首页 / 专利库 / 制冷技术 / 制冷液 / 深冷剂 / 一种带有轻烃回收的天然气液化方法及其装置

一种带有轻回收的天然气液化方法及其装置

阅读:1036发布:2020-11-27

专利汇可以提供一种带有轻回收的天然气液化方法及其装置专利检索,专利查询,专利分析的服务。并且本 发明 涉及 天然气 分离回收轻 烃 技术,公开了一种带有轻烃回收的天然气 液化 方法及其装置,包括预冷、轻烃分离、天然气液化和轻烃回收等步骤,通过精馏分离方法将原料气中C2+分别提取分离成合格产品,并采用混合冷剂循环制冷工艺流程,能够在同一个装置里面实现天然气液化和轻烃回收。本发明针对天然气液化装置中湿气比例较大的气源,在液化得到LNG的同时回收C2+轻烃,这样不但可以调整LNG的 质量 ,减少LNG中残留的C3+组分在深冷段对设备安全运行的影响,而且还可以获得廉价、高纯度的化工原料。,下面是一种带有轻回收的天然气液化方法及其装置专利的具体信息内容。

1.一种带有轻回收的天然气液化方法,其特征在于:包括以下步骤:
A.预冷:
步骤一:净化后的天然气输入第一换热器(51)预冷至-60~-40℃,获得液态天然气Ⅰ与气态天然气Ⅰ的混合物Ⅰ;
B.轻烃分离:
步骤二:将步骤一获得的混合物Ⅰ通过第二分离器(54)进行分离,分离出的液态天然气Ⅰ进入第一精馏塔(57)参与精馏分离;分离出的气态天然气Ⅰ进入第二换热器(52)预冷至-100~-80℃,获得液态天然气Ⅱ与气态天然气Ⅱ的混合物Ⅱ;
步骤三:将步骤二获得的混合物Ⅱ输入第一精馏塔(57)参与精馏分离,从第一精馏塔+
(57)塔顶获得干气,从第一精馏塔(57)的第一塔底再沸器(60)得到C2 轻烃;
C.天然气液化:
步骤四:将步骤三获得的干气输入第二换热器(52)进行冷却液化后得到LNG;
D.轻烃回收:
+
步骤五:将步骤三获得的C2 轻烃输入第二精馏塔(58)参与精馏分离,从第二精馏塔+
(58)塔顶获得气态乙烷,从第二精馏塔(58)的第二塔底再沸器(61)得到C3 轻烃;
步骤六:将步骤五获得的气态乙烷输入第一换热器(51)进行冷却,冷却
至-95~-75℃,冷却后再送入第二精馏塔(58)的第一塔顶分离器(55),从第一塔顶分离器(55)获得液态乙烷。
2.根据权利要求1所述的一种带有轻烃回收的天然气液化方法,其特征在于:还包括E.深度分离提取:
+
步骤七:将步骤五获得的C3 轻烃输入第三精馏塔(59)进行精馏分离,并从第三精馏塔(59)顶部获得流股Ⅰ,从第三精馏塔(59)底部获得流股Ⅱ;
步骤八:将步骤七获得的流股Ⅰ先后经过第三精馏塔(59)的塔顶冷凝器(65)和第三精馏塔(59)的第二塔顶分离器(56),最后获得LPG,流股Ⅱ进入第三精馏塔(59)的第三塔+
底再沸器(62),并最终在第三塔底再沸器(62)底部得到C5 轻烃。
3.根据权利要求1或2所述的一种带有轻烃回收的天然气液化方法,其特征在于:在天然气液化和轻烃分离过程中所需的冷量均由混合冷剂制冷循环来提供。
4.根据权利要求3所述的一种带有轻烃回收的天然气液化方法,其特征在于:混合冷剂包括N2、CH4、C2H4、C3H8和i-C5H10或包括N2、CH4、C2H6、C3H8和i-C5H10。
5.根据权利要求4所述的一种带有轻烃回收的天然气液化方法,其特征在于:制冷循环包括以下步骤:
步骤一:将压为0.1~0.3MPa的混合冷剂输入冷剂压缩机(63)加压至3.0~
4.0MPa;
步骤二:将步骤一中获得的混合冷剂通过压缩机后冷却器(64)冷却后,再输入第一分离器(53)进行分离,分离出液态混合冷剂和气态混合冷剂;
步骤三:将步骤二分离出的液态混合冷剂输入第一换热器(51)预冷到-40~-60℃,再经控制a(71)节流降压降温后返回第一换热器(51)的反流通道,为第一换热器(51)提供冷量;气态混合冷剂通过第一换热器(51)进入第二换热器(52),在第二换热器(52)预冷到-160~-140℃,再经控制阀b(72)节流降压降温后先后返回第二换热器(52)的反流通道和第一换热器(51)的反流通道,并为第二换热器(52)、第一换热器(51)提供冷量;
步骤四:从第一换热器(51)的反流通道返回的混合冷剂其压力为0.1~0.3MPa,再返回至冷剂压缩机(63)入口进行循环反复,完成整个制冷循环。
6.根据权利要求5所述的一种带有轻烃回收的天然气液化方法,其特征在于:第一精馏塔(57)的操作压力为3.0~4.0MPa,其塔顶操作温度为-75~-95℃;第一精馏塔(57)的第一塔底再沸器(60)的操作温度为35~45℃,其所需的热量由混合冷剂提供。
7.根据权利要求5所述的一种带有轻烃回收的天然气液化方法,其特征在于:第二精馏塔(58)的操作压力为0.6~1.2MPa,其塔顶操作温度为-50~-30℃;第二精馏塔(58)的第二塔底再沸器(61)的操作温度为15~35℃,其所需的热量由循环提供。
8.根据权利要求5所述的一种带有轻烃回收的天然气液化方法,其特征在于:第三精馏塔(59)的操作压力为0.6~1.0MPa;第三精馏塔(59)的第三塔底再沸器(62)所需的热量由导热油蒸汽提供;第三精馏塔(59)的塔顶冷凝器(65)所需的冷量由循环水提供。
9.一种带有轻烃回收的天然气液化装置,其特征在于:包括第二分离器(54)、换热器和精馏塔,换热器包括第一换热器(51)和第二换热器(52),精馏塔包括带第一塔底再沸器(60)的第一精馏塔(57)以及带第二塔底再沸器(61)和第一塔顶分离器(55)的第二精馏塔(58),其中第二分离器(54)均与第一换热器(51)、第二换热器(52)和第一精馏塔(57)相连,第二换热器(52)均与第一换热器(51)和第一精馏塔(57)相连,第一精馏塔(57)与第二精馏塔(58)相连。
10.根据权利要求9所述的一种带有轻烃回收的天然气液化装置,其特征在于:还包括第一分离器(53),压缩机(63),压缩机后冷却器(64),带第三塔底再沸器(62)、塔顶冷凝器(65)及第二塔顶分离器(56)的第三精馏塔(59),其中压缩机(63)与压缩机后冷却器(64)相连,压缩机后冷却器(64)与第一分离器(53)相连,第一分离器(53)与第一换热器(51)相连,第一换热器(51)与压缩机(63)相连,第二精馏塔(58)与第三精馏塔(59)相连。

说明书全文

一种带有轻回收的天然气液化方法及其装置

技术领域

[0001] 本发明涉及天然气分离回收轻烃技术,尤其涉及了一种带有轻烃回收的天然气液化方法及其装置。

背景技术

[0002] 随着国内天然气气源的不断丰富,液化装置中原料气中湿气(C2+)比例有较大范围+的波动,而其中C2 是重要的化工原料,能生产高附加值的化工产品,如果将其分离回收,会有显著的社会及经济效益。
[0003] 目前,国内已经有很多专从天然气管道气中回收轻烃的装置和方法,这些装置和方法仅将管道天然气中的轻烃进行分离回收,分离出的甲烷气仍返回管网,并未将其液化。在国内的液化天然气装置和方法中都还没有设置专门的回收轻烃步骤,而为了避免部+分轻烃组分(C3)在换热器深冷段造成堵塞,少数装置和方法会设置了一个简单的重(两相)分离器来将天然气中的轻烃进行分离,由于受分离条件和分离方法的限制,这种分离方法的分离精度低,原料气中的甲烷被带到了凝液中,导致装置LNG回收率降低,同时,轻烃回收率低,分离出的凝液品质不高,不能满足国家相关标准,产品附加值小,因而需要更多的设备来提纯以满足市场要求。

发明内容

[0004] 本发明针对现有技术中轻烃分离精度低,导致LNG回收率低、轻烃回收率低,分离出的凝液品质也不高,不能满足国家相关标准的缺点,提供了一种可回收并获得高纯度轻烃的天然气液化方法及其装置。
[0005] 为了解决上述技术问题,本发明通过下述技术方案得以解决:
[0006] 一种带有轻烃回收的天然气液化方法,包括以下步骤:
[0007] A.预冷:
[0008] 步骤一:净化后的天然气输入第一换热器预冷至-60~-40℃,获得液态天然气Ⅰ与气态天然气Ⅰ的混合物Ⅰ;
[0009] B.轻烃分离:
[0010] 步骤二:将步骤一获得的混合物Ⅰ通过第二分离器进行分离,分离出的液态天然气Ⅰ进入第一精馏塔参与精馏分离;分离出的气态天然气Ⅰ进入第二换热器预冷至-100~-80℃,获得液态天然气Ⅱ与气态天然气Ⅱ的混合物Ⅱ;
[0011] 步骤三:将步骤二获得的混合物Ⅱ输入第一精馏塔参与精馏分离,从第一精馏塔+塔顶获得干气,从第一精馏塔的第一塔底再沸器得到C2 轻烃;
[0012] C.天然气液化:
[0013] 步骤四:将步骤三获得的干气输入第二换热器进行冷却液化后得到LNG;
[0014] D.轻烃回收:
[0015] 步骤五:将步骤三获得的C2+轻烃输入第二精馏塔参与精馏分离,从第二精馏塔塔+顶获得气态乙烷,从第二精馏塔的第二塔底再沸器得到C3 轻烃;
[0016] 步骤六:将步骤五获得的气态乙烷输入第一换热器进行冷却,冷却至-95~-75℃,冷却后再送入第二精馏塔的第一塔顶分离器,从第一塔顶分离器获得液态乙烷。
[0017] 步骤二可以把天然气中的轻烃分离出来,一来是分离出来的这部分轻烃不会在第二换热器中堵塞其板式,二来是分离出来的轻烃可以作为副产品,附加值高。
[0018] 作为优选,还包括E.深度分离提取:
[0019] 步骤七:将步骤五获得的C3+轻烃输入第三精馏塔进行精馏分离,并从第三精馏塔顶部获得流股Ⅰ,从第三精馏塔底部获得流股Ⅱ;
[0020] 步骤八:将步骤七获得的流股Ⅰ先后经过第三精馏塔的塔顶冷凝器和第三精馏塔的第二塔顶分离器,最后获得LPG,流股Ⅱ进入第三精馏塔的第三塔底再沸器,并最终在第+三塔底再沸器底部得到C5 轻烃。
[0021] 作为优选,在天然气液化和轻烃分离过程中所需的冷量均由混合冷剂制冷循环来提供。
[0022] 作为优选,混合冷剂包括N2、CH4、C2H4、C3H8和i-C5H10或包括N2、CH4、C2H6、C3H8和i-C5H10。
[0023] 作为优选,制冷循环包括以下步骤:
[0024] 步骤一:将压力为0.1~0.3MPa的混合冷剂输入冷剂压缩机加压至3.0~4.0MPa;
[0025] 步骤二:将步骤一中获得的混合冷剂通过压缩机后冷却器冷却后,再输入第一分离器进行分离,分离出液态混合冷剂和气态混合冷剂;
[0026] 步骤三:将步骤二分离出的液态混合冷剂输入第一换热器预冷到-40~-60℃,再经控制a节流降压降温后返回第一换热器的反流通道,为第一换热器提供冷量;气态混合冷剂通过第一换热器进入第二换热器,在第二换热器预冷到-160~-140℃,再经控制阀b节流降压降温后先后返回第二换热器的反流通道和第一换热器的反流通道,并为第二换热器、第一换热器提供冷量;
[0027] 步骤四:从第一换热器的反流通道返回的混合冷剂其压力为0.1~0.3MPa,再返回至冷剂压缩机入口进行循环反复,完成整个制冷循环。
[0028] 作为优选,第一精馏塔的操作压力为3.0~4.0MPa,其塔顶操作温度为-75~-95℃;第一精馏塔的第一塔底再沸器的操作温度为35~45℃,其所需的热量由混合冷剂提供。
[0029] 作为优选,第二精馏塔的操作压力为0.6~1.2MPa,其塔顶操作温度为-50~-30℃;第二精馏塔的第二塔底再沸器的操作温度为15~35℃,其所需的热量由循环提供。
[0030] 作为优选,第三精馏塔的操作压力为0.6~1.0MPa;第三精馏塔的第三塔底再沸器所需的热量由导热油蒸汽提供;第三精馏塔的塔顶冷凝器所需的冷量由循环水提供。
[0031] 一种带有轻烃回收的天然气液化装置,包括第二分离器、换热器和精馏塔,换热器包括第一换热器和第二换热器,精馏塔包括带第一塔底再沸器的第一精馏塔以及带第二塔底再沸器和第一塔顶分离器的第二精馏塔其中第二分离器均与第一换热器、第二换热器和第一精馏塔相连,第二换热器均与第一换热器和第一精馏塔相连,第一精馏塔与第二精馏塔相连。
[0032] 作为优选,还包括第一分离器,压缩机,压缩机后冷却器,带第三塔底再沸器、塔顶冷凝器及第二塔顶分离器的第三精馏塔,其中压缩机与压缩机后冷却器相连,压缩机后冷却器与第一分离器相连,第一分离器与第一换热器相连,第一换热器与压缩机相连,第二精馏塔与第三精馏塔相连。
[0033] 若原料天然气中C3+组分较少,或装置规模较小,则在轻烃回收步骤后获得C3+轻烃+较少,后续没必要进行深度分离提取步骤,直接作为产品出售;若原料天然气中C3 组分较+
多,或装置规模较大,则在轻烃回收步骤后获得C3 轻烃较多,或根据用户需要,增加深度分离提取步骤。
[0034] 本发明由于采用了以上技术方案,具有显著的技术效果:本发明针对天然气液化+装置中湿气比例较大的气源,在液化得到LNG的同时回收C2 轻烃,这样不但可以调整LNG+
质量,减少LNG中残留的C3 组分在深冷段对设备安全运行的影响,而且还可以获得廉价、高纯度的化工原料,这对液化天然气装置的经济效益的提升具有十分重要的现实意义,具体如下:
[0035] 1.本发明优化了制冷系统,采用混合冷剂循环制冷工艺流程,综合天然气液化和轻烃分离过程中所需的冷凝(温度)品质,优化混合冷剂的配比,合理利用并分配各品质冷量,降低装置的能耗。天然气液化和轻烃分离过程中所需的冷量均由同一种混合冷剂获得,无需增加额外的制冷循环系统,设备配置简单、操作简便宜行。
[0036] 2.在液化天然气的同时提取轻烃,丰富产品规格,提高装置的产品收益。
[0037] 3.本发明采用低温精馏分离方法实现C2+轻烃回收,根据原料气中轻烃组分的比例,可合理调节精馏分离操作条件,从而调节LNG产品和轻烃产品的质量及产量,对原料气中组分的浓度变化有很好的适应性。
[0038] 4.该方法轻烃产品回收率高,对甲烷回收率影响很小。
[0039] 5.本发明采用低温精馏分离方法实现C2+轻烃回收,该方法的轻烃分离精度高,避+免了LNG中残留的C3 组分在冷箱深冷段冻结堵塞的可能性。
[0040] 6.本发明方法对20~200×104Nm3/d规模的装置均有很好的适应性,负荷调节范围广。附图说明
[0041] 图1是本发明的结构图。
[0042] 图2是实施例2的结构图。
[0043] 附图中各数字标号所指代的部位名称如下:其中1—管线a、2—管线b、3—管线c、4—管线d、5—管线e、6—管线f、7—管线g、8—管线h、9—管线i、10—管线j、11—管线k、
12—管线m、13—管线n、14—管线o、15—管线p、16—管线q、17—管线r、18—管线s、19—管线t、20—管线u、21—管线v、22—管线w、23—管线x、24—管线y、25—管线z、26—管线aa、27—管线ab、28—管线ac、29—管线ad、30—管线ae、31—管线af、32—管线ag、33—管线ah、34—管线ai、35—管线aj、36—管线ak、37—管线am、38—管线an、39—管线ao、
51—第一换热器、52—第二换热器、53—第一分离器、54—第二分离器、55—第一塔顶分离器、56—第二塔顶分离器、57—第一精馏塔、58—第二精馏塔、59—第三精馏塔、60—第一塔底再沸器、61—第二塔底再沸器、62—第三塔底再沸器、63—冷剂压缩机、64—压缩机后冷却器、65—塔顶冷凝器、71—控制阀a、72—控制阀b、73—控制阀c、74—控制阀d、75—控制阀e、76—控制阀f、77—控制阀g、78—控制阀h、79—控制阀i、80—控制阀j、81—控制阀k、82—控制阀m。

具体实施方式

[0044] 下面结合附图与实施例对本发明作进一步详细描述。
[0045] 实施例1
[0046] 一种带有轻烃回收的天然气液化方法及其装置,如图1所示,包括带有轻烃回收的天然气液化装置,带有轻烃回收的天然气液化装置包括第一分离器53,第二分离器54,冷剂压缩机63,压缩机后冷却器64,换热器,精馏塔,编号为Ⅰ~Ⅴ的储蓄罐,编号为a~i的控制阀和编号为a~k、m~z和aa~ae的管线,其中换热器包括第一换热器51和第二换热器52,精馏塔包括带第一塔底再沸器60的第一精馏塔57,带第二塔底再沸器61和第一塔顶分离器55的第二精馏塔58。在本实施例中,控制阀a71、控制阀b72和控制阀i79均为J-T阀。
[0047] 管线a1与第一换热器51相连,第一换热器51通过管线b2与第二分离器54相连,管线c3上设有控制阀c73,第二分离器54一端通过管线c3与第一精馏塔57中部相连,第二分离器54另一端通过管线d4与第二换热器52相连,第二换热器52通过管线e5与第一精馏塔57上部相连,第一精馏塔57塔顶通过管线f6与第二换热器52相连,管线i9上设有控制阀i79,第二换热器52通过管线i9与储蓄罐Ⅰ相连,第一精馏塔57塔底通过管线g7与第一塔底再沸器60相连,第一塔底再沸器60通过管线z25与第一精馏塔57下部相连,管线h8上设有控制阀e75,第一塔底再沸器60通过管线h8与第二精馏塔58中部相连,第二精馏塔58塔底通过管线j10与第二塔底再沸器61相连,第二塔底再沸器61通过管线aa26与第二精馏塔58下部相连,管线k11上设有控制阀g77,第二塔底再沸器61通过管线k11与储蓄罐Ⅱ相连,第二精馏塔58塔顶通过管线m12与第一换热器51相连,第一换热器51通过管线n13与第一塔顶分离器55相连,第一塔顶分离器55通过管线o14与第二精馏塔58上部相连,管线p15上设有控制阀h78,第一塔顶分离器55通过管线p15与储蓄罐Ⅲ相连。
[0048] 制冷循环的装置结构为:
[0049] 冷剂压缩机63通过管线r17与压缩机后分离器64相连,压缩机后分离器64通过管线s18与第一分离器53相连,第一分离器53一端通过管线t19与第一换热器51,管线t19与第一换热器51的液相通道相通,第一分离器53另一端通过管线v21与第一换热器51相连,第一分离器53通过第一换热器51、管线w22与第二换热器52相连,管线w22与第二换热器52的正流冷剂通道相通,管线u20上设有控制阀a71,第一换热器51的液相通道通过管线u20与第一换热器51的反流通道相连,管线u20均与第一换热器51的液相通道、第一换热器51的反流通道相通,管线x23上设有控制阀b72,第二换热器52的正流冷剂通道通过管线x23与第二换热器52的反流通道相连,管线x23均与第二换热器52的正流冷剂通道相通、第二换热器52的反流通道相通,第二换热器52的反流通道通过管线y24与第一换热器51的反流通道相连,管线y24均与第一换热器51的反流通道、第二换热器52的反流通道相通,第一换热器51的反流通道通过管线q16与冷剂压缩机63相连。
[0050] 第一塔底再沸器60上设有管线ab27和管线ac28,管线ab27上设有控制阀d74,由控制阀d74控制管线ab27的开闭,通过管线ab27将混合冷剂输送到第一塔底再沸器60,为第一塔底再沸器60提供热量,或导热油、蒸汽中的任一种通过管线ac27输送到第一塔底再沸器60,为第一塔底再沸器60提供热量;第二塔底再沸器61上设有管线ad29和管线ae30,管线ad29上设有控制阀f76,由控制阀f76控制管线ad29的开闭,通过管线ad29将循环水输送到第二塔底再沸器61,为第二塔底再沸器61提供热量,或导热油、蒸汽中的任一种通过管线ae29输送到第二塔底再沸器61,为第二塔底再沸器61提供热量。
[0051] 在本实施例中,第一分离器53为冷剂分离器,第二分离器54为低温分离器,第一换热器51和第二换热器52均为板翅式换热器。
[0052] 净化后的天然气作为原料气。
[0053] 在本实施例中,装置规模为30×104Nm3/d,该规模较小,在轻烃回收步骤后获得C3+轻烃较少,无需增加深度分离提取步骤。
[0054] 一种带有轻烃回收的天然气液化方法,包括以下步骤:
[0055] A.预冷:
[0056] 步骤一:净化后的天然气输入第一板翅式换热器预冷至-60℃,也可以是-40℃或-60~-40℃之间的任意值,获得液态天然气Ⅰ与气态天然气Ⅰ的混合物Ⅰ;
[0057] B.轻烃分离:
[0058] 步骤二:将步骤一获得的混合物Ⅰ通过低温分离器进行分离,分离出的液态天然气Ⅰ经过控制阀c73后进入第一精馏塔57中部参与精馏分离;分离出的气态天然气Ⅰ进入第二板翅式换热器预冷至-80℃,也可以是-100℃或-100~-80℃之间的任意值,获得液态天然气Ⅱ与气态天然气Ⅱ的混合物Ⅱ;
[0059] 步骤三:将步骤二获得的混合物Ⅱ输入第一精馏塔57上部参与精馏分离,步骤二中的液态天然气Ⅰ和混合物Ⅱ进入第一精馏塔57后从第一精馏塔57塔顶获得干气,从第+一精馏塔57的第一塔底再沸器60底部获得C2 轻烃;
[0060] C.天然气液化:
[0061] 步骤四:将步骤三获得的干气输入第二板翅式换热器进行冷却液化后获得的流股经过控制阀i79节流降压降温后得到LNG,LNG直接作为产品,并输出储存在储蓄罐Ⅰ;
[0062] D.轻烃回收:
[0063] 步骤五:将步骤三获得的C2+轻烃流股经控制阀e75输入第二精馏塔58中部参与精馏分离,从第二精馏塔58塔顶获得气态乙烷,从第二精馏塔58的第二塔底再沸器61获+ +得C3 轻烃,C3 轻烃直接作为产品,并经过控制阀g77输出储存在储蓄罐Ⅱ;
[0064] 步骤六:将步骤五获得的气态乙烷输入第一板翅式换热器进行冷却,冷却至-95℃,也可以是-75℃或-95~-75℃℃之间的任意值,冷却后再送入第二精馏塔58的第一塔顶分离器55,从第一塔顶分离器55获得乙烷流股;
[0065] 步骤七:将步骤六获得的乙烷流股输送一部分到第二精馏塔58做为塔顶回流液,剩余的部分经过控制阀h78后作为液态乙烷产品,并输出储存在储蓄罐Ⅲ。
[0066] 在天然气液化和轻烃分离过程中所需的冷量均由混合冷剂进行制冷循环来提供。
[0067] 在本实施例中,混合冷剂包括N2、CH4、C2H4、C3H8和i-C5H10。
[0068] 制冷循环包括以下步骤:
[0069] 步骤一:将温度为10~40℃、压力为0.1~0.3MPa的混合冷剂输入冷剂压缩机63加压至3.0~4.0MPa;
[0070] 步骤二:将步骤一中获得的混合冷剂通过压缩机后冷却器64冷却后,再输入冷剂分离器进行分离,分离出液态混合冷剂和气态混合冷剂;
[0071] 步骤三:将步骤二分离出的液态混合冷剂输入第一板翅式换热器的液相通道预冷到-60℃,也可以是-40℃或-40~-60℃之间的任意值,再经控制阀a71节流降压降温后返回第一板翅式换热器的反流通道,为第一板翅式换热器提供冷量;气态混合冷剂通过第一板翅式换热器的气相通道进入第二板翅式换热器的正流冷剂通道,并在其中预冷到-160℃,也可以是-140℃或-160~-140℃之间的任意值,再经控制阀b72节流降压降温后先后返回第二板翅式换热器的反流通道和第一板翅式换热器的反流通道,并为第二板翅式换热器、第一板翅式换热器提供冷量;
[0072] 步骤四:从第一换热器51的反流通道返回的混合冷剂其温度为10~40℃、压力为0.1~0.3MPa,再返回至冷剂压缩机63入口进行循环反复,完成整个制冷循环。
[0073] 第一精馏塔57的操作压力为3.0~4.0MPa,其塔顶操作温度为-75~-95℃;第一精馏塔57的第一塔底再沸器60的操作温度为35~45℃,其所需的热量由经过压缩机后冷却器64压缩后的混合冷剂直接输送到第一塔底再沸器60来提供,或由导热油、蒸汽中的任一种来提供。
[0074] 第二精馏塔58的操作压力为0.6~1.2MPa,其塔顶操作温度为-50~-30℃;第二精馏塔58的第二塔底再沸器61的操作温度为15~35℃,其所需的热量由循环水或导热油或蒸汽提供。
[0075] 图中箭头为混合冷剂或天然气分离液化在装置中的走向。
[0076] 实施例2
[0077] 一种带有轻烃回收的天然气液化方法及其装置,如图2所示,包括带有轻烃回收的天然气液化装置,带有轻烃回收的天然气液化装置包括第一分离器53,第二分离器54,冷剂压缩机63,压缩机后分离器64,换热器,精馏塔,编号为Ⅰ~Ⅴ的储蓄罐,编号为a~k和m的控制阀,编号为a~k、m~z、aa~ak和am~ao的管线,其中换热器包括第一换热器51和第二换热器52,精馏塔包括带第一塔底再沸器60的第一精馏塔57,第二带塔底再沸器61和第一塔顶分离器55的第二精馏塔58,以及带第三塔底再沸器、塔顶冷凝器65和第二塔顶分离器56的第三精馏塔59。在本实施例中,控制阀a71、控制阀b72和控制阀i79均为J-T阀。
[0078] 管线a1与第一换热器51相连,第一换热器51通过管线b2与第二分离器54相连,管线c3上设有控制阀c73,第二分离器54一端通过管线c3与第一精馏塔57中部相连,第二分离器54另一端通过管线d4与第二换热器52相连,第二换热器52通过管线e5与第一精馏塔57上部相连,第一精馏塔57塔顶通过管线f6与第二换热器52相连,管线i9上设有控制阀i79,第二换热器52通过管线i9与储蓄罐Ⅰ相连,第一精馏塔57塔底通过管线g7与第一塔底再沸器60相连,第一塔底再沸器60通过管线z25与第一精馏塔57下部相连,管线h8上设有控制阀e75,第一塔底再沸器60通过管线h8与第二精馏塔58中部相连,第二精馏塔58塔底通过管线j10与第二塔底再沸器61相连,第二塔底再沸器61通过管线aa26与第二精馏塔58下部相连,管线k11上设有控制阀g77,第二精馏塔58塔顶通过管线m12与第一换热器51相连,第一换热器51通过管线n13与第一塔顶分离器55相连,第一塔顶分离器55通过管线o14与第二精馏塔58上部相连,管线p15上设有控制阀h78,第一塔顶分离器55通过管线p15与储蓄罐Ⅲ相连。
[0079] 在本实施例中,装置规模为180×104Nm3/d,此时装置规模较大,在轻烃回收步骤后+获得C3 轻烃较多,因此需要增加深度分离提取步骤。实现深度分离提取步骤的装置结构为:
[0080] 第二塔底再沸器61通过管线k11直接与第三精馏塔59中部相连,第三精馏塔59塔顶通过管线af31与塔顶冷凝器65相连,塔顶冷凝器65通过管线ag32与第二塔顶分离器56相连,第二塔顶分离器56通过管线ah33与第三精馏塔59上部相连,管线ai34上设有控制阀j80,第二塔顶分离器56通过管线ai34与储蓄罐Ⅴ相连,第三精馏塔59塔底通过管线aj35与第三塔底再沸器62相连,第三塔底再沸器62通过管线am37与第三精馏塔59下部相连,管线ak36上设有控制阀k81,第三塔底再沸器62通过管线ak36与储蓄罐Ⅳ相连。
[0081] 制冷循环的装置结构为:
[0082] 冷剂压缩机63通过管线r17与压缩机后冷却器64相连,压缩机后冷却器64通过管线s18与第一分离器53相连,第一分离器53一端通过管线t19与第一换热器51,管线t19与第一换热器51的液相通道相通,第一分离器53另一端通过管线v21与第一换热器51相连,第一分离器53通过第一换热器51、管线w22与第二换热器52相连,管线w22与第二换热器52的正流冷剂通道相通,管线u20上设有控制阀a71,第一换热器51的液相通道通过管线u20与第一换热器51的反流通道相连,管线u20均与第一换热器51的液相通道、第一换热器51的反流通道相通,管线x23上设有控制阀b72,第二换热器52的正流冷剂通道通过管线x23与第二换热器52的反流通道相连,管线x23均与第二换热器52的正流冷剂通道相通、第二换热器52的反流通道相通,第二换热器52的反流通道通过管线y24与第一换热器51的反流通道相连,管线y24均与第一换热器51的反流通道、第二换热器52的反流通道相通,第一换热器51的反流通道通过管线q16与冷剂压缩机63相连。
[0083] 第一塔底再沸器60上设有管线ab27和管线ac28,管线ab27上设有控制阀d74,由控制阀d74控制管线ab27的开闭,通过管线ab27将热的混合冷剂输送到第一塔底再沸器60,为第一塔底再沸器60提供热量,或导热油、蒸汽中的任一种通过管线ac27输送到第一塔底再沸器60,为第一塔底再沸器60提供热量;第二塔底再沸器61上设有管线ad29和管线ae30,管线ad29上设有控制阀f76,由控制阀f76控制管线ad29的开闭,通过管线ad29将循环水输送到第二塔底再沸器61,为第二塔底再沸器61提供热量,或导热油、蒸汽中的任一种通过管线ae29输送到第二塔底再沸器61,为第二塔底再沸器61提供热量;第三塔底再沸器62上设有管线ao40和管线an38,管线ao40上设有控制阀m82,由控制阀m82控制管线ao40的开闭,可通过管线ao40将导热油或蒸汽输送到第三塔底再沸器62,为第三塔底再沸器62提供热量。
[0084] 在本实施例中,第一分离器53为冷剂分离器,第二分离器54为低温分离器,第一换热器51和第二换热器52均为板翅式换热器。
[0085] 净化后的天然气作为原料气。
[0086] 一种带有轻烃回收的天然气液化方法,包括以下步骤:
[0087] A.预冷:
[0088] 步骤一:净化后的天然气输入第一板翅式换热器预冷至-40℃,也可以是-60℃或-60~-40℃之间的任意值,获得液态天然气Ⅰ与气态天然气Ⅰ的混合物Ⅰ;
[0089] B.轻烃分离:
[0090] 步骤二:将步骤一获得的混合物Ⅰ通过低温分离器进行分离,分离出的液态天然气Ⅰ经过控制阀c73进入第一精馏塔57中部参与精馏分离;分离出的气态天然气Ⅰ进入第二板翅式换热器预冷至-100℃,也可以是-80℃或-100~-80℃之间的任意值,获得液态天然气Ⅱ与气态天然气Ⅱ的混合物Ⅱ;
[0091] 步骤三:将步骤二获得的混合物Ⅱ输入第一精馏塔57上部参与精馏分离,步骤二中的液态天然气Ⅰ和混合物Ⅱ进入第一精馏塔57后从第一精馏塔57塔顶获得干气,从第一精馏塔57的第一塔底再沸器60获得C2+轻烃;
[0092] C.天然气液化:
[0093] 步骤四:将步骤三获得的干气输入第二板翅式换热器进行冷却液化后获得的流股经过控制阀i79节流降压降温后得到LNG,LNG直接作为产品,并输出储存在储蓄罐Ⅰ;
[0094] D.轻烃回收:
[0095] 步骤五:将步骤三获得的C2+轻烃流股经控制阀e75输入第二精馏塔58中部参与精馏分离,从第二精馏塔58塔顶获得气态乙烷,从第二精馏塔58的第二塔底再沸器61获+ +得C3 轻烃,C3 轻烃直接作为产品,并经过控制g77输出储存在储蓄罐Ⅱ;
[0096] 步骤六:将步骤五获得的气态乙烷输入第一板翅式换热器进行冷却,冷却至-75℃,也可以是-95℃或-95~-75℃℃之间的任意值,冷却后再送入第二精馏塔58的第一塔顶分离器55,从第一塔顶分离器55获得乙烷流股;
[0097] 步骤七:将步骤六获得的乙烷流股输送一部分到第二精馏塔58做为塔顶回流液,剩余的部分经过控制阀h78作为液态乙烷产品,并输出储存在储蓄罐Ⅲ。
[0098] E.深度分离提取:
[0099] 步骤八:将步骤五获得的C3+轻烃输入第三精馏塔59中部进行精馏分离,并从第三精馏塔59顶部获得流股Ⅰ,从第三精馏塔59底部获得流股Ⅱ;
[0100] 步骤九:将步骤八获得的流股Ⅰ先后经过第三精馏塔59的塔顶冷凝器65和第三精馏塔59的第二塔顶分离器56,最后获得LPG,流股Ⅱ进入第三精馏塔59的第三塔底再沸+ +器62,并在第三塔底再沸器62底部获得C5 轻烃,C5 轻烃直接作为产品,并经过控制阀k81输出储存在储蓄罐Ⅳ;
[0101] 步骤十:将步骤九获得的LPG输送一部分到第三精馏塔59做为塔顶回流液,剩余的LPG经过控制阀j80作为LPG产品输出并储存在储蓄罐Ⅴ。
[0102] 在天然气液化和轻烃分离过程中所需的冷量均由混合冷剂进行制冷循环来提供。
[0103] 混合冷剂包括N2、CH4、C2H6、C3H8和i-C5H10。
[0104] 制冷循环包括以下步骤:
[0105] 步骤一:将温度为10~40℃、压力为0.1~0.3MPa的混合冷剂输入冷剂压缩机63加压至3.0~4.0MPa;
[0106] 步骤二:将步骤一中获得的混合冷剂通过压缩机后冷却器64冷却后,再输入冷剂分离器进行分离,分离出液态混合冷剂和气态混合冷剂;
[0107] 步骤三:将步骤二分离出的液态混合冷剂输入第一板翅式换热器的液相通道预冷到-40℃,也可以是-60℃或-40~-60℃之间的任意值,再经控制阀a71节流降压降温后返回第一板翅式换热器的反流通道,为第一板翅式换热器提供冷量;气态混合冷剂通过第一板翅式换热器的气相通道进入第二板翅式换热器的正流冷剂通道,并在其中预冷到-140℃,也可以是-160℃或-160~-140℃之间的任意值,再经控制阀b72节流降压降温后先后返回第二板翅式换热器的反流通道和第一板翅式换热器的反流通道,并为第二板翅式换热器、第一板翅式换热器提供冷量;
[0108] 步骤四:从第一换热器51的反流通道返回的混合冷剂其温度为10~40℃、压力为0.1~0.3MPa,再返回至冷剂压缩机63入口进行循环反复,完成整个制冷循环。
[0109] 第一精馏塔57的操作压力为3.0~4.0MPa,其塔顶操作温度为-75~-95℃;第一精馏塔57的第一塔底再沸器60的操作温度为35~45℃,其所需的热量由经过压缩机后冷却器64压缩后的混合冷剂直接输送到第一塔底再沸器60来提供,或由导热油、蒸汽中的任一种来提供。
[0110] 第二精馏塔58的操作压力为0.6~1.2MPa,其塔顶操作温度为-50~-30℃;第二精馏塔58的第二塔底再沸器61的操作温度为15~35℃,其所需的热量由循环水或或导热油或蒸汽提供。
[0111] 第三精馏塔59的操作压力为0.6~1.0MPa;第三精馏塔59的第三塔底再沸器62所需的热量由导热油或蒸汽提供;第三精馏塔59的塔顶冷凝器65所需的冷量由循环水提供。
[0112] 图中箭头为混合冷剂或天然气分离液化在装置中的走向。
[0113] 总之,以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所作的均等变化与修饰,皆应属本发明专利的涵盖范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈