物,以及无规共聚物(其可以从ExxonMobil Chemical Company按以下等级名称获得):PP1024E4、PP1042、PP1032、PP1044、PP1052、PP1105E1、PP3155和PP9852E1、PP9272、PP9513、PP9544、PP9562。
[0186] 在某些情况下,抗冲共聚物(ICP)可以用于本发明实践中。一些可以从ExxonMobil Chemical Company获得(例如PP7032 E2)。可用作HMPP的优选的ICP还可以是WO 2004/014998中描述的那些ICP,尤其是在第37-第41页描述的那些。
[0187] 在另一个实施方案中,本文可用的优选的HMPP具有大于110℃,优选大于115℃,最优选大于130℃的熔点和/或大于60J/g,优选至少70J/g,优选至少80J/g的熔化热,由本文描述的DSC分析测定。
[0188] HMPP的分子量优选为10,000-5,000,000g/mol,或者50,000-500,000g/mol,优选具有1.5-4、优选1.5-3的多分散指数(PDI=Mw/Mn)。
[0189] 优选的HMPP可以是全同立构、高度全同立构、间规立构或高度间规立构的。在一个实施方案中,HMPP是全同立构聚丙烯。在另一个实施方案中,HMPP是高度全同立构聚13
丙烯。本文所使用的“全同立构”定义为根据 C-NMR分析,具有衍生自丙烯的甲基的至少
10%的全同立构五单元组,优选至少40%的全同立构五单元组。本文所使用的“高度全同
13
立构”定义为根据 C-NMR分析,具有至少60%的全同立构五单元组。在一个合乎需要的实施方案中,具有至少85%的全同立构规整度的聚丙烯均或共聚合物是所述HMPP。在另一个实施方案中,HMPP具有至少90%的全同立构规整度。本文所使用的“间规立构”定义为根
13
据 C-NMR分析,具有至少10%,优选至少40%的间规立构五单元组。本文所使用的“高度
13
间规立构”定义为根据 C-NMR分析,具有至少60%的间规立构五单元组。在一个合乎需要的实施方案中,具有至少85%的间同立构规整度的聚丙烯均或共聚合物是所述HMPP。在另一个实施方案中,具有至少90%的间同立构规整度的丙烯均或共聚合物是所述HMPP。
[0190] 低结晶性丙烯聚合物(丙烯型塑性体)
[0191] 本发明的组合物包含至少一种丙烯型塑性体。对本发明来说,丙烯型塑性体定义为包含至少50mol%的丙烯,具有小于70J/g的熔化热和75%或更高的立构规整度指数。有用的丙烯型塑性体还可以具有0.1-2000dg/min(优选100dg/min或更低)的熔体流动速率;和/或由在己烷中的热分级测定的分子间组成分布满足85wt%或更多的聚合物离析成一个或两个相邻的可溶性级分,而该聚合物的其余部分在紧接其前或其后的级分中;并且其中这些级分中的每一个具有相对于共聚物的平均共聚单体含量wt%而言差值不大于
20wt%的共聚单体含量wt%;和/或1.5-4的Mw/Mn。
[0192] 具体来说,可用于本发明的优选的丙烯型塑性体具有0.1%至小于35%结晶度的百分率结晶度。优选地,在这一范围内,丙烯型塑性体包含小于30%结晶度,优选小于25%结晶度,优选小于20%结晶度,优选小于15%结晶度,优选小于10%结晶度。还优选地,丙烯型塑性体包含至少0.5%结晶度,优选至少1%结晶度,优选至少2%结晶度,优选至少5%结晶度。
[0193] 可用于本发明的优选的丙烯型塑性体优选具有0.1-200dg/min,优选0.1-100,优选0.5-50,优选1-25,优选1-15,优选2-10dg/min的熔体流动速率(MFR)(由ASTM 1238测量,2.16kg和230℃);或者该MFR为15-50dg/min。
[0194] 可用于本发明的优选的丙烯型塑性体优选具有由本文描述的DSC程序测量的100℃或更低,优选90℃或更低,优选25-90℃,优选30-80℃,优选35-75℃的DSC熔点。
[0195] 可用于本发明的优选的丙烯型塑性体优选具有75wt%或更高,优选80wt%或更高,优选85wt%或更高,优选90wt%或更高的作为一个或两个相邻的可溶性级分离析出的聚合物的分子间组成分布,而该聚合物的其余部分在紧接其前或其后的级分中;并且其中这些级分中的每一个具有相对于共聚物的平均共聚单体含量wt%而言差值不大于20wt%(相对),优选10%(相对)的共聚单体含量wt%。在各阶段之间在约8℃的温度增加下获得所述级分。
[0196] 丙烯型塑性体的分子间组成分布可以通过在己烷中的热分级如下测定:在侧面上将约30克丙烯型塑性体切成约1/8英寸(0.32cm)的小立方体,然后将其连同50mg Irganox 1076(可从Ciba-GeigyCorporation商购的抗氧化剂)一起引入用螺帽密闭的厚壁玻璃瓶中。然后将425ml己烷(正和异-异构体的主要混合物)添加到瓶子的内容物中并将该密封的瓶子维持在约23℃下保持24小时。在此阶段结束时,轻轻倒出溶液并在23℃下用附加的己烷处理残余物另外24小时。在此阶段结束时,将两份己烷溶液合并并进行蒸发以产生在23℃可溶的聚合物的残余物。向该残余物中添加足够的己烷以使体积达到
425ml,并在覆盖的循环式水浴中将该瓶子维持在约31℃下保持24小时。轻轻倒出可溶性聚合物并添加附加量的己烷,在约31℃下再保持24小时,然后轻轻倒出。这样,在各阶段之间约8℃的温度增加下,获得在40℃、48℃、55℃和62℃下可溶的丙烯型塑性体的级分。将可溶性聚合物干燥、称重并分析组成(作为乙烯含量wt%)。为了制备具有所需窄组成的共聚物,有益的是,如果(1)使用仅仅允许第一和第二单体序列加成的单一统计模式的单中心金属茂催化剂;和(2)使共聚物在连续流动搅拌釜式聚合反应器中充分混合,该反应器允许仅为该共聚物的基本上所有聚合物链提供单一聚合环境。
[0197] 可用于本发明的优选的丙烯型塑性体优选具有小于5,优选1.5-4,优选1.5-3的分子量分布(Mw/Mn)。
[0198] 在一个实施方案中,所述丙烯型塑性体包含丙烯和至少一种选自C2和C4-C20烯烃的其它共聚单体。优选的共聚单体是C2、C4、C6或C8α-烯烃,最优选地,该共聚单体是乙烯。
[0199] 在一个优选的实施方案,所述丙烯型塑性体可以包括丙烯型共聚物,在此称为丙烯的无规共聚物或丙烯-“共聚单体”塑性体(例如,丙烯-乙烯塑性体)。丙烯的适合的无规共聚物具有小于70J/g的熔化热,并因此是半无定形的,并且优选具有约68mol%-约92mol%,更优选约75mol%-约91mol%,甚至更优选约78mol%-约88mol%,最优选约
80mol%-约88mol%的以摩尔为基准的平均丙烯含量。丙烯的无规共聚物的其余部分(即,一种或多种共聚单体)可以是一种或多种上面规定的α-烯烃和/或一种或多种二烯单体。最优选地,丙烯的无规共聚物的其余部分是乙烯。
[0200] 所述丙烯的无规共聚物的共聚单体可以包括约8-32mol%的乙烯(C2)和/或C4-C20烯烃,更优选约9-约25mol%,甚至更优选约12-约22mol%,其中约13-20mol%是更优选的。
[0201] 更优选地,所述丙烯的无规共聚物包含约8-32mol%的乙烯,更优选约9-约25mol%的乙烯,甚至更优选约12-约22mol%的乙烯,其中约13-20mol%的乙烯更优选作为共聚单体。
[0202] 所述丙烯的无规共聚物可以具有5,000,000g/mol或更低的重均分子量(Mw),3,000,000g/mol或更低的数均分子量(Mn),约5,000,000g/mol或更低的Z均分子量(Mz),以及1.5或更低的g′指数,都通过尺寸排阻色谱法测定。
[0203] 在一个优选的实施方案中,所述丙烯的无规共聚物可以具有由尺寸排阻色谱法测定的约5,000-约5,000,000g/mol,更优选约10,000-约1,000,000g/mol,更优选约20,000-约500,000g/mol,更优选约50,000-约300,000g/mol的Mw。
[0204] 在一个优选的实施方案中,所述丙烯的无规共聚物可以具有由尺寸排阻色谱法测定的约5,000-约3,000,000g/mol,更优选约10,000-约1,000,000g/mol,更优选约30,000-约500,000g/mol,更优选约50,000-约200,000g/mol的Mn。
[0205] 在一个优选的实施方案中,所述丙烯的无规共聚物可以具有由尺寸排阻色谱法测定的约10,000-约5,000,000g/mol,更优选约50,000-约1,000,000g/mol,更优选约80,000-约500,000g/mol,更优选约100,000-约300,000g/mol的Mz。
[0206] 所述丙烯的无规共聚物的分子量分布(Mw/Mn)优选为1.5-40.0,更优选约1.8-5,最优选约1.8-3。
[0207] 在一个优选的实施方案中,当在丙烯的无规共聚物的Mw下使用全同立构聚丙烯的特性粘度作为基准测量时,该聚合物可以具有约1-约1.5的g′指数值,更优选约1.25-约1.45的g′。本文所使用的g′指数定义为:
[0208]
[0209] 其中ηb是丙烯的无规共聚物的特性粘度,η1是具有与该丙烯无规共聚物相同粘α均分子量(Mv)的线性聚合物的特性粘度,η1=KMv ,K和α是线性聚合物的测量值并且应该在与用于g′指数测量的仪器相同的仪器上获得。
[0210] 在一个优选的实施方案中,所述丙烯的无规共聚物具有约200℃或更低,更优选150℃或更低的采用差示扫描量热法(DSC)测量的结晶温度(Tc)。
[0211] 在一个优选的实施方案中,所述丙烯的无规共聚物具有根据ASTMD-1505试验方法在25℃下测量的约0.85-约0.95g/ml,更优选约0.87-0.92g/ml,更优选约0.88-约0.91g/ml的密度。
[0212] 在一个优选的实施方案中,所述丙烯的无规共聚物具有根据ASTMD-1238试验方法测量的等于或大于0.2g/10min,优选2-500g/10min,更优选20-200g/10min的熔体流动速率(MFR)。
[0213] 在一个优选的实施方案中,所述丙烯的无规共聚物具有根据ASTME 794-85中描述的程序测定的70J/g或更低,优选60J/g或更低,优选50J/g或更低,优选40J/g或更低,优选30J/g或更低,优选25J/g或更低,优选20J/g或更低,优选15J/g或更低,优选0.5J/g或更高,优选1J/g或更高,优选5J/g或更高,优选约1J/g-约15J/g的熔化热(Hf),其中合乎需要的范围可以是上限Hf和下限Hf的任意组合。
[0214] 优选的无规丙烯聚合物通常使用手性金属茂制备。手性金属茂催化剂通常导致丙烯无规共聚物中丙烯残基的甲基主要具有相同的立构规整度。丙烯的间规立构构型和全同立构构型都是可能的,但是全同立构聚合物是优选的。丙烯残基的立构规整度导致聚合物中结晶度的数量。丙烯无规共聚物中较低的结晶度水平认为源自于通过引入上述的α-烯烃共聚单体获得的全同立构聚丙烯。
[0215] 所述丙烯的无规共聚物优选是部分结晶的,它优选由可结晶的有规立构丙烯序列产生。本文所使用的丙烯无规共聚物的结晶度也可以用百分率结晶度表示,基于聚合物的熔化热除以聚丙烯的最高数量级的热能,该热能对于本文的目的估计为189J/g(即,100%结晶度等于189J/g)。也就是说,所述被讨论的聚合物的熔化热除以189J/g×100得到%结晶度。在一个优选的实施方案中,所述无规聚合物具有35%或更低,优选30%或更低,优选25%或更低,优选20%或更低,优选15%或更低,优选10%或更低的%结晶度。在另一个实施方案中,所述无规聚合物具有3-30%,优选5-25%结晶度。
[0216] 本发明的丙烯的无规共聚物优选具有约0.25%-约15%,更优选约0.5%-约13%,最优选约0.5%-约11%的聚丙烯结晶度。
[0217] 除了这一结晶度水平之外,所述丙烯的无规共聚物优选具有单一宽熔融转变。然而,丙烯聚合物的适合的无规共聚物可以显示与主峰相邻的次熔融峰,但是对于本文的目的,这些次熔融峰一同被认为是单一熔点,其中这些峰的最高点被认为是丙烯无规共聚物的熔点。所述丙烯的无规共聚物优选具有约25℃-约75℃,优选约25℃-约65℃,更优选约30℃-约60℃的熔点。
[0218] 差示扫描量热法(DSC)的程序描述如下:用冲模取出在约200-230℃下压制的约6-10mg聚合物的片材。在室温下将它退火240小时。在此阶段结束时,将样品放置在差示扫描量热仪(Perkin Elmer 7Series Thermal Analysis System)中并且冷却到约-50℃到约-70℃。以20℃/min加热该样品以达到约200℃-约220℃的最终温度。记录为在样品熔融峰下的面积的热输出是以焦/克聚合物表示的熔化热的量度,该熔融峰通常在约
30℃-约175℃下成峰并且在约0℃-约200℃的温度之间产生。熔点记录为在样品的熔融范围内最大热吸收的温度。
[0219] 所述丙烯无规共聚物可以具有小于100,更优选小于75,甚至更优选小于60,最优选小于30的根据ASTM D1646测定的门尼粘度ML(1+4)@125℃。
[0220] 本发明的丙烯无规共聚物优选包括具有窄组成分布的无规可结晶共聚物。丙烯无规共聚物的分子间组成分布(例如,窄组成分布)可以通过热分级在溶剂如饱和烃(例如己烷或庚烷)中测定。这种热分级程序描述如下。通常,聚合物的约75wt%,更优选85wt%作为一个或两个相邻的可溶性级分离析出来,而该聚合物的其余部分在紧接其前或其后的级分中。这些级分中的每一个具有相对于丙烯无规共聚物的平均乙烯含量wt%而言差值不大于20wt%(相对),更优选10%(相对)的组成(乙烯含量wt%)。因此,如果半无定形无规聚丙烯共聚物满足这一分级试验标准,则它被认为具有窄组成分布。
[0221] 在优选的丙烯无规共聚物中有规立构丙烯序列的长度和分布与基本上无规的统计共聚一致。序列长度和分布与共聚合竞聚率有关是为人熟知的。所谓的基本上无规是指竞聚率的乘积通常为2或更低的共聚物。在立构嵌段结构中,聚丙烯序列的平均长度大于具有类似组成的基本上无规的共聚物。具有立构嵌段结构的现有技术聚合物具有与这些嵌段结构一致的聚丙烯序列分布而不是基本上无规的统计分布。丙烯聚合物的无规共聚物的13
竞聚率和序列分布可以通过 C NMR按将乙烯残基相对于相邻的丙烯残基设置的方法测定。
[0222] 如本文概括的那样,为了生产具有所需无规度和窄组成分布的丙烯无规共聚物,希望使用(1)单中心催化剂和(2)充分混合的连续流动搅拌釜聚合反应器,该反应器对于丙烯聚合物的优选无规共聚物的基本上所有聚合物链仅提供单一聚合环境。
[0223] 用于本发明的优选的丙烯无规共聚物在1999年5月13日提交的共同未决美国申请U.S.系列号60/133,966和1999年6月29日提交的U.S.系列号60/342,854中详细描述为“第二聚合物组分(SPC)”;在1999年7月1日提交的U.S.系列号90/346,460中还详细描述为“丙烯烯烃共聚物”,这些文献全部在此引入供美国专利实践目的参考。
[0224] 除了构成丙烯聚合物的无规共聚物的主要部分的一种或多种共聚单体(即,α-烯烃)之外,所述共聚单体选择例如但不限于乙烯、含4-8个碳原子的α-烯烃和苯乙烯,如上所述的丙烯聚合物的无规共聚物还可以包含长链分支,该长链分支可以任选地使用一种或多种α,ω-二烯产生。
[0225] 或者,丙烯的无规共聚物可以包含至少一种二烯,更优选包含至少一种非共轭二烯,其可以有助于硫化及其它化学改性和/或交联工艺。丙烯的无规共聚物中二烯的量可以优选为不大于约10wt%,更优选不大于约5wt%。
[0226] 在一个优选的实施方案中,所述二烯可以选自用于硫化乙烯丙烯橡胶的那些。优选的二烯的具体实例包括乙叉基降片烯、乙烯基降冰片烯、双环戊二烯和1,4-己二烯(可以从DuPont Chemicals获得)。
[0227] 在另一个实施方案中,聚合物浓缩物的丙烯型塑性体可以包括呈丙烯的离散无规共聚物的共混物形式的丙烯无规共聚物。此类共混物可以包括两种或更多种聚乙烯共聚物(如上所述)、两种或更多种聚丙烯共聚物(如上所述)、或各个这样的聚乙烯共聚物和聚丙烯共聚物中的至少一种,只要丙烯共混物的无规共聚物的聚合物中每一种将单独地有资格作为丙烯的无规共聚物。丙烯的无规共聚物中的每一种在上面进行了描述并且在一个优选的实施方案中的丙烯的无规共聚物的数目可以为三种或更少,更优选两种或更少。
[0228] 在本发明的一个实施方案中,所述丙烯聚合物的无规共聚物可以包括烯烃含量不同的丙烯聚合物的两种无规共聚物的共混物。优选地,丙烯的一种无规共聚物可以包含约7-13mol%的烯烃,而丙烯的另一种无规共聚物可以包含约14-22mol%的烯烃。在一个实施方案中,丙烯的无规共聚物中优选的烯烃是乙烯。
[0229] 得自本发明的丙烯乙烯共聚物具有独特的性能,这由它们的全同立构指数和丙烯三单元组立构规整度与它们的乙烯含量之间的关系证实。
[0230] 丙烯聚合物的无规共聚物与可在市场上获得的那类聚丙烯共聚物不同。这些聚丙烯共聚物包括:无规共聚物(RCP)和抗冲共聚物(ICP),还称作多相共聚物或嵌段共聚物。RCP通常通过在单一反应器方法中将丙烯与其它单体例如乙烯、丁烯和更高级α-烯烃共聚合来制备,最常用的单体是乙烯。这些共聚物的典型的乙烯含量为3-4mol%至14-17mol%。随着乙烯含量增加,熔点和刚性降低。典型的熔融温度为120℃-150℃并且挠曲模量具有500-1500MPa的值。在包括串联反应器的方法中连续地制备ICP,其中全同立构聚丙烯在第一反应器中制备并将乙烯供给第二反应器以产生乙烯丙烯橡胶。当使用Himont开发的Catalloy技术时,典型的乙烯丙烯橡胶含量为20%-50%并且甚至高达70%。此种高橡胶含量物质本领域中称为高合金共聚物。在这些ICP的情况下,熔点可以仍然为约
160℃,因为它们仍然包含全同立构聚丙烯级分。挠曲模量通常为800-1300MPa。该高合金共聚物具有90-500MPa的挠曲模量。
[0231] 本发明的丙烯聚合物的无规共聚物优选包含特定的三单元组立构规整度。术语“立构规整度”是指聚合物中的stereogenicity。例如,相邻单体的手性可以具有类似的或相反的构型。术语“二单元组”在本文中用来表示两个邻接的单体;因此,三个相邻的单体在此称为三单元组。在其中相邻单体的手性具有相同的相对构型的情况下,该二单元组称作全同立构。在其中相邻单体的手性处于相反的相对构型的情况下,该二单元组称作间规立构。描述构型关系的另一种方式是将具有相同手性的邻接单体对称为内消旋(m)并且将具有相反构型的那些称为外消旋(r)。
[0232] 当三个相邻的单体具有相同的构型时,三单元组的有规立构缩写为“mm”。如果三单体序列中两个相邻的单体具有相同的手性并且它们与第三个单元的相对构型不同,则这种三单元组具有“mr”立构规整度。 “rr”三单元组中中间的单体单元具有与相邻的单元相反的构型。聚合物中每类三单元组的比例可以被测定,然后乘以100来表示该聚合物中13
找到的那类三单元组的百分率。聚合物的竞聚率和序列分布可以通过 C NMR测定,其将乙烯残基相对于相邻的丙烯残基进行定位
[0233] 丙烯的无规共聚物具有由%内消旋三单元组量度的独特的丙烯立构规整度。如1998年7月1日提交的U.S.系列号09/108,772详细描述的那样(该文献全文在此引入作为参考),本发明的丙烯聚合物的无规共聚物当与美国专利号5,504,172相比时具有对于任何给定乙烯含量而言较低的内消旋三单元组%。内消旋三单元组%的较低的含量对应于相对较低的结晶度,这转化成更好的弹性性能如高的拉伸强度和断裂伸长率以及非常好的弹性恢复。好的弹性性能对于本发明的一些潜在应用是重要的。
[0234] 本发明中使用的优选的聚合物,优选本发明实施方案中使用的丙烯的无规共聚物具有至少75%的立构规整度指数(m/r),本文中还称为丙烯立构规整度指数和/或三单元13
组立构规整度指数。在此表示为“m/r”的丙烯立构规整度指数通过 C核磁共振(NMR)测定。丙烯立构规整度指数m/r的计算方法如H.N.Cheng,Macromolecules,17,1950(1984)中所定义。符号“m”或“r”描述了邻接丙烯基团对的立体化学性,“m”是指内消旋而“r”是指外消旋。m/r的比值为0到小于1.0通常描述间规聚合物,而m/r的比值为1.0则通常描述无规材料,m/r的比值大于1.0则通常描述全同立构材料。理论上全同立构材料可以具有接近无穷大的比值,并且许多无规聚合物副产品具有足够的全同立构含量,从而导致了大于50的比值。
[0235] 在一个优选的实施方案中,所述丙烯的无规共聚物具有全同立构的立构规整丙烯结晶度。在此使用的术语“立构规整”是指在聚丙烯(不算任何其它单体例如乙烯)中主要数量(即大于80%)的丙烯残基具有相同的1,2插入并且侧挂的甲基的立体化学取向是相同的(内消旋或外消旋)。
[0236] 可用于本发明的优选的丙烯无规共聚物具有由13C NMR测量的75%或更大,80%或更大,82%或更大,85%或更大,或90%或更大的三个丙烯单元的三单元组立构规整度指数,还称为“立构规整度指数”。聚合物的三单元组立构规整度指数是三个相邻的丙烯单元序列(由头尾键合组成的链,表示为m和r序列的二元结合)的相对立构规整度。就本文的目的而言,对于本发明的半无定形共聚物,它表示为特定立构规整度的单元数目与共聚物中全部丙烯三单元组数目的比率。丙烯共聚物的立构规整度指数(mm分数)可以通过丙13
烯共聚物的 C NMR光谱及以下公式确定:
[0237]
[0238] 其中PPP(mm)、PPP(mr)和PPP(rr)表示以下由头-尾键合组成的三个丙烯单元链中由第二单元的甲基衍生的峰面积:
[0239]
[0240] 丙烯共聚物的13C NMR光谱测定方法描述在美国专利No.5,504,172中。与甲基碳区域(百万分之19-23(ppm))有关的光谱可以划分成第一区域(21.2-21.9ppm),第二区域(20.3-21.0ppm)和第三区域(19.5-20.3ppm)。在光谱中的每一峰参照杂志Polymer,第30卷(1989),第1350中的文章确定。在第一区域中,三个丙烯单元链中由PPP(mm)代表的第二单元的甲基共振。在第二区域中,三个丙烯单元链中由PPP(mr)代表的第二单元的甲基共振,以及相邻单元是丙烯单元和乙烯单元的丙烯单元的甲基(PPE-甲基)共振(在20.7ppm附近)。在第三区域中,三个丙烯单元链中由PPP(rr)代表的第二单元的甲基共振,以及相邻单元是乙烯单元的丙烯单元的甲基(EPE-甲基)共振(在19.8ppm附近)。三单元组立构规整度的计算方法概括在美国专利5,504,172所示的技术中。从第二区域和第三区域的总峰面积中扣除丙烯插入(2,1和1,3插入两种)误差峰面积,则获得以由头-尾键合构成的3丙烯单元-链(PPP(mr)和PPP(rr))为基准的峰面积。因此,可以估算PPP(mm)、PPP(mr)和PPP(rr)的峰面积,由此可以测定由头-尾键合组成的丙烯单元链的三单元组立构规整度。
[0241] 三单元组立构规整度可以由聚合物的13C-NMR光谱测定,如J.A.Ewen,“Catalytic Polymerization of Olefins”(Ewen方法);和Eds.T.Keii,K.Soga;Kodanska Elsevier Pub.;Tokyo,1986,第271页所述,如2004年3月18日提交的美国专利申请US2004/054086第8页编号[0046]-[0054]的段落所述,所有文献在此引入作为参考。
[0242] 在一个优选的实施方案中,可用于本发明的丙烯型塑性体具有大于45℃,优选大于55℃,优选大于65℃的维卡软化点。在一个优选的实施方案中,可用于本发明的丙烯型塑性体具有大于45,优选45-55,优选45-60,优选45-50的肖氏A硬度。
[0243] 丙烯的无规共聚物可以商品名VistamaxxTM(ExxonMobilChemical)商购。适合的TM TM TM实例包括:Vistamaxx 6100、Vistamaxx 6200和Vistamaxx 1100,特征为具有独特工艺性能和特征的高度弹性和挠性半结晶聚烯烃聚合物的特种弹性体,其中有一些包括:自由流动的粒料,其具有经证实的在常规聚烯烃加工设备中的易加工性;耐化学品性和长期老化性;非常低的金属灰分(即小于约0.1wt%)和低聚物;和与各种聚烯烃极好的相容性。
[0244] 丙烯型塑性体的制备
[0245] 优选的丙烯型塑性体如丙烯的无规共聚物可以通过使丙烯与一种或多种C2或C4-C20α-烯烃聚合来制备,最优选地,该丙烯的无规共聚物包含丙烯和乙烯。优选在手性金属茂催化剂与活化剂和非必要的清除剂存在下将单体聚合。与丙烯结合使用的共聚单体可以是线性和/或支化的。优选的线性α-烯烃包括乙烯或C4-C8α-烯烃,更优选乙烯、1-丁烯、1-己烯和1-辛烯,甚至更优选乙烯或1-丁烯。优选的支化α-烯烃包括4-甲基-1-戊烯、3-甲基-1-戊烯和3,5,5-三甲基-1-己烯。
[0246] 在一个优选的实施方案中,使用连续溶液聚合方法来制备包含例如丙烯和一种或多种乙烯、辛烯或二烯的丙烯无规共聚物。聚合方法优选使用金属茂催化剂,即二甲基·1,1′-双(4-三乙基甲烷基苯基)亚甲基(环戊二烯基)-(2,7-二叔丁基-9-芴基)合铪与作为活化剂的四(五氟苯基)酸二甲基苯铵。可以在引入聚合方法之前,向单体原料流中添加有机化合物,即三正辛基铝作为清除剂。对于制备更加结晶的聚合物,使用与四(五氟苯基)硼酸二甲基苯铵结合的二甲基·二甲基甲硅烷基双(茚基)合铪。优选地,溶液聚合在单个、或在两个串联的连续搅拌釜式反应器中进行。可以使用己烷作为溶剂。此外,可以添加甲苯以提高助催化剂的溶解性。将进料输送到第一反应器中,在那里,放热的聚合反应在约50℃-约220℃的反应温度下绝热地进行。也可以将氢气添加到该反应器中作为另外的分子量调节剂。如果需要的话,然后将聚合物产物输送到第二反应器中,该反应器也在约50℃-200℃的温度下绝热地操作。
[0247] 可以将附加的单体、溶剂、金属茂催化剂和活化剂供给第二反应器和/或附加的反应器。离开第二反应器的聚合物含量优选为8-22wt%。热交换器然后将该聚合物溶液加热到约220℃的温度。然后使该聚合物溶液进入下临界溶解温度(LCST)液-液相分离器,该相分离器使该聚合物溶液分离成两个液相(上部稀相和下部富聚合物相)。该上部稀相包含约70wt%的溶剂,下部富聚合物相包含约30wt%的聚合物。然后聚合物溶液进入低压分离器容器,该容器在约150℃的温度和4-10巴-g(400-1000Pa)的压力下运转并将该下部富聚合物相闪蒸以除去挥发物和将该聚合物含量增加到约76wt%。在闪蒸器底部的齿轮将富聚合物溶液推动到List脱挥发器中。挤出机与该List脱挥发器的末端连接,藉此将该聚合物材料输送到齿轮泵中,该齿轮泵将该聚合物材料推动穿过过滤网组件。然后可以将该聚合物切成粒料并供给到水浴中。旋转干燥器可用来干燥该聚合物粒料,所述粒料优选具有小于约0.5wt%的最终溶剂含量。
[0248] 如上所述,本发明的优选的丙烯无规共聚物可以如下制备:在手性金属茂催化剂与活化剂和任选的清除剂存在下,使丙烯和至少一种C2或C4-C20α-烯烃聚合最优选乙烯和丙烯聚合。优选的手性金属茂是已知用来促进丙烯的引入以便制备主要全同立构的聚丙烯五单元组和促进α-烯烃共聚单体的统计学上无规引入的那些手性金属茂。术语“金属茂”和“金属茂催化剂前体”是本领域中已知的术语,用来指具有4、5或6族过渡金属M的化合物,具有可以被取代的环戊二烯基(Cp)配体,至少一个非环戊二烯基衍生的配体(x),以及零或一个含杂原子的配体Y,这些配体配位于M并且数目对应于其化合价。金属茂催化剂前体一般需要用适合的助催化剂(也称为“活化剂”)活化,以便获得活性金属茂催化剂或催化剂体系。活性金属茂催化剂一般是指具有能够配位、插入和聚合烯烃的空配位点的有机金属配合物。
[0249] 在此使用的优选的金属茂包括桥联和非桥联双环戊二烯基配合物,其中该环戊二烯基独立地是取代或未取代的环戊二烯基、取代或未取代的茚基,或者取代或未取代的芴基。优选的金属茂包括由通式TCpCpMX/2表示的那些,其中T是桥联基团如二烷基硅烷基(如二甲基甲硅烷基)或烃基(如甲基、乙基或丙基),每个Cp独立地是取代或未取代的环戊二烯基、取代或未取代的茚基(优选2,4或2,4,7取代的茚基),或其取代或未取代的芴基,M是4族金属(优选Hf、Zr或Ti),每个X独立地是卤素或烃基(如氯、溴、甲基、乙基、丙基、丁基或苯基)。
[0250] 在此使用的优选的金属茂包括具有用于配体的两个Cp环体系的环戊二烯基(Cp)配合物。Cp配体优选与金属形成“弯形的夹心配合物(bent sandwich complex)”,并且优选通过桥联基团被定为刚性构型。这些优选的环戊二烯基配合物具有以下通式:
[0251] (Cp1R1m)R3n(Cp2R2p)MXq
[0252] 其中:配体(Cp1R1m)的Cp1和配体(Cp2R2p)的Cp2是环戊二烯基并且优选是相同1 2
的;R 和R 各自独立地是卤素或含有至多20个碳原子的烃基,卤碳基(halocarbyl),烃基取代的有机准金属或卤碳基取代的有机准金属基团;m优选是1-5;p优选是1-5;优选在与
1 2
之相伴的环戊二烯基环的相邻碳原子上的两个R 和/或R 取代基能够连接在一起,形成含
3
有4-20个碳原子的环(如茚或芴);R 是桥联基团;n是在两个配体之间的直接链中的原子的数目,优选是1-8,最优选1-3;M是具有3-6的化合价的过渡金属,优选元素周期表的第
4、5或6族的金属,并且优选处于其最高氧化态;每个X是非环戊二烯基配体并且独立地是含有至多20个碳原子的烃基,烃氧基,卤碳基,烃基取代的有机准金属,烃氧基取代的有机准金属,或卤碳基取代的有机准金属基团;q等于M的化合价减2。
[0253] 用于本发明的上述双环戊二烯基金属茂的许多实例在以下文献中进行了公开:美国专利号5,324,800;5,198,401;5,278,119;5,387,568;5,120,867;5,017,714;4,871,705;4,542,199;4,752,597;5,132,262;5,391,629;5,243;5,278,264;5,296,434和5,304,614,这些文献全部在此引入供美国专利实践目的参考。用于本发明的上述类型的优选双环戊二烯基金属茂的说明性但非限制性实例包括以下物质的外消旋异构体:
[0254] μ-(CH3)2Si(茚基)2M(Cl)2;
[0255] μ-(CH3)2Si(茚基)2M(CH3)2;
[0256] μ-(CH3)2Si(四氢茚基)2M(Cl)2;
[0257] μ-(CH3)2Si(四氢茚基)2M(CH3)2;
[0258] μ-(CH3)2Si(茚基)2M(CH2CH3)2;
[0259] μ-(C6H5)2C(茚基)2M(CH3)2;
[0260] 其中M可以包括Zr、Hf和/或Ti。
[0261] 优选地,这些金属茂与一种或多种铝氧烷(优选甲基铝氧烷或改性的甲基铝氧烷)和/或一种或多种离子活化剂如以下物质结合使用:
[0262] 四苯基硼酸N,N-二甲基苯铵,
[0263] 四(五氟苯基)硼酸N,N-二甲基苯铵,
[0264] 四(全氟苯基)硼酸二苯基碳,
[0265] 四(七氟萘基)硼酸N,N-二甲基苯铵。
[0266] 添加剂
[0267] 本发明的组合物可以包含添加剂如常用于改进聚合物性能的那些。这些包括抗氧化剂、成核剂、酸清除剂、稳定剂、防腐剂、发泡剂、其它UV吸收剂如链中断抗氧化剂等,猝灭剂、抗静电剂、滑爽剂、颜料、染料和填料以及固化剂如过氧化物。工业上常用的染料和其它着色剂在一个实施方案中可以0.01-10wt%的量,而在另一个实施方案中以0.1-6wt%的量存在,基于该组合物的重量。
[0268] 具体来说,抗氧化剂和稳定剂比如有机磷酸酯,受阻胺和酚类抗氧化剂可以在一个实施方案中以0.001-2wt%的量,在另一个实施方案中以0.01-0.8wt%的量,和在又一个实施方案中以0.02-0.5wt%的量存在于本发明的组合物中,基于该组合物的重量。适合的有机亚磷酸酯的非限制性实例是三(2,4-二叔丁基苯基)亚磷酸酯(IRGAFOS168)和二(2,4-二叔丁基苯基)季戊四醇二亚磷酸酯(ULTRANOX 626)。受阻胺的非限制性实例包括聚[2-N,N′-二(2,2,6,6-四甲基-4-哌啶基)-己烷二胺-4-(1-基-1,1,3,3-四甲基丁烷)对称-三嗪](CHIMASORB 944);双(1,2,2,6,6-五甲基-4-哌啶基)癸二酸酯(TINUVIN 770)。酚类抗氧化剂的非限制性实例包括季戊四醇四(3,5-二叔丁基-4-羟苯基)丙酸酯(IRGANOX 1010);和1,3,5-三(3,5-二叔丁基-4-羟基苄基-异氰脲酸酯(IRGANOX 3114)。
[0269] 填料在一个实施方案中可以0.001-50wt%的量,在另一个实施方案中以0.01-25wt%的量,以及在又一个实施方案中以0.2-10wt%的量存在,基于该组合物的重量。合乎需要的填料包括但不限于二氧化,碳化硅,硅石(以及沉淀或非沉淀的硅的其它氧化物),氧化锑,碳酸铅,锌白,锌钡白,锆石,金刚砂,尖晶石磷灰石,重晶石粉,硫酸钡,菱镁矿,炭黑,白石,碳酸,离子Mg、Ca、或Zn与Al、Cr或Fe和CO3和/或HPO4的滑石和水滑石复合物(水合或非水合的);石英粉,盐酸碳酸镁,玻璃纤维,粘土,氧化铝,以及其它金属氧化物和碳酸盐,金属氢氧化物,铬合金(chrome),磷和溴化阻燃剂,三氧化锑,二氧化硅,聚硅氧烷,和它们的共混物。这些填料尤其可以包括本领域已知的任何其它填料和多孔填料及载体,并且可以具有在添加到聚合物中之前预接触或预吸附到填料中的本发明的NFP。
[0270] 更具体地说,在本发明的一个实施方案中,NFP或NFP的某个部分可以与填料(最好多孔填料)共混。例如,NFP和填料可以通过转鼓或其它湿法共混装置来共混。在该实施方案中,NFP和填料共混达适于形成NFP和填料的均匀组合物的时间,理想地,在一个实施方案中是1分钟到5小时。该NFP/填料共混物然后可以与在本发明中使用的聚合物共混,以便进行增塑。在另一个实施方案中,在将多孔填料与聚合物接触之前,可以将该填料与NFP或它的某个部分接触。在另一个实施方案中,多孔填料、聚合物和NFP同时接触(或在同一共混装置中)。在任何情况下,填料可以以组合物的0.1-60wt%的量存在,和在另一个实施方案中以0.2-40wt%的量,在又一个实施方案中以0.3-20wt%的量存在。
[0271] 脂肪酸的金属盐也可以存在于本发明的组合物中。此类盐可以在一个实施方案中以组合物的0.001-1wt%的量存在,而在另一个实施方案中以0.01-0.8wt%的量存在。脂肪酸的实例包括月桂酸,硬脂酸,丁二酸,硬脂基乳酸,乳酸,邻苯二甲酸,苯甲酸,羟基硬脂酸,蓖麻油酸,环烷酸,油酸,棕榈酸,芥酸或链长为7-22个碳原子的任何一元羧酸脂族饱和或不饱和酸。适合的金属包括Li,Na,Mg,Ca,Sr,Ba,Zn,Cd,Al,Sn,Pb等。优选的脂肪酸的金属盐是硬脂酸镁,硬脂酸钙,硬脂酸钠,硬脂酸锌,油酸钙,油酸锌和油酸镁。
[0272] 在一个优选的实施方案中,爽滑添加剂可以存在于本发明的组合物中。优选地,基于组合物的重量,爽滑添加剂以0.001-1wt%(10-10,000ppm),更优选0.01-0.5wt%(100-5000ppm),更优选0.1-0.3wt%(1000-3000ppm)的量存在。
[0273] 合乎需要的爽滑添加剂包括但不限于饱和脂肪酸酰胺(如棕榈酸酰胺、硬脂酰胺、花生酸酰胺、山萮酸酰胺、硬脂酰硬脂酰胺、棕榈酰棕榈酸酰胺和硬脂酰花生酸酰胺);饱和的亚乙基双酰胺(如硬脂酰氨基-乙基-硬脂酰胺、硬脂酰氨基-乙基-棕榈酸酰胺和棕榈酰氨基-乙基-硬脂酰胺);不饱和脂肪酸酰胺(如油酰胺、芥酸酰胺和亚油酸酰胺);
不饱和亚乙基-双酰胺(如亚乙基-双硬脂酰胺、亚乙基-双油酰胺、硬脂酰芥酸酰胺、芥酸酰氨基-乙基-芥酸酰胺、油酰氨基-乙基-油酰胺、芥酸酰氨基-乙基-油酰胺、油酰氨基-乙基-芥酸酰胺、硬脂酰氨基-乙基-芥酸酰胺、芥酸酰氨基-乙基-棕榈酸酰胺和棕榈酰氨基-乙基-油酰胺);二醇;聚醚多元醇(如Carbowax);脂族烃的酸(如己二酸和癸二酸);芳族或脂族烃的酯(如单硬脂酸甘油酯和单油酸季戊四醇酯);苯乙烯-α-甲基苯乙烯;含氟聚合物(如聚四氟乙烯、氟油和氟蜡);硅化合物(如硅烷和硅聚合物,包括硅酮油、改性硅酮和固化硅酮);烷基硫酸钠、烷基磷酸酯和它们的混合物。
[0274] 优选的爽滑添加剂是不饱和脂肪酸酰胺,它们可从Crompton(KekamideTM等级)、TM TMCroda Universal(Crodamide 等级)和Akzo NobelAmides Co.Ltd.(ARMOSLI 等级)商购。尤其优选的滑爽剂包括具有以下化学结构的不饱和脂肪酸酰胺:
[0275] CH3(CH2)7CH=CH(CH2)XCONH2
[0276] 其中x是5-15。优选的型式包括:1)芥酸酰胺,其中x是11,也称为顺式-13-二十二碳烯酰胺(可作为AEMOSLIPE商购);2)油烯基酰胺,其中x是8;和3)油酰胺,其中x是7,也称为N-9-十八碳烯基-十六烷酰胺。在另一个实施方案中,硬脂酰胺也可用于本发明。其它优选的爽滑添加剂包括WO 2004/005601 A1描述的那些。
[0277] 在某些实施方案中,本发明的增塑丙烯聚合物组合物可以与一种或多种其它聚合物,包括但不限于热塑性聚合物和/或弹性体共混。
[0278] 所谓“热塑性聚合物”是指可以通过加热熔化,然后冷却而在加热前后的固态性能没有明显变化的聚合物。热塑性聚合物通常包括但不限于聚烯烃,聚酰胺,聚酯,聚碳酸酯,聚砜,聚缩,聚内酯,丙烯腈-丁二烯-苯乙烯树脂,聚苯醚,聚苯硫醚,苯乙烯-丙烯腈树脂,苯乙烯-来酸酐,聚酰亚胺,芳族聚酮,或以上的两种或更多种的混合物。优选的聚烯烃包括但不限于含有一种或多种线性、支化或环状C2-C40烯烃的聚合物;优选含有与一种或多种C3-C40烯烃,优选C3-C20α-烯烃,更优选C3-C10α-烯烃共聚的乙烯的聚合物。尤其优选的实例是聚丁烯。最优选的聚烯烃是聚丙烯。其它优选的聚烯烃包括但不限于含乙烯的聚合物,其包括但不限于乙烯与C3-C40烯烃,优选C3-C20α-烯烃,更优选丙烯、丁烯、己烯和/或辛烯共聚的聚合物。
[0279] 所谓“弹性体”是指所有天然和合成橡胶,包括在ASTM D1566中定义的那些。优选的弹性体的实例包括但不限于乙烯丙烯橡胶,乙烯丙烯二烯单体橡胶,苯乙烯嵌段共聚物橡胶(包括SEBS、SI、SIS、SB、SBS、SIBS等,其中S=苯乙烯,EB=无规乙烯+丁烯、I=异丁烯,B=丁二烯),丁基橡胶,卤化丁基橡胶,异丁烯和对烷基苯乙烯的共聚物,异丁烯和对烷基苯乙烯的卤化共聚物,天然橡胶,聚异戊二烯,丁二烯与丙烯腈的共聚物,聚氯丁二烯,丙烯酸烷基酯橡胶,氯化异戊二烯橡胶,丙烯腈氯化异戊二烯橡胶,聚丁二烯橡胶(顺式和反式)。
[0280] 在另一个实施方案中,所述含有NFP的共混物可以进一步与以下物质结合:可通过高压自由基方法聚合的一种或多种聚合物、低密度聚乙烯(密度0.915到低于0.935g/3 3
cm)、线性低密度聚乙烯、超低密度聚乙烯(密度0.86到低于0.90g/cm)、极低密度聚乙烯
3 3
(密度0.90到低于0.915g/cm)、中密度聚乙烯(密度0.935到低于0.9 45g/cm)、高密度
3
聚乙烯(密度0.945到0.98g/cm)、乙烯-乙酸乙烯酯、乙烯-丙烯酸甲酯、丙烯酸的共聚物、聚氯乙烯、聚丁烯-1、全同立构聚丁烯、ABS树脂、嵌段共聚物、苯乙烯嵌段共聚物、聚酰胺、聚碳酸酯、PET树脂、交联聚乙烯、乙烯和乙烯醇的共聚物(EVOH)、芳族单体的聚合物例如聚苯乙烯、聚1-酯、聚缩醛、聚偏二氟乙烯、聚乙二醇和/或聚异丁烯。优选的聚合物包TM TM
括以EXCEEED 和EXACT 的商品名从Exxon Chemical Company(Baytown,Texas)购得的那些。
[0281] 在尤其优选的实施方案中,本发明的组合物与乙烯型塑性体结合,基于该组合物重量,优选与0.5-50wt%的乙烯型塑性体,更优选1-40wt%,更优选5-25wt%的乙烯型塑性体结合。优选的乙烯型塑性体优选是乙烯的均聚物或包含至少50wt%的乙烯,且具有高达50wt%,优选1-35wt%,甚至更优选1-6wt%的C3-C20共聚单体的共聚物,基于该共聚物的重量。该聚乙烯共聚物优选具有90%或更高,甚至更优选大于95%的组成分布宽度指数3
(CDBI)。在另一个优选的实施方案中,该乙烯共聚物具有0.86-0.925g/cm 的密度和90%或更高,优选95%-99%的CDBI。组成分布宽度指数(CDBI)是单体在聚合物链内的组成分布的量度并且通过PCT出版物WO 93/03093(1993年2月18日公开)中描述的程序测量,包括当测定CDBI时将重均分子量(Mw)小于15,000的级分忽略。对本发明来说,均聚物定义为具有100%的CDBI。
[0282] 上述乙烯型塑性体的C3-C20烯烃共聚单体可以是任何可聚合的烯烃单体并且优选是线性、支化或环状烯烃,甚至更优选是α-烯烃。适合的烯烃的实例包括丙烯、丁烯、异丁烯、戊烯、异戊烯、环戊烯、己烯、异己烯、环己烯、庚烯、异庚烯、环庚烯、辛烯、异辛烯、环辛烯、壬烯、环壬烯、癸烯、异癸烯、十二碳烯、异癸烯、4-甲基-戊烯-1、3-甲基-戊烯-1、3,5,5-三甲基己烯-1。适合的共聚单体还包括二烯、三烯和苯乙烯系单体。优选的实例包括苯乙烯、α-甲基苯乙烯、对烷基苯乙烯(如对甲基苯乙烯)、己二烯、降冰片烯、乙烯基降冰片烯、乙叉基降冰片烯、丁二烯、异戊二烯、庚二烯、辛二烯和环戊二烯。用于乙烯型塑性体的优选的共聚单体是丙烯、丁烯、己烯和/或辛烯。
[0283] 上述乙烯型塑性体还可以包含三聚物和四聚物,它们可以是上述C3-C20烯烃,任何C4-C20线性、环状或支化二烯或三烯和任何苯乙烯系单体如苯乙烯、α-甲基苯乙烯或对甲基苯乙烯中的一种或多种。优选的实例包括丁二烯、戊二烯、环戊二烯、己二烯、环己二烯、庚二烯、辛二烯、壬二烯、降冰片烯、乙烯基降冰片烯、乙叉基降冰片烯、异戊二烯和庚二烯。
[0284] 在一个优选的实施方案中,上述乙烯型塑性体是金属茂聚乙烯(mPE)。mPE均聚物或共聚物可以使用单或双环戊二烯基过渡金属催化剂和与之结合的铝氧烷和/或非配位阴离子活化剂以溶液、淤浆、高压或气相方式制备。所述催化剂和活化剂可以是经担载或未经担载的并且环戊二烯基环可以是取代或未取代的。采用此类催化剂/活化剂结合物制备TM的一些商业产品可从Baytown,Texas的ExxonMobil ChemicalCompany以商品名EXACT 商购。对于与用来制备此类mPE均聚物和共聚物的方法和催化剂/活化剂的更多信息,参见WO 94/26816;WO94/03506;EPA 277,003;EPA 277,004;美国专利号5,153,157;美国专利号5,198,401;美国专利号5,240,894;美国专利号5,017,714;CA 1,268,753;美国专利号
5,324,800;EPA 129,368;美国专利号5,264,405;EPA 520,732;WO 92 00333;美国专利号5,096,867;美国专利号5,507,475;EPA 426 637;EPA 573 403;EPA 520 732;EPA495
375;EPA 500 944;EPA 570 982;WO91/09882;WO94/03506和美国专利号5,055,438。
[0285] 适合在此使用的EXACT塑性体的实例包括:
[0286] ExxonMobil EXACT-塑性体
[0287]
[0288] 在一个优选的实施方案中,HMPP是抗冲共聚物并且使HMPP/NFP/丙烯型塑性体组合物与乙烯型塑性体(尤其是mPE)结合。
[0289] 增粘剂可以与本发明的组合物共混。有用的增粘剂的实例包括但不限于脂族烃树脂,芳族改性的脂族烃树脂,氢化聚环戊二烯树脂,聚环戊二烯树脂,松香,松香酯,木松香,木松香酯,妥尔油松香,妥尔油松香酯,多萜烯,芳族改性的多萜烯,萜烯酚醛树脂,芳族改性的氢化聚环戊二烯树脂,氢化脂族树脂,氢化脂族芳族树脂,氢化萜烯和改性萜烯,以及氢化松香酯。在一些实施方案中,增粘剂是氢化的。在其它实施方案中,增粘剂是非极性的。(非极性是指增粘剂基本上不含具有极性基团的单体。优选极性基团不存在,然而如果它们存在的话,它们优选以不超过5wt%,优选不超过2wt%,甚至更优选不超过0.5wt%的量存在,基于该增粘剂的重量)。在一些实施方案中,增粘剂具有80-140℃,优选100-130℃的软化点(环球法,通过ASTME-28测量)。如果存在的话,增粘剂通常以约1wt%-约50wt%,更优选10-40wt%,甚至更优选20-40wt%的量存在,基于该共混物的重量。然而优选的是增粘剂不存在,或如果存在的话,以低于10wt%,优选低于5wt%,更优选低于1wt%的量存在。
[0290] 在另一个实施方案中,本发明的组合物和/或其共混物还包含本领域中已知的典型的添加剂如填料,成穴剂、抗氧化剂、表面活性剂、助剂、粘连剂、抗粘连剂、色母料、颜料、染料、加工助剂、UV稳定剂、中和剂、润滑剂、蜡、和/或成核剂。添加剂可以按本领域中熟知的通常有效量存在,如0.001wt%-10wt%,基于该组合物的重量。优选的抗氧化剂包括酚类抗氧化剂,如Irganox 1010、Irganox 1076,都可以从Ciba-Geigy获得。优选的填料、成穴剂和/或成核剂包括二氧化钛,碳酸钙、硫酸钡,硅石,二氧化硅,炭黑,沙子,玻璃珠,矿质集料,滑石,粘土等。
[0291] 交联
[0292] 可以使用交联或未交联的本发明组合物。交联可以通过本领域中已知的任何方式例如通过在硫化化学试剂,过氧化物,偶氮,辐射电子束、UV、IR、可见光等存在下进行交联实现。可以通过使用添加剂和促进剂加速或增强交联。
[0293] 交联反应(本文还称为硫化)是其中不同的聚合物链通过化学反应化学连接的反应。可以用于本发明实践的交联剂/体系包括硫型固化剂、过氧化物固化剂、树脂固化、硅氢化、不稳定的或迁移性固化体系以及高能辐射中一种或多种。可以用于本发明实践的硫供体化合物包括秋兰姆多硫化物,如二硫化四甲基秋兰姆、二硫化二异丙基四甲基秋兰姆、二硫化四丁基秋兰姆、四硫化二戊基亚甲基秋兰姆、六硫化二戊基亚甲基秋兰姆、二硫化二环六亚甲基秋兰姆和二硫化苯乙基秋兰姆。还包括的是二烷基二硫代氨基甲酸盐如二丁基二硫代氨基甲酸锌、二甲基二硫代氨基甲酸锌、二乙基二硫代氨基甲酸锌、二甲基二硫代氨基甲酸铋、二乙基二硫代氨基甲酸锌、二甲基二硫代氨基甲酸铋、二丁基二硫代氨基甲酸镍、二甲基二硫代氨基甲酸、二乙基二硫代氨基甲酸硒、二甲基二硫代氨基甲酸铅、二乙基二硫代氨基甲酸tellerium、二乙基二硫代氨基甲酸镉等。
[0294] 除了上述固化剂之外,还可以使用促进剂,包括但不限于硫脲,如亚乙基硫脲、N,N′-二丁基硫脲和N,N′-二乙基硫脲;硫脲一硫化物,如四甲基硫脲一硫化物、四乙基硫脲一硫化物和四丁基硫脲一硫化物;苯并噻唑磺酰胺,如N-氧-二亚乙基-苯并噻唑-2-磺酰胺、N-环己基苯并噻唑-2-磺酰胺、N,N′-二异丙基-苯并噻唑-2-磺酰胺和N-叔丁基-苯并噻唑-2-磺酰胺;2-巯基咪唑啉;N-二苯基-胍;N,N′-二(2-甲基苯基)胍;2-巯基-苯并噻唑;2-(吗啉基二硫代)苯并噻唑-二硫化物;和2-巯基-苯并噻唑锌。
可以使用的硫/硫供体化合物或其混合物的量在上限为6或4phr,下限为0.5或1phr的范围之内。
[0295] 可以用于本发明实践的有机过氧化物包括但不限于过氧化二叔丁基;过氧化二枯基;过氧化叔丁基枯基;α,双(叔丁基过氧)二异丙苯;2,5-二甲基-2,5-二(叔丁基过氧)己烷;1,1-二(叔丁基过氧)-3,3,5-三甲基环己烷;正丁基-4,4-双(叔丁基过氧)戊酸酯;过氧化苯甲酰;过氧化月桂酰;过氧化二月桂酰;2,5-二甲基-2,5-二(叔丁基过氧)己烯-3;以及过氧化二芳基,过氧化酮,过氧二碳酸盐(酯)过氧化酯,过氧化二烷基,氢过氧化物,过氧缩酮和它们的组合。偶氮引发剂(如可以从ATO Chemical获得的Luazo RTM AP)也可以用作自由基引发剂。
[0296] 除了过氧化物之外,可以使用其它的固化助剂或活性助剂,例如三烯丙基氰脲酸酯、三烯丙基异氰脲酸酯、三烯丙基磷酸酯、硫、秋兰姆、N-苯基双马来酰胺、二丙烯酸锌、二甲基丙烯酸锌、二乙烯基苯、1,2-聚丁二烯、三羟甲基丙烷三甲基丙烯酸酯、二丙烯酸1,4-丁二醇酯、三官能化丙烯酸酯、五丙烯酸二季戊四醇酯、多官能化丙烯酸酯、多官能化甲基丙烯酸酯、丙烯酸和甲基丙烯酸金属盐、和肟(oximer)。活性助剂可以经由加成机理或转移机理改进交联密度。美国专利号5,656,693(该文献的公开内容在此引入作为参考)描述了过氧化物固化剂和它们制备硫化橡胶的用途。组合物中过氧化物浓度可以在具有约-4 -4 -4 -2
1×10 摩尔,或约2×10 摩尔,或约7×10 摩尔/一百份橡胶的上限,到约2×10 摩尔,-3 -3
或约2×10 摩尔,或约1.5×10 摩尔/一百份橡胶的下限的范围中。
[0297] 能够使橡胶聚合物交联的任何酚醛树脂可用于本发明实践,例如美国专利号2,972,600、4,311,28和3,287,440中描述的那些,该文献的公开内容在此引入作为参考。
酚醛树脂固化剂的实例是甲阶酚醛树脂,它是通过使烷基取代的苯酚或未取代的苯酚与醛在性介质中缩合或通过使双官能苯酚二醇缩合制备的。烷基取代的苯酚的烷基取代基通常包含1-10个碳原子。酚醛树脂固化剂可以是对位被含1-10个碳原子的烷基取代的二羟甲基苯酚。酚醛树脂固化剂可以与催化剂体系结合使用。例如,非卤化苯酚固化树脂可以与卤素供体和非必要的卤化氢清除剂结合使用。当苯酚固化树脂被卤化时,不需要卤素供体,但是可以使用卤化氢清除剂。
[0298] 硅氢化可用来使本文描述的组合物交联。有用的含硅固化剂通常包括含至少两个SiH基团的氢化硅化合物。这些化合物在硅氢化催化剂存在下与不饱和聚合物的碳-碳双键反应。氢化硅化合物的实例包括但不限于甲基氢聚硅氧烷,甲基氢二甲基硅氧烷共聚物,烷基甲基聚硅氧烷,双(二甲基甲硅烷基)烷烃,双(二甲基甲硅烷基)苯和它们的混合物。硅氢化催化剂的实例包括但不限于包括第VIII族过渡金属(如钯、铑和铂),和其配合物的催化剂。使用用于固化的硅氢化还在美国专利号5,936,028中进行了描述,该文献的公开内容在此引入作为参考。在一个特定的实施方案中,使用含硅固化剂,并且该聚合物组合物包括5-乙烯基-2-降冰片烯作为二烯组分。
[0299] 挥发性或迁移性固化体系可以用来使本文描述的组合物交联。挥发性固化剂的实例是二氯化硫,其可以从Aldrich Chemical Co.ofMilwaukee,WI获得。二氯化硫用作挥发性固化剂在“Rubber TechnologyHandbook”W.Hoffman,1988,第42页(Hanser Publisher,Munich)中进行了举例说明。挥发性固化体系能够在室温下或稍微升高的温度(<60℃)下的接触过程中扩散到大部分样品中并容易地经由所引入的二烯的帮助使聚合物交联。当含聚合物的制品具有至少一个小于2英寸、或小于1.5英寸、或小于1.0英寸的尺寸时,这些固化体系对于所述聚合物的交联是最有效的。满足这一尺寸要求的制品的实例包括纤维和由纤维制成的纺织/非织造材料,薄膜和由薄膜制成的结构物,以及模塑物品。较薄的尺寸允许挥发性固化剂容易扩散到成型制品中并完全地和均匀地使该制品交联。为了在相对较厚的制品中达到相同的结果,可能需要更长的曝露时间。在挥发性固化剂下的曝露时间可以为数秒至数小时,这取决于如下因素:如所需的交联度、反应温度、制品的厚度、和该聚合物上可用于交联反应的二烯的量。
[0300] 挥发性固化剂可以作为涂覆到配混聚合物的表面上的在溶剂中的溶液使用。挥发性固化体系的使用可以具有以下的一个或多个特征:(1)在已经将组合物加工成型材如纤维或薄膜之后,可以在成型或模塑阶段之后添加固化剂;(2)在形成或成型过程中没有固化剂可以允许使用更高的温度,这可以引起对于成型制品的形成来说的更快加工;和(3)在环境和接近环境条件下使用该固化剂可以使在用于固化的正常温度条件下可能扭曲的型材交联。
[0301] 在聚合物链上通过脱氢的自由基形成可以引发交联;因此,高能辐射可以用来使本文描述的组合物交联。辐射的能量需要高于聚合物的最不稳定碳-氢键的键能。通常用于塑料工业的例如用于使聚乙烯和聚氯乙烯交联的这种交联原理也可以用来交联该聚合物。可以使用的辐射源包括但不限于钴-60源,范德格拉夫发生器、共振变压器、级联加速器、线性加速器和电子感应加速器。在采用高能辐射的辐射过程中,在聚合物链中产生引起C-C交联的自由基。对于本文描述的组合物的辐射固化,不需要硫化助剂。用作过氧化物固化的共活化剂的活化剂如甲基丙烯酸乙二醇酯(EDMA)和三羟甲基丙烷三甲基丙烯酸酯(TPTA)可以用于高辐射固化以降低辐射能的需要量或达到增加的固化状态。在辐射交联过程中,不会产生由任何硫化化学试剂引起的分解产物,后者可能影响硫化橡胶的性能谱或生理机能。
[0302] 共混和制造的制品
[0303] 当用来与本发明的NFP共混时,适合用于本发明的丙烯聚合物可以呈任何物理形态。在一个实施方案中,使用反应器颗粒(定义为在任何加工程序之前从聚合反应器分离出的聚合物的颗粒)与本发明的NFP共混。反应器颗粒具有在一个实施方案中50μm-10mm,在另一个实施方案中10μm-5mm的平均直径。在另一个实施方案中,丙烯聚合物呈粒料形式,例如由反应器聚合物或颗粒的熔融挤出形成的具有1mm-10mm的平均直径的粒料。
[0304] 可以通过任何合适的方法将丙烯聚合物、NFP和任何其它的成分共混,并且通常共混到获得均匀混合物。例如,可以在滚混桶、静态混合器、间歇式混合器、挤出机或它们的组合中将它们共混。混合步骤可以作为用来制造制品的加工方法的一部分进行,例如在注塑加工或成纤生产线上的挤出机中进行。
[0305] 混合步骤可以包括:首先使用例如桶混机进行干共混,其中使任何丙烯聚合物和NFP首先在没有均匀混合下接触,然后可以在挤出机中进行熔融共混。组分的另一种共混方法是直接在挤出机或间歇式混合机(例如“Banbury”混合器)中将聚合物粒料与NFP熔融共混。在一个优选的方法中,它包括″母料″方法,其中目标NFP浓度通过将先前以较高的NFP浓度制备的丙烯聚合物按合适的比率添加到纯丙烯聚合物中来获得。混合步骤可以作为用于制造制品的加工方法的一部分进行,例如在注塑、薄膜或纤维生产线上的挤出机内进行。
[0306] 在本发明的一方面中,在设备例如挤出机(单或双螺杆挤出机)或间歇式混合机中将聚合物和NFP“熔融共混”。也可以使用滚混桶、双锥共混器、带式共混器或其它适合的共混器将丙烯聚合物与NFP“干共混”。在又一个实施方案中,通过例如滚混桶接着挤出机的组合方法将丙烯聚合物和NFP共混。优选的共混方法包括将最终的共混阶段作为制品制造步骤的一部分,例如在用来为模塑步骤如注塑或吹塑熔融和输送所述组合物的挤出机中进行。这可以包括在熔融区之前或之后,将NFP直接注射到挤出机中。挤出技术例如在PLASTICS EXTRUSIONTECHNOLOGY 26-37(Friedhelm Hensen编辑,Hanser Publishers1988)中进行了描述。在另一个优选的方法中,首先将第二丙烯聚合物与NFP共混,然后将该结合物与第一丙烯聚合物共混。
[0307] 在本发明的另一方面中,可以通过任何合适的方法使用将一种或两种聚合物组分和/或NFP溶解到显著程度的溶剂而在溶液中将所述组合物共混。该共混可以在其中NFP和/或丙烯聚合物保持在溶液中的任何温度或压力下进行。也可能在其中丙烯聚合物保持在溶液中,而NFP不在溶液中的条件下进行;此时该NFP简单地悬浮在溶剂中。优选的条件包括在高温下,例如比聚合物的熔点高10℃或更多,优选20℃或更多的温度下共混。此种溶液共混对于如下工艺会是尤其有用的:其中聚合物通过溶液方法制备并将NFP直接添加到精加工机组(finishingtrain)中,而非在另一个共混步骤中一起添加到干燥聚合物中。这种溶液共混将尤其可用于其中聚烯烃以本体或高压方法制备的工艺。与溶液方法一样,将NFP直接加入到精加工机组中,而非在另一个共混步骤中一起加入到干燥聚合物中。
[0308] 因此,在使用涉及挤出机的方法例如注塑或吹塑制造制品的情况下,将聚合物和NFP结合以获得所需组合物的任何手段与完全配制的预共混粒料同样适合,因为成型工艺包括原材料的再熔融和混合;实例组合包括纯聚合物粒料和NFP的简单共混,纯聚合物颗粒和NFP的简单共混,纯聚合物粒料和预共混粒料的简单共混,以及纯聚合物颗粒和预共混粒料的简单共混。在此,“预共混粒料”是指以某种浓度包含丙烯聚合物和NFP的组合物的粒料。然而,在压塑方法中,熔融组分发生很少的混合,并且预共混粒料相对于成分粒料(或颗粒)和NFP的简单共混物将是优选的。本领域技术人员将能确定用于共混聚合物的适当工序,以平衡对组成成分的均匀混合的要求与对工艺经济性的需要。
[0309] 在一个优选的实施方案中,将本文描述的组合物成型为颗粒或粒料并将聚烯烃粉末(优选微细聚烯烃粉末)撒在那些颗粒或粒料上。优选地,基于该组合物的重量,以0.01-10wt%(优选0.1-5wt%,优选0.1-1wt%)的量使用所述粉末。优选的聚烯烃粉末通常是聚乙烯(包括低密度PE、线性低密度PE、中密度PE和高密度PE)、聚丙烯或乙烯-乙酸乙烯酯共聚物。优选的聚烯烃粉末由具有0.91-0.96g/cc(优选0.915-0.925g/cc)的密度和1-100dg/min(优选5-50dg/min)的MI的聚乙烯制成。该聚烯烃粉末可以具有1-100(5-100,优选10-70)的粒度和5-2000微米(优选10-500微米,优选10-100微米,优选15-25微米)的中值粒径。有用的聚烯烃粉末可以从Equistar TM TM
Chemical(LyondellChemical的一部分)以商品名Microthene 获得,包括Microthene FTM TM TM TM
等级和Microthene G等级如Microthene FN510、Microthene FN532、Microthene FA700TM TM
和Microthene FP-800。尤其优选的微细粉末是Microthene FA709-00,它是具有10dg/min的报道熔融指数、134℃的报道熔点和20微米的平均颗粒尺寸的高密度聚乙烯粉末(0.952g/cc)。
[0310] 本发明的所得组合物可以通过任何适合的方式加工,比如通过压延,浇铸,涂覆,配混,挤出,发泡,层压,吹塑,压塑,注塑,热成型,压铸、铸塑,滚塑,流延(比如用于薄膜),纺粘或熔粘(比如用于纤维),或其它加工形式,例如在PLASTICS PROCESSING(RadianCorporation,Noyes Data Corp.1986)中所述的那些加工。更具体地说,对于生产共混物的物理方法,应该进行充分的混合以确保在转化成成品之前形成均匀的共混物。
[0311] 在一个优选的实施方案中,本发明的组合物具有小于65%,优选小于50%,优选小于40%,优选小于30%,优选小于20%的永久变形。根据以下程序测量永久变形(也称作永久拉伸形变)。使用以下试验程序,对具有所需哑铃几何结构(对于聚丙烯来说,AsTM规定I型试条)进行滞后测试。在Instron(The Instron Corporation,Canton,MA)测试设备中以20 in/min(51cm/min)的变形速率将样品的变形区(2.54cm长的部分)拉伸到其原始长度的200%。然后使样品松弛,同时机器回缩并回到应力为零的点。机器在这一位置重置新的0伸长率点。让试样仍在夹具内,然后启动第二次循环再次达到200%伸长。再次,使机器在回缩循环后回到应力为零的点。参照它们各自的零伸长点测定每次循环的变形。对于每个样品,测试两个试样。经过两个循环的变形值的平均值作为永久变形。
[0312] 应用
[0313] 本文描述的组合物的增强性能可用于各式各样的应用,包括透明制品如蒸煮和储存器皿,以及可用于其它制品如家具、汽车部件、玩具、运动装、医疗器材、可灭菌的医疗器材、灭菌容器、纤维、纺织物、非织造织物、布帘、长袍、过滤器、医疗制品、尿布和薄膜,取向膜、片材、软管、管道、电线护套、电缆护套、农用薄膜、地质处理用膜、运动装备、流延薄膜、吹塑薄膜、型材、船和筏部件,及其它这样的制品。具体来说,所述组合物适合于汽车部件如保险杠,护栅,装饰部件,仪表盘和仪表板,外门和发动机罩部件,阻流板,挡板,毂盖,反射镜外罩,车身板,防护性侧面模制品,以及与汽车、卡车、船和其它交通工具有关的其它内部和外部部件。
[0314] 其它有用的制品和物品可以经济地通过实施本发明来形成,包括:板条箱,容器,包装物,实验室器皿,如用于培养物生长的滚瓶和培养瓶,办公室地板毡,仪器试样夹和采样窗口;液体贮藏容器如用于血液或溶液的储存和IV输注的袋子,小包和瓶子;包装材料,包括用于任何医疗器材或药物的那些,包括单位剂量容器,或其它的泡罩或泡沫包装,以及用于包封或贮存在辐射下保藏的食品。其它有用的制品包括用于任何医疗器材的医用软管和门,包括输注用具,导管和呼吸性治疗设备,以及用于被辐射的医疗器材或食品的包装材料,包括托盘,以及储存液体(尤其水、奶或果汁)的容器,包括单份食品容器和大容量储存容器以及输送工具如软管,管道等等。
[0315] 这些设备可以通过用于成型聚烯烃的任何有用的成型方式来制备或成型。这至少涵盖了模塑,包括压塑,注塑,吹塑和压铸;薄膜吹塑或流延;挤出和热成型;以及层压,拉挤成型,推出成型(protrusion),拉伸变形(draw reduction),滚塑,纺粘,熔体纺丝,熔体喷射;或它们的组合。至少热成型或成膜法的使用使所述材料的单轴或双轴取向的益处成为可能并产生。
[0316] 薄膜
[0317] 上述组合物和它们的共混物可以成型为单层或多层薄膜。这些薄膜可以通过本领域已知的任何常规技术来形成,包括挤出、共挤出、挤出涂覆、层压、吹塑和流延。薄膜可以通过平膜或管膜方法,随后在薄膜的平面上按单轴方向或两个相互垂直的方向取向来获得。薄膜的一个或多个层可以在横向和/或纵向上以相同或不同的程度取向。该取向可以在将各个层集合在一起之前或之后进行。例如,富聚乙烯层可挤出涂覆或层压到取向的富聚丙烯层上,或聚乙烯和聚丙烯可一起共挤出为薄膜,然后取向。同样,取向聚丙烯可以层压到取向聚乙烯上,或者取向聚乙烯可以层压到聚丙烯上,然后任选可对该结合物进行甚至进一步取向。通常,所述薄膜以至多15的比率,优选5-7的比率在纵向(MD)上取向,并以至多15,优选7-9的比率在横向(TD)上取向。然而,在另一个实施方案中,薄膜在MD和TD方向上以相同的程度取向。
[0318] 在另一个实施方案中,包含本发明的组合物(和/或它们的共混物)的层可以与一个或多个其它层结合。该其它层可以是通常在多层薄膜结构中包括的任何层。例如,该其它层可以是:
[0319] 1.聚烯烃
[0320] 优选的聚烯烃包括C2-C40烯烃,优选C2-C20烯烃的均聚物或共聚物,优选α-烯烃和另一烯烃或α-烯烃的共聚物(对于本发明来说,乙烯定义为α-烯烃)。优选均聚乙烯,均聚丙烯,丙烯与乙烯和/或丁烯的共聚物,乙烯与丙烯、丁烯或己烯中的一种或多种和任选的二烯的共聚物。优选的实例包括热塑性聚合物,例如超低密度聚乙烯,极低密度聚乙烯,线性低密度聚乙烯,低密度聚乙烯,中密度聚乙烯,高密度聚乙烯,聚丙烯,全同立构聚丙烯,高度全同立构聚丙烯,间同立构聚丙烯,丙烯和乙烯和/或丁烯和/或己烯的无规共聚物,弹性体例如乙烯丙烯橡胶、乙烯丙烯二烯单体橡胶、氯丁橡胶,以及热塑性聚合物和弹性体的共混物,例如热塑性弹性体和橡胶增韧的塑料。
[0321] 2.极性聚合物
[0322] 优选的极性聚合物包括酯、酰胺、乙酸酯、酸酐的均聚物和共聚物,C2-C20烯烃例如乙烯和/或丙烯和/或丁烯与一种或多种极性单体例如乙酸酯、酸酐、酯、醇和/或丙烯酸类的共聚物。优选的实例包括聚酯、聚酰胺、乙烯-乙酸乙烯酯共聚物,和聚氯乙烯。
[0323] 3.阳离子聚合物
[0324] 优选的阳离子聚合物包括偕(geminally)二取代的烯烃,α-杂原子烯烃和/或苯乙烯类单体的聚合物或共聚物。优选的偕二取代的烯烃包括异丁烯,异戊烯,异庚烯,异己烯,异辛烯,异癸烯和异十一碳烯。优选的α-杂原子烯烃包括乙烯基醚和乙烯基咔唑,优选的苯乙烯类单体包括苯乙烯,烷基苯乙烯,对烷基苯乙烯,α-甲基苯乙烯,氯苯乙烯和溴-对甲基苯乙烯。优选的阳离子聚合物的实例包括丁基橡胶,异丁烯与对甲基苯乙烯的共聚物,聚苯乙烯和聚α-甲基苯乙烯。
[0325] 4.混杂物
[0326] 其它优选的层可以是纸,木材,纸板,金属,金属箔(例如铝箔和箔),金属的表面,玻璃(包括通过将氧化硅蒸发到薄膜表面上所施涂的氧化硅(SiOx)涂层),织物,纺粘纤维,和非织造织物(尤其聚丙烯纺粘纤维或非织造织物),以及用油墨、染料、颜料等涂布的基材。
[0327] 取决于预期应用,薄膜的厚度可以改变,然而厚度为1-250μm的薄膜通常是适宜的。打算用于包装的薄膜通常具有10-60μm厚。密封层的厚度通常是0.2-50μm。在薄膜或密封层的内表面和外表面上可以具有密封层,或者密封层可以仅仅存在于内表面或外表面上。
[0328] 添加剂例如粘连剂、抗粘连剂、抗氧化剂、颜料、填料、加工助剂、UV稳定剂、中和剂、润滑剂、表面活性剂和/或成核剂也可以存在于薄膜中的一层或多层中。优选的添加剂包括二氧化硅,二氧化钛,聚二甲基硅氧烷,滑石,染料,蜡,硬脂酸钙,炭黑,低分子量树脂和玻璃珠。
[0329] 在另一个实施方案中,一个或多个层可以用电晕处理、电子束辐射、γ射线辐射或微波辐射来改性。在一个优选的实施方案中,表层的一个或两个用电晕处理来改性。
[0330] 本文所述的薄膜还可以包括基于聚合物和树脂重量的5-60wt%的烃树脂。所述树脂可以与密封层的聚合物结合,或者可以与芯层中的聚合物结合。所述树脂优选具有大于100℃,甚至更优选130-180℃的软化点。优选的烃树脂包括上述那些。含有烃树脂的薄膜可以在单轴或双轴方向上以相同或不同程度取向。
[0331] 上述的薄膜可以用作弹性薄膜和/或粘着薄膜。弹性薄膜/粘着薄膜用于各种集束、包装和托盘操作中。
[0332] 模制品
[0333] 上述组合物还可以用于通过任何模塑方法制备本发明的模制品,这些方法包括但不限于注塑、气助注塑、挤坯吹塑、注坯吹塑、注坯拉伸吹塑、压塑、滚塑、发泡成型、热成型、片材挤出和型材挤出。这些模塑方法对于本领域的普通技术人员来说是公知的。
[0334] 本文所述的组合物可通过本领域已知的任何适当方式成型为合乎需要的终用途制品。热成型、真空成型、吹塑、滚塑、搪塑、压铸、湿铺料或触压成型、铸塑、冷成型对模成型、注塑、喷雾技术、型材共挤出或它们的组合是常用的方法。
[0335] 热成型是将至少一种柔韧的塑料片材成型为所需形状的方法。这里描述了热成型程序的一个实施方案,然而这不应认为是限制本发明组合物所能使用的热成型方法。首先,将本发明组合物的挤出薄膜(和任何其它层或材料)置于穿梭架上,以在加热过程中支撑它。将该穿梭架转位到烘箱内,该烘箱将薄膜在成型之前预热。一旦薄膜被加热,就将该穿梭架重新转回到成型模具中。然后通过抽真空将该薄膜吸引到成型模具上,以使其处于适当位置并关闭成型模具。该成型模具可以是“阳模”或“阴模”类模具。使模具保持关闭,以冷却薄膜,然后打开该模具。然后从模具中取出成型的层压件。
[0336] 一旦片材达到热成型温度,通常140-185℃或更高时,通过真空、正气压、模塞助压真空成型或它们的组合和变型来完成热成型。使用预拉伸膜泡步骤(尤其对于大型部件),以改进材料分布。在一个实施方案中,绞接架将加热的层压件向成型阳模提升,通过从成型阳模中的孔口施加真空来助推。一旦该层压件在成型阳模内牢固地成型,然后冷却该热成型的层压件(通常用鼓风机)。模塞助压成型通常用于小的深拉部件。模塞材料、设计和用时对于该工艺的优化可能是关键的。由绝缘泡沫制备的模塞避免了塑料的过早骤冷。模塞形状通常类似于模腔,但更小并没有部件细节。圆的模塞底部通常促进了平均材料分布和均匀的侧壁厚度。对于半结晶聚合物例如聚丙烯,快的模塞速度通常在部件中提供了最佳的材料分布。
[0337] 然后在模具内冷却成型的层压件。保持30-65℃的模具温度的足够冷却是合乎需要的。在一个实施方案中,在顶出之前,部件温度低于90-100℃。为了获得良好的热成型行为,最低熔体流动速率的聚合物是合乎需要的。然后从该成型的层压件上修剪掉过量的层压材料。
[0338] 吹塑是另一种适合的成型方式,它包括注坯吹塑,多层吹塑,挤坯吹塑和拉坯吹塑,并且尤其适合于基本上封闭或中空的物品,例如气罐和其它流体容器。吹塑例如在 CONCISE ENCYCLOPEDIA OF POLYMERSCIENCE AND ENGINEERING 90-92(Jacqueline I.Kroschwitz编辑,John Wiley & Sons 1990)中更详细地进行了描述。
[0339] 在成形和成型方法的又一个实施方案中,可以使用型材共挤出。型材共挤工艺参数如以上对于吹塑方法所述,只是模头温度(双区顶部和底部)是150-235℃,供料头为90-250℃,而水冷罐温度为10-40℃。
[0340] 注塑方法的一个实施方案如下所述。将成型的层压件放入到注塑模具内。关闭模具并将基材注入到模具内。该基材在一个实施方案中具有200-300℃或215-250℃的熔融温度,并且以2-10秒的注射速度注入到模具内。在注射后,将所述材料在预定时间和压力下保压或保持,以使该部件具有适当的尺寸和美观性。典型时间是5-25秒,压力是1,380kPa-10,400kPa。将模具在10-70℃下冷却,以冷却该基材。所述温度将取决于所需的光泽和外观。取决于部件的厚度,典型的冷却时间为10-30秒。最后,打开模具,顶出成型的复合制品。
[0341] 同样,模制品可以通过将熔融聚合物注射到模具内来制备,该模具将熔融聚合物成型和固化为所需几何形状和厚度的模制品。片材可以通过由模头将基本上平整的型材挤出到骤冷辊上,或者可供选择地通过压延来制备。片材一般被认为具有10-100密尔(254-2540μm)的厚度,但是片材可以比这厚很多。可以通过型材挤出获得用于医疗、饮用水、土地排水应用等的软管或管道。型材挤出方法包括通过模头挤出熔融聚合物。然后用冷却水或冷却空气将该挤出的软管或管道固化为连续的挤出制品。软管的外径通常为0.31-2.54cm,壁厚为254μm到0.5cm。管道的外径通常为2.54-254cm,壁厚为0.5-15cm。
由本发明的一个变型的实施方案的产物制备的片材可以用来形成容器。这种容器可以通过热成型、固相压力成型、冲压和其它成型技术来形成。还可以将片材成型,用于覆盖地面或墙壁或其它表面。
[0342] 在热成型方法的一个实施方案中,烘箱温度是160-195℃,在烘箱中的时间为10-20秒,模头温度(通常阳模)为10-71℃。冷却(室温)成型的层压件的最终厚度在一个实施方案中为10-6000μm,在另一个实施方案中为200-6000μm,在又一个实施方案中为250-3000μm,在还一个实施方案中为500-1550μm,合乎需要的范围是任何厚度上限与任何厚度下限的任意组合。
[0343] 在注塑方法的一个实施方案中,其中基材被注塑到包括成型的层压件的模具内,基材的熔融温度在一个实施方案中是230-255℃,在另一个实施方案中是235-250℃,填充时间在一个实施方案中为2-10秒,在另一个实施方案中为2-8秒,模具温度在一个实施方案中为25-65℃,在另一个实施方案中为27-60℃。在一个理想的实施方案中,基材处于热到足以熔融任何粘结层材料或背衬层的温度下,以达到层间粘结。
[0344] 在本发明的又一个实施方案中,本发明的组合物可以使用吹塑操作固定于基材上。吹塑尤其可用于制备密封制品例如燃料罐和其它流体容器,运动场设备,室外家具和小的封闭结构的这类应用。在该方法的一个实施方案中,本发明的组合物通过多层模头挤出,随后将未冷却的层压件放入到模具的型坯内。然后关闭具有阳型或阴型内部的模具,将空气吹入到模具内,形成部件。
[0345] 本领域的那些技术人员理解,取决于所需的结果,以上列举的步骤可以改变。例如,本发明组合物的挤出片材可以直接热成型或吹塑而不用冷却,因此省去了冷却步骤。其它参数也可以改变,以便获得具有所需特征的最终复合制品。
[0346] 非织造织物和纤维
[0347] 上述组合物还可以通过任何非织造织物和纤维制造方法用于制备非织造织物和纤维,这些方法包括但不限于熔喷、纺粘、薄膜开孔(aperturing),和短纤维梳理。还可以使用连续长丝方法。优选使用纺粘方法。纺粘方法在本领域中是为人熟知的。它通常包括通过喷丝头挤出纤维。这些纤维然后使用高速空气拉伸,再铺设在连续带上。然后通常使用轧光辊来加热该纤维网并使纤维彼此粘结,但可以使用其它技术,例如声波粘结和粘合剂粘结。
[0348] 纤维制备
[0349] 从本文描述的聚烯烃/NFP共混物形成织造和非织造制品通常需要挤出制造纤维接着编织或粘结。挤出过程通常伴有纤维的机械或空气动力拉伸。在挤出过程中以及在非织造制品的制造过程中基本上所有纤维都是取向的。
[0350] a.常规细旦尼尔PP纤维
[0351] 三个以上常规的PP纤维操作(连续长丝、膨化连续长丝和短纤维)可用作制备本发明共混物的纤维的手段。通常,通过模头(喷丝头)中直径为0.3mm-0.8mm(10-30密耳)的孔挤出熔融共混物。聚合物共混物的低的熔体粘度是优选的并且通常通过采用高熔体温度(230℃-280℃)和高熔体流动速率(15g/10min-40g/10min)实现。较大挤出机通常装备有歧管将高输出量的熔融共混物分配到具有8-20个纺丝头的管组中。每个纺丝头通常装备有单独的齿轮泵以调节穿过该纺丝头的输出量;由“多孔板”支撑的过滤组合件;和在该纺丝头内的喷丝板。喷丝板中孔的数量决定纱中长丝的数量并且随不同的纱线结构而显著地变化,但是通常为50-250个。那些孔通常集合成圆形、环形或矩形图案以有助于骤冷空气流的良好分布。
[0352] b.连续长丝
[0353] 连续长丝纱通常为40旦尼尔-2,000旦尼尔(旦尼尔=克数/9000yd)。长丝通常为1-20dpf,而是可以更大。纺丝速度通常为800m/min-5000m/min(2500ft/min-5000ft/min)。以3∶1或更高的拉伸比(一或二阶段拉伸)将长丝拉伸并卷绕到包装上。二阶段拉伸允许达到更高的拉伸比。卷绕速度是2,000m/min-3,500m/min(6,600ft/min-11,500ft/min)。超过900m/min(3000ft/min)的纺丝速度需要NMWD以达到最佳的可纺性,得到更细的长丝。
[0354] c.膨化连续长丝
[0355] 膨化连续长丝制造工艺分成两种基本类型,一步法和两步法。例如,在较旧的两步法中,在小于1,000m/min(3,300ft/min),通常750m/min下将未拉伸纱纺丝,并置于包装上。将该纱拉伸(通常按二个阶段)并在称作卷曲变形机的机器上“膨化”。卷绕和拉伸速度被膨松或卷曲设备限制到2,500m/min(8,200ft/min)或更小。通常如果在两步CF法中发生二次结晶,则人们通常迅速地使用拉伸卷曲。目前最常用的方法是一步纺丝/拉伸/卷曲(SDT)法。这一方法提供比两步法更好的经济性、效率和质量。它与一步CF法相似,不同之处在于膨松设备是在线的。膨松或卷曲会改变纱线外观,分离开长丝并增加足够平缓的弯曲和褶皱以使纱线看起来更丰满(更膨松)。
[0356] d.短纤维
[0357] 存在两种基本的短纤维制造工艺:传统纺丝和紧凑纺丝。传统的方法包括两个步骤:1)生产、涂覆整饰剂并且卷绕,接着2)拉伸、二次整饰剂涂覆、卷曲和切成短纤维。长丝可以例如从1.5dpf到>70dpf,这取决于应用。短纤维长度可以短至7mm或长达
200mm(0.25-8英寸)以适合于应用。对于许多应用,纤维是卷曲的。卷曲是通过采用一对轧辊丝束超喂到蒸汽加热的填塞箱来完成的。超喂使丝束在填塞箱中褶皱,形成长丝中的弯曲或卷曲。这些弯曲通过注入填塞箱的蒸汽进行热定形。
[0358] e.熔喷纤维
[0359] 熔喷纤维可以制造非常细的长丝并且制备具有优异均匀性的非常轻质的织物。结果通常是具有优异“阻隔”性能的软质织物。在熔喷方法中,熔融聚合物从挤出机移动到特殊的熔喷模头。随着熔融长丝离开模头,它们接触到高温、高速空气(称作加工空气或初级空气)。该空气迅速地拉伸并与骤冷空气结合使长丝固化。整个成纤过程通常在7mm(0.25英寸)的模头内进行。织物如下形成:从喷丝头将长丝直接地喷吹到通常
200mm-400mm(8-15英寸)的成形网上。
[0360] 可用于本发明的熔喷微纤维可以如Van A.Wente,“SuperfineThermoplastic Fibers,”Industrial Engineering Chemistry,第48卷,第1342-1346页中和Van A.Wente等人于1954年5月25日公开的ReportNo.4364 of the Naval Research Laboratories,标题为“Manufacture ofSuper Fine Organic Fibers”中所述那样制备。在一些优选的实施方案中,将微纤维用于过滤器。此类熔喷微纤维通常具有约3-30微米,优选约7-15微米的有效纤维直径,根据Davies,C.N.,“The Separation ofAirborne Dust and Particles” Institution of MechanicalEngineers,London,Proceedings 1B,1952中给出的方法计算。
[0361] f.纺粘纤维
[0362] 纤维形成还可以如下实现:通过从具有数千个孔的大型喷丝头挤出熔融聚合物或用数组较小喷丝头(含有少至40个孔)挤出熔融聚合物。在离开喷丝头之后,通过横吹空气骤冷系统使熔融纤维骤冷,然后从喷丝头拉出并通过高压空气拉细(拉伸)。存在两种空气拉细方法,两者都使用文丘里效应。第一种使用吸气器槽缝(槽缝拉伸)将长丝拉伸,该槽缝横跨机器的宽度。第二种方法穿过喷嘴或吸枪将长丝拉伸。在丝网(“金属丝”)或多孔成形带上收集这样形成的长丝以形成织物。然后让该织物穿过压缩辊,然后在加热的轧光辊之间穿过,在那里,一根辊上的提升平台在覆盖其面积的20%到40%的各点处粘结该织物。
[0363] 退火
[0364] 在附加的实施方案中,含本发明共混物的纤维的机械性能可以通过将由本发明共混物制成的纤维或非织造材料退火来改进。退火通常与机械取向相结合,但是退火是优选的。退火部分地使受拉纤维中内应力减轻并且使纤维中共混物的弹性回复性能恢复。退火已经表明引起晶体结构的内部组织中的显著变化以及无定形和半结晶相的相对有序化。退火通常产生改进的弹性。优选在比室温大至少40 ,优选至少20 的温度下(但是稍小于共混物的晶体熔点)将纤维或织物退火。共混物的热退火如下进行:将聚合物共混物或由此类共混物制成的制品在室温到最高160℃或更优选到最高130℃之间维持5分钟到小于7天的时间。典型的退火时间是50℃下3天或100℃下5分钟。虽然在没有机械取向的情况下进行退火,但是机械取向可以是对(经过挤出操作的)纤维进行的退火过程的一部分。机械取向可以通过暂时性地将纤维强制拉伸一个短时期然后允许它在没有拉伸力的情况下松弛来进行。通过将取向的纤维或所制备的制品在100%-700%的伸长下维持0.1秒-24小时来处理该纤维。典型的取向是在室温下伸长200%保持片刻时间。
[0365] 为了取向,让在升高的温度下(但是小于聚合物的晶体熔点)的纤维从纤维的喂料辊通过在不同表面速度驱动下的两个辊子并最终到卷取辊。最靠近卷取辊的驱动辊比最靠近喂料辊的驱动辊驱动得更快,以致该纤维在该驱动辊之间被拉伸。该组件可以包括在第二辊和卷取辊中间的辊子以冷却该纤维。可以在相同的圆周速度下驱动第二辊和卷取辊以维持该纤维处于伸张状态。如果不使用补充冷却,则该纤维将在该卷取辊上冷却到环境温度
[0366] 对于与纤维和非织造织物制备有关的更多信息,请参见Polypropylene Handbook,E.P.Moore,Jr.等人,Hanser/GardnerPublications,Inc.New York,1996,第314-322页,该文献在此引入作为参考资料。
[0367] 非织造纤维网
[0368] 在一个优选的实施方案中,由本发明的聚烯烃/NFP共混物制备非织造纤维纤维网。用于此种纤维网的纤维通常并优选具有约0.5-约10(约0.06-约11特)的旦尼尔,但是更高旦尼尔的纤维也可以使用。具有约0.5-3(0.06-约3.33特)旦尼尔的纤维是尤其优选的。(“旦尼尔”是指9000米纤维的克重量,而“特”是指每千米纤维的克重量。)具有约0.5-约10cm的长度的纤维原料优选用作起始材料,尤其是约3-约8cm的纤维长度。纤维的非织造纤维网可以使用非织造文献中详细记载的方法制备(例如参见Turbak,A.“Nonwovens:An AdvancedTutorial”,Tappi Press,Atlanta,Ga.,(1989)。未涂覆的(即,在涂覆任何粘结剂之前)纤维网应该具有约10-100密耳(0.254-2.54mm),优选30-70密耳(0.762-1.778mm),更优选40-60密耳(1.02-1.524mm)的厚度。这些优选的厚度可以通过梳理/交叉铺网操作或经由纤维缠结(例如,水力缠结、针刺等)达到。未涂覆纤维网2 2
的基重优选为约20g/m 至约250g/m。在一些实施方案中,人们可以通过缠结(如通过针刺粘合、水力缠结等)非织造纤维网,或轧光未涂覆和/或涂覆的和固化的非织造纤维网改进本发明制品的拉伸和撕裂强度,以及减少该制品表面上的绒。如果纤维是水不溶性的,则可以使用水力缠结。在纤维熔点以下约5-约40℃的温度下轧光非织造纤维网可以降低棉绒附着于最终制品表面的可能性和提供光滑表面。可以同时采用轧光,或在后续步骤中将纹理图案压印到非织造纤维网上。
[0369] 除了本发明的聚烯烃和NFP之外,将着色剂(尤其是颜料)、软化剂(如醚和醇)、香料、填料(例如硅石、氧化铝和二氧化钛颗粒)和杀菌剂(例如碘、季铵盐等)添加到共混物中也可能是合乎需要的。
[0370] 同样地,可以用其它材料如粘结剂、粘合剂、反射剂(reflectant)等涂覆非织造纤维网和纤维。非织造纤维网或纤维的涂覆可以通过本领域中已知的方法进行,包括辊涂、喷涂浸涂、凹版涂覆或转移涂覆。按总擦拭制品的百分率计,涂层重量可以为约1%-约95%,优选约10%-约60%,更优选20-40%。
[0371] 短纤维也可以存在于非织造纤维网中。短纤维的存在通常提供比仅熔喷的微纤维的纤维网更蓬松、更低密度的纤维网。优选地,存在不多于约90wt%的短纤维,更优选不多于约70wt%。含短纤维的此类纤维网在美国专利号4,118,531(Hauser)中进行了公开,该文献在此引入作为参考。
[0372] 吸附性颗粒材料如活性炭或氧化铝也可以包括在纤维网中。此类颗粒可以按纤维网内容物的至多约80体积%的量存在。此类颗粒加载的纤维网例如在美国专利号3,971,373(Braun)、美国专利号4,100,324(Anderson)和美国专利号4,429,001(Kolpin等人)中进行了描述,这些文献在此引入作为参考。
[0373] 使用本发明的共混物制备的纤维和非织造纤维网可以形成:织物、服装、衣服、医用服装、外科长袍、手术单、尿布,训练裤、卫生巾、内裤衬垫、失禁服、床垫、袋子、包装材料、包装、泳衣、体液防渗背衬板、体液防渗层、体液渗透层、体液渗透覆盖物、吸附剂、薄纱织品、非织造复合材料、衬垫、布衬、擦洗垫、面具、呼吸器、空气过滤器、真空袋、油和化学溢出物吸附剂、隔热物、急救服装、医用包裹、纤维填塞物、外衣、床被子填充料、家具衬垫、过滤介质、擦洗垫、擦拭材料、针织品、汽车座套、装潢家具、地毯、地毯背衬、过滤介质、一次性擦拭品、尿布覆盖物、庭园织物、地质处理用膜、土工布、麻布袋、家用包裹、隔汽层、透气衣服、信封、防盗织物(tamperevident fabrics)、保护性包装和垫子。
[0374] 使用本发明的共混物制备的纤维可以形成:纱线、纺织物、非织造织物、吊钩和线圈固件、织物、服装、衣服、医用服装、外科长袍、手术单、尿布,训练裤、卫生巾、内裤衬垫、失禁服、床垫、袋子、包装材料、包装、泳衣、体液防渗背衬板、体液防渗层、体液渗透层、体液渗透覆盖物、吸附剂、薄纱织品、非织造复合材料、衬垫、布衬、擦洗垫、面具、呼吸器、空气过滤器、真空袋、油和化学溢出物吸附剂、隔热物、急救服装、医用包裹、纤维填塞物、外衣、床被子填充料、家具衬垫、过滤介质、擦洗垫、擦拭材料、针织品、汽车座套、装潢家具、地毯、地毯背衬、过滤介质、一次性擦拭品、尿布覆盖物、庭园织物、地质处理用膜、土工布、麻布袋、家用包裹、隔汽层、透气衣服、信封、防盗织物、保护性包装和垫子。
[0375] 试验方法
[0376] 流体性能
[0377] 通过ASTM D97测量倾点。通过ASTM D445测量运动粘度(KV)。通过ASTM D2270测定粘度指数(VI)。通过ASTM D1209测定色度(APHA尺度)。通过ASTM D4052测定比重。通过ASTM D92测定闪点。
[0378] 根据ASTM D2007测定饱和物含量(wt%)。根据ASTM D2622测定硫含量(wt%)。通过液态质子NMR光谱测定包含在烯键(即,烯属碳)中的碳的百分率。将约50mg流体溶于1g氘化氯仿中,所述氘化氯仿用作NMR锁定溶剂。质子的弛豫时间约为数秒,这允许
6-10秒的再循环延迟。使用一小时的采集时间在30℃下获得谱线,但是温度和采集时间的增加可能产生信噪比的边缘改进。通过取得烯属碳与总碳数(烯属+脂族)的比率测定烯属碳的分数。它们又可以在每种碳类型的质子峰裂数(proton multiplicity)的校正之后由质子积分测定。将烯烃分成四种结构:乙烯基、1,2-二取代的、三取代的和乙烯叉基(1,
1-二取代的),它们分别具有三个、两个、一个和两个质子。将这些结构的近似化学位移范围(谱带)以及对每种烯烃类型的区域有贡献的质子数目列于下表中。
[0379]
[0380] 每种谱带的真实化学位移可能与以上列举的那些稍有不同;合适的积分限制可以由本领域技术人员根据谱线的目测检查看出。每种烯烃类型的浓度可以通过相关区域的积分除以贡献烯烃的质子峰裂数而制定。如下将总的三取代的+乙烯基区域相对于乙烯基含量进行校正:扣除两次在5.9-5.65ppm范围内的积分并将余数赋予三取代的烯烃。脂族积分(从约3ppm至0.5ppm)假定完全地由CH2基团产生,因为大部分脂族碳在CH2基团中并且通过CH基团(平均)中的脂族碳平衡CH3基团中的每个脂族碳。脂族积分除以2得到脂族碳的数目。烯烃基团浓度的之和乘以100除以脂族和烯属碳之和得到烯烃浓度(以每100个碳的烯键数目表示)。然后将该值乘以2得到每100个碳的烯属碳数目,或包含在烯键中的碳的百分率。
[0381] 通过气相色谱法(GC,如下所述)测定数均分子量(Mn),除了在100℃下运动粘度大于10cSt的情况之外,在这种情况下,通过凝胶渗透色谱法(GPC,如下所述)测定。
[0382] 气相色谱法(GC)的原理在“Modern Practice of GasChromatography”,R.L.Grob和E.F.Barry,Wiley-Interscience,第3版(1995年7月)中进行了描述。对于本发明的烃改性剂,色谱停留时间和分子量的相关性通过使用非极性毛细管GC柱和线性烃标准样品来获得。以约1体积%的浓度将样品溶于戊烷中以制备样品溶液。将至少5种线性烃标准样品(化学式CnHn+2,分子量=14×n+2g/mol)溶于戊烷(各自以2mg/mL的浓度)以制备标准样品溶液。标准样品的选择通过样品的分子量如下决定:至少一种标准样品必须在样品之前洗脱并且至少一种标准样品必须在样品之后洗脱,然而其它的标准样品在这两个界限之间。气相色谱仪安装有火焰离子化探测器和0.52mm×16m熔融硅石毛细管柱,该毛细管柱涂有0.1mm“G2”固定相(二甲基聚硅氧烷胶)。运载气体是以约10mL/min的流量流动的氦气。最初,将该柱维持在35℃的温度下,然后在注入之后立即将温度以5℃/min的速度增加到50℃的温度,然后以12℃/min的速度增加到170℃,然后以10℃/min的速度从170℃增加到310℃,并在310℃下维持18分钟。将注射口温度维持在约35℃,并且维持该探测器温度在约320℃下。将约2μL标准样品溶液注入到色谱仪中,并且记录色谱(随洗脱时间变化的相对重量分数);对于每个样品溶液重复这一过程。使用对于标准样品的峰值洗脱时间产生分子量对洗脱时间的校准曲线。然后将这一校准曲线应用于样品色谱以测定分子量分布;Mn是由这一分布计算的数均分子量。
[0383] 凝 胶 渗 透 色 谱 法 (GPC) 的 原 理 在“Modern Size Exclusion LiquidChromatographs”,W.W.Yan,J.J.Kirkland和D.D.Bly,J.Wiley & Sons(1979)中进行了描述。本发明的烃改性剂的具体规程遵循ASTMD3593。Mn是使用聚苯乙烯标准样品通过应用所制定的校准曲线(分子量对洗脱时间)计算的数均分子量。流动相是甲苯;对柱设置进行选择以在样品的整个有价值的洗脱范围内产生线性校准曲线;并将GPC仪器的温度维持在35℃下。
[0384] 熔体流动速率
[0385] 除非另作说明,根据ASTM D 1238在230℃下在2.16kg的载荷下测量熔体流动速率(MFR)。MFR的单位是“g/10min”或等效的“dg/min”。
[0386] 密度
[0387] 通过密度梯度柱如ASTM D1505所述对压塑试样测量密度,该压塑试样已经被缓慢地冷却到室温(即,在10分钟或更长的时间内)并使其熟化足够的时间以致密度在3 3
+/-0.001g/cm 内恒定。密度的单位是g/cm。
[0388] 机械性能
[0389] 根据ASTM D2240测定肖氏硬度,包括肖氏A和肖氏D硬度。
[0390] 室温下的拉伸性能(23±2℃)根据ASTM D638测定,包括拉伸强度,10、50、100和300%模量和断裂能。注塑或压塑拉伸试条是ASTM D638I型或IV型几何形状,在2英寸/分钟的速度下测试。
[0391] 室温下的挠曲性能(包括1%正割模量)根据ASTM D790A采用2英寸支撑间距测定。
[0392] 缺口佐德冲击强度根据由ASTM D256修改的ExxonMobil方法在-18或-40℃下测定。使用TMI艾佐德冲击试验机。通过将压塑的试条切割成两半或从注塑ASTM D638 I型拉伸试条中切割出中间部分来制备试样。
[0393] 维卡软化温度根据ASTM D648在200克载荷下测定。
[0394] 对伸长至100%或200%伸长率然后使其松弛的样品测定包括50%应变下的载荷损失和永久变形的弹性。将对应于无载荷变化(或名义上零载荷)的十字头之间的距离视为长度L2。夹具之间的原始距离是变形区的原始长度(L1)。通过以下公式获得拉伸形变:
[0395] 拉伸形变=100×(L2-L1)/L1。
[0396] 载荷损失定义为在加载和卸载循环的50%应变处应力的百分率降低。
[0397] 色度
[0398] 采 用 Hunter Color Quest XE 色 度 计 CQX 2391(HunterAssociatesLaboratories,Inc.)对压塑圆盘测量色度。该试验按照由仪器制造商开发的规程,参考ASTM E1164来进行。测量使用D/65发光体(光源),10°观察器和处于封闭位置的端口来进行。具有可比的相对结果的其它色标和测量仪器可以取代这种类型的色度计。
关于这里使用的Hunter“B”标度,0.0被认为是纯白色。负值表示较蓝的颜色;正值表示较黄的颜色。与纯白色的偏离随Hunter“B”标度的绝对值而增加。一般,白色聚合物比黄色聚合物更理想。
[0399] 排放测试
[0400] 流体在树脂中的持久性采用TGA保留试验来评价。采用Perkin-Elmer TGA 7来测量样品在氮气氛围中的失重。通过压塑制备厚度10密尔和重量5毫克的试样,然后放入样品持器内(其位于测试腔室内,在测试的整个过程中用氮气吹扫)。然后以200℃/min将测试腔室内的温度从室温陡升到200℃,然后在200℃下保持120分钟。记录随时间的重量改变。通过TGA保留率%=(总重量%损失)/(流体的初始重量分数)来测定120分钟后在树脂中保留的流体的百分率。
[0401] 动态力学热分析
[0402] DMTA(动态力学热分析)研究在熔融之前在包括粘弹区的温度范围内固态样品随温度的小应变力学响应(松弛行为)。输出是储能模量(E′)和损耗模量(E″)。储能模量量度弹性响应或材料储存能量的能力,而损耗模量量度粘性响应或材料耗散能量的能力。E″/E′(=tan[δ])的比率提供了材料的阻尼能力的衡量标准。能量耗散机理(即松弛模式)显示为tan[δ]中的峰,并且与作为温度的函数的E′的降低有关。与E′的报道值有关的误差预计约为±10%,这归因于压塑方法引入的差异度。
[0403] 使用DMTA测量聚合物组合物的玻璃化转变温度(Tg),这根据损耗正切最大值的位置来测定。使用的仪器是在拉伸模式下(0.1%应变,1Hz频率和2℃/min加热速率)的Rheometrics Solid Analyzer RSA II。该样品在加载之后具有约23mm×6.42mm×0.7mm的尺寸。在模塑之后,在环境条件下调理该样品两个星期,然后进行DMTA试验。
[0404] 熔体流变性
[0405] 通过配备有25mm直径平行板的ARES分析器(1998)测量在190℃下的动态熔体粘度。在约176℃下模塑厚度为约2mm的样品总共17分钟的时间(在25吨下,5分钟加热和12分钟冷却)。大多数试验使用具有10%初始应变的自应变特征。频率为0.01-100rad/s。
[0406] 使 用 Cross model( 例 如 参 见,C.W.Macosco,RHEOLOGY:PRINCIPLES,*MEASUREMENTS,AND APPLICATIONS,Wiley-VCH,1994)拟合动态剪切粘度(η)对频率(ω)的曲线:
[0407]
[0408] 这一模型中的三个参数是:η0,零剪切粘度;λ,平均松弛时间;n。幂定律指数。零剪切粘度是在低频率下流动曲线的牛顿区中平稳状态下的值,其中动态粘度与频率无关。平均松弛时间对应于剪切变稀开始时频率的倒数。幂定律指数描述剪切变稀的程度,因为在高频下流动曲线的斜率的量度接近log(η*)-log(ω)曲线上的1-n。对于牛顿流体,n=1并且动态粘度与频率无关。对于在此有价值的聚合物,n<1,以致增强的剪切变稀行为由n的降低(1-n的增加)指示。
[0409] 差示扫描量热法
[0410] 使用差示扫描量热法(DCS)测定结晶温度(Tc)和熔融温度(Tm)。使用TA仪器MDSC 2920或Perkin Elmer进行这一分析。通常,将6-10mg模塑聚合物或增塑聚合物封入铝盘中并在室温下装入仪器。通过以10℃/min的加热速率将样品加热到其熔化温度之上至少30℃而获得熔融数据(第一次加热)。这提供与在模塑条件下熔融行为有关的信息,这可受热历史以及任何模内取向或应力的影响。然后在这一温度下保持样品10分钟以破坏其热历史。通过在10℃/min的冷却速率下将样品从熔融冷却到低于结晶温度至少50℃而获得结晶数据。然后在25℃下保持样品10分钟,最后在10℃/min下加热以获得附加的熔融数据(第二次加热)。这提供了在控制热历史后并且不具有潜在模内取向和应力效应的熔融行为的信息。分析转变开始时和峰温度的吸热熔融转变(第一次和第二次加热)和放热结晶转变。除非另有规定,在表中报道的熔融温度是来自第二次加热的峰熔融温度。对于显示了多个峰的聚合物,报道较高的熔融峰温度。
[0411] 将(基线校正的)热解曲线下的面积用来测定熔化热(Hf),它然后可用来计算结晶度。使用189J/g的值作为100%的结晶聚丙烯的平衡熔化热,使用公式[%结晶度=曲线下面积(J/g)/189(J/g)]×100来计算百分率结晶度。
[0412] 尺寸排阻色谱法
[0413] 分子量分布使用尺寸排阻色谱法(SEC)来表征。分子量(重均分子量Mw和数均分子量Mn)使用高温尺寸排阻色谱仪(得自WatersCorporation或Polymer Laboratories)来测定,该色谱仪安装了差示折射指数检测器(DRI)、在线光散射检测器和粘度计。以下没有说明的实验细节(包括怎样校准检测器)在T.Sun,P.Brant,R.R.Chance和W.W.Graessley,Macromolecules,第34卷,第19期,6812-6820(2001)中有述。
[0414] 使用三根Polymer Laboratories PLgel 10mm Mixed-B柱。标称流量是0.5cm3/min,而标称注射体积是300μL。各输送管线、柱和差示折射计(DRI检测器)被装在保持于135℃的烘箱内。
[0415] 用于SEC实验的溶剂通过将6g的丁基化羟基甲苯作为抗氧化剂溶解于4L的Aldrich试剂级1,2,4-三氯苯(TCB)中来制备。该TCB混合物然后用0.7μm玻璃预滤器过滤,随后用0.1μm特氟隆过滤器过滤。然后将TCB在进入SEC之前用在线脱气器脱气。
[0416] 聚合物溶液通过将干燥聚合物投入到玻璃容器内,添加所需量的TCB,然后在连续搅拌下将该混合物在160℃下加热约2小时来制备。所有量按重量测定。用于表示聚合物浓度的TCB密度(质量/单位体积)在室温下是1.463g/ml,在135℃下是1.324g/ml。注射浓度是1.0-2.0mg/ml,其中下限浓度用于较高分子量样品。
[0417] 在测试各样品之前,吹扫DRI检测器和注射器。然后将装置中的流量增加到0.5ml/min,并且在注入第一样品之前让DRI稳定8-9小时。LS激光器在测试样品之前打开
1-1.5小时。
[0418] 在色谱仪的每一位置处的浓度c使用以下方程式由即基线减去的DRI信号IDRI来计算:
[0419] c=KDRIIDRI/(dn/dc)
[0420] 其中KDRI是通过校准DRI确定的常数,以及(dn/dc)与以下对于LS分析所述的相3
同。在SEC方法的该说明中的参数单位应使得浓度以g/cm 表示,分子量以g/mol表示,和特性粘度以dL/g表示。
[0421] 所使用的光散射检测器是Wyatt Technology High Temperaturemini-DAWN。在色谱仪的各个位置处的聚合物分子量M通过使用静态光散射的Zimm模型分析LS输出来测定(M.B.Huglin,LIGHT SCATTERINGFROM POLYMER SOLUTIONS,Academic Press,1971)[0422]
[0423] 其中ΔR(θ)是测定的在散射θ下的超瑞利散射强度,c是由DRI分析测定的聚合物浓度,A2是第二位力系数,P(θ)是(在以上参考文献中所述的)单分散无规卷曲的形态因子,以及Ko是系统的光学常数:
[0424]
[0425] 其中NA是阿伏伽德罗数值,以及(dn/dc)是系统的折射指数增量。在135℃和λ=690nm的情况下,TCB的折射指数n=1.500。另外,丙烯聚合物的A2=0.0006和(dn/dc)=0.104。
[0426] 使用Viscotek Corporation高温粘度计,其具有以带有两个压力传感器的惠斯通电桥构型配置的四根毛细管。一个传感器测量横跨检测器的总压降,位于桥两侧的另一个传感器用于测定压差。流经粘度计的溶液的比粘度ηs由它们的输出来计算。在色谱仪的各个位置处的特性粘度[η]由以下方程式计算:
[0427] ηs=c[η]+0.3(c[η])2
[0428] 其中c由DRI输出来测定。
[0429] 支化指数(g′)使用SEC-DRI-LS-VIS方法的输出如下所示进行计算。样品的平均特性粘度[η]avg通过下式计算:
[0430]
[0431] 其中总和是在积分界限之间的色谱层(slice)i上进行的。支化指数g′被定义为:
[0432]
[0433] 其中丙烯聚合物的k=0.0002288,α=0.705;以及丁烯聚合物的k=0.00018和α=0.7。Mv是基于由LS分析测定的分子量的粘均分子量。13
[0434] C-NMR光谱13
[0435] 聚合物微结构通过 C-NMR光谱法测定,包括全同立构和间同立构二单元组([m]和[r]),三单元组([mm]和[rr])和五单元组([mmmm]和[rrrr])的浓度。将样品溶解在d2-1,1,2,2-四氯乙烷中。使用75或100MHz的NMR光谱仪在125℃下记录光谱。聚合物共振峰定位在mmmm=21.8ppm。在聚合物用NMR的表征中涉及的计算按照F.A.Bovey在“Polymer Conformation and Configuration”(Academic Press,New York 1969)中的著13
作和J.Randall在“Polymer SequenceDetermination,C-NMR Method”(Academic Press,New York,1977)中的著作进行。长度为2的亚甲基序列的百分率((CH2)2%)如下计算:在
14-18ppm之间的甲基碳的积分(它们在浓度上等于长度为2的序列中的亚甲基数)除以在45-49ppm之间的长度为1的亚甲基序列的积分和在14-18ppm之间的甲基碳的积分的总和,再乘以100。这是在2或2以上的序列中含有的亚甲基的量的最小计算值,因为大于2的亚甲基序列已经被排除。以H.N.Cheng和J.A.Ewen,Makromol.Chem.1989,190,1931为基础来确定。
[0436] 测定共混物中NFP含量的方法
[0437] 使用下述NMR方法测定共混物中NFP含量(wt%)。这是溶液型方法,该方法包括构造测量参数随NFP浓度的校准曲线(或标定曲线组)。使用与所研究的共混物相同聚合物和NFP但是在已知的改性剂浓度下制备校准共混物。这组校准物必须具有至少五个,并且包括纯聚合物以及至少一种NFP浓度,该浓度大于对于所研究的共混物而言的最大值但是不大于50wt%的NFP。在与校准物相同的条件下分析所研究的共混物,通过应用模型来测定NFP含量。13
[0438] 测定共混物中NFP的量的方法是高温溶液相 C核磁共振(HTS-CNMR)。使用纯聚合物和纯NFP的基准谱线以及一组校准共混物(即,由纯聚合物和NFP在已知的NFP wt%下制备)的谱线来对组合物进行测定。分析该谱线以测定一组随改性剂含量的增加强度单调增加或降低的一个或多个判断共振或共振群。将相应的峰积分并计算它们随NFP含量(wt%)对总积分的比例贡献以产生一组标定曲线。使用这些标定曲线开发化学统计学模型以提供计算改性剂含量的方法。选择判断共振的数目以允许该模型来预计在校准范围内精度为1wt%或更高的NFP含量。对于化学统计学和如何开发化学统计学模型的概述,参见Richard Kramer的Chemometric Techniques for Quantitative Analysis(MarcelDekker,1998)。然后对未知浓度的共混物进行与对校准物使用的相同HTS-CNMR程序并根据该模型分析结果以测定NFP wt%。
[0439] 典型的HTS-CNMR程序如下。在1,1,2,2-四氯乙烷-d2中制备样品,其中添加乙酰丙酮合铬[Cr(acac)3]作为松弛剂以加速数据采集。原料溶剂中Cr(acac)3浓度约为15mg/ml。样品浓度为10-15wt%。在VarianUnityPlus 500上使用10mm宽带探针在120℃下累积15,000个瞬态的自由感应衰变。用90°碳激发脉冲和反相栅WALTZ-16质子脱偶合获得谱线。使用约1秒的采集时间和3.5秒的再循环延迟以允许定量积分。可以调节溶剂选择和样品浓度来适应不同的溶解度和使基于共混物特定组成的光谱干扰减小到最低。用于CNMR技术的概述,参见Carbon-13NMR Spectroscopy:High-Resolution Methods and Applications inOrganic Chemistry and Biochemistry,第三版,Eberhard Breitmaier和Wolfgang Voelter(VCH,1990)。
[0440] 实施例
[0441] 参考以下实施例和表格可以更好地理解本发明,但不意在对本发明进行限制。用于这些实施例的聚合物和NFP在表1和2中进行了描述。
[0442] 样品制备方法
[0443] 通过将所需的组合物共混,接着压塑或注塑制备样品。
[0444] 共混
[0445] 使用Brabender将本发明的组分共混。程序包括:在加热的C.W.Brabender Instruments Plasticorder中将聚合物粒料与增塑剂混合,以获得具有所需增塑剂浓度的3
均匀熔体。该Brabender安装了Prep-Mixer头(约200cm 体积)和辊式叶片。操作温度在聚合物的熔点之上,通常在180-200℃的范围内。聚合物首先在Brabender中在60RPM下熔融。然后,在混合的同时,缓慢添加增塑剂,以防止在熔融聚合物中汇集。然后在氮气吹扫下,将共混物在60RPM下混合5分钟。打开Brabender,从混合头和叶片中尽可能快地排出熔体,并使之固化。对于后来进行注塑的那些共混物,采用铡断机将由Brabender获得的物料碎片切割成更小的碎片,然后采用Wiley Mill研磨成甚至更小的碎片。
[0446] 压塑
[0447] 以下是典型压塑规程的说明。将所要模制的材料在350 (177℃)下在没有压缩载荷的情况下预热5分钟。然后施加25吨压缩载荷并保持6分钟,然后根据ASTM D4703-03在15℃/min下开始控制冷却。
[0448] 注塑
[0449] 按照ASTM D4101采用Nissei(20吨)注塑设备模制ASTM系列拉伸试条、挠曲试条和冲击圆盘,其中具有以下偏差:ASTM D638 IV型拉伸试条和ASTM D790挠曲试条采用40℃的模塑温度和30秒的注塑时间来模制。
[0450] 实施例1-16
[0451] 增塑丙烯塑性体1和2的压塑部件性能在表3、4和5中示出。
[0452] 实施例16-61
[0453] 由聚丙烯(HPP、mPP或ICP)、丙烯塑性体和增塑剂构成的组合物的压塑部件性能在表6、7、8、9和10中示出。
[0454] 三组分组合物在设计最终产品中带来较大的柔韧性。如表7-10所示,通过改变组合物,可以配制具有各种拉伸强度、刚性、上限工作温度和拉伸形变值同时维持相同硬度的共混物。可以选择性能的组合以达到特定的终端使用要求。
[0455] 实施例62-65
[0456] 表11给出用SpectraSyn 10增塑的从HPP为主的HPP/丙烯塑性体1共混物的注塑部件性能。提高增塑剂含量,增加该共混物的柔韧性和改进了该共混物的低温冲击。
[0457] 实施例66-68
[0458] 表12比较了具有60%的SpectraSyn 10、Sunpar 150和Sunpar 2280的丙烯塑性体1的性能。
[0459] 表1.实施例中使用的丙烯聚合物
[0460]
[0461] 表2.实施例中使用的NFP和它们的性能
[0462]
[0463] 表3.实施例1-8的压塑部件性能
[0464]
[0465] 表4.实施例9-13的压塑部件性能
[0466]
[0467] 表5.实施例14-16的压塑部件性能
[0468]
[0469] 表6.实施例17-21的压塑部件性能
[0470]
[0471] 表7.实施例22-31的压塑部件性能
[0472]
[0473] 表8.实施例32-41的压塑部件性能
[0474]
[0475] 表9.实施例42-51的压塑部件性能
[0476]
[0477] 表10.实施例52-61的压塑部件性能
[0478]
[0479] 表11.实施例62-65的注塑部件性能
[0480]
[0481] 表12.实施例66-68的压塑部件性能
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈