首页 / 专利库 / 信号处理 / 正交 / 正交调制系统

正交调制系统

阅读:384发布:2020-05-12

专利汇可以提供正交调制系统专利检索,专利查询,专利分析的服务。并且正交 调制系统。公开的正交调制系统输入同相 信号 分量和正交信号分量,然后输出由正交 调制器 正交调制的 输出信号 。正交调制系统根据输入到正交调制器中的同相信号分量和从输出信号获得的反馈信号的同相信号分量计算第一累计总值。正交调制系统根据输入到正交调制器中的正交信号分量和反馈信号的正交信号分量计算第二累计总值。根据第一和第二累计总值,确定同相信号分量与正交信号分量之间的时间差。根据该时间差对待提供给正交调制器的同相信号分量和正交信号分量进行调节,以对时间差进行补偿。,下面是正交调制系统专利的具体信息内容。

1.一种正交调制系统,其中,输入第一同相信号分量和第一正交信号分量,并将其提供给正交调制器,以输出由所述正交调制器正交调制过的输出信号,所述输出信号的一部分用作由第二同相信号分量和第二正交信号分量组成的反馈信号,所述正交调制系统包括:
振幅差计算装置,用于:获得第一误差,其是第二同相信号分量的平均振幅与第二正交信号分量的平均振幅之间的差;获得第二误差,其是当信号点排列的实轴和虚轴旋转一预定度量时第二同相信号分量的平均振幅与第二正交信号分量的平均振幅之间的差;以及,基于所述第一误差和所述第二误差获得第一同相信号分量与第一正交信号分量之间的振幅差的量;以及
振幅调节装置,用于对第一同相信号分量和第一正交信号分量的振幅进行调节,以对所述振幅差进行补偿。
2.根据权利要求1所述的正交调制系统,进一步包括:
比较装置,用于比较所述第一误差的幅度与所述第二误差的幅度。
3.根据权利要求1所述的正交调制系统,其中,所述预定角度量等于45度。
4.一种正交调制系统,其中,输入第一同相信号分量和第一正交信号分量,并将其提供给正交调制器,以输出所述正交调制器正交调制过的输出信号,所述正交调制系统包括:
平均振幅矢量获得装置,用于为信号点排列的每个象限获得所述第一同相信号分量和所述第一正交信号分量的平均振幅矢量;和
振幅调节装置,用于对提供给所述正交调制器的所述第一同相信号分量和所述第一正交信号分量的振幅进行调节,以使所述象限的平均振幅矢量在幅度上彼此相等,并且正交相交。
5.一种正交调制系统,其中,输入第一同相信号分量和第一正交信号分量,并将其提供给正交调制器,以输出由所述正交调制器正交调制过的输出信号,所述输出信号的一部分用作由第二同相信号分量和第二正交信号分量组成的反馈信号,所述正交调制系统包括:
振幅差计算装置,用于:获得第一误差,其是第一同相信号分量的平均振幅与第二同相信号分量的平均振幅之间的差;获得第二误差,其是第一正交信号分量平均振幅与第二正交信号分量的平均振幅之间的差;以及,分别基于所述第一误差和所述第二误差获得第一同相信号分量的振幅与第一正交信号分量的振幅之间的差别量;和
振幅调节装置,用于对第一同相信号分量和第一正交信号分量的振幅进行调节,以对所述振幅之间的差别量进行补偿。
6.根据权利要求5所述的正交调制系统,进一步包括:
比较装置,用于将第一同相信号分量和第一正交信号分量分别与第二同相信号分量和第二正交信号分量进行比较,并且用于获得信号点排列的实轴和虚轴的旋转角。
7.一种正交调制系统,其中,输入第一同相信号分量和第一正交信号分量,并将其提供给正交调制器,以输出由所述正交调制器正交调制过的输出信号,所述输出信号的一部分用作由第二同相信号分量和第二正交信号分量组成的反馈信号,所述正交调制系统包括:
振幅差计算装置,用于:获得第一平均值,其是第一同相信号分量和第二正交信号分量的乘积的平均值;获得第二平均值,其是第一正交信号分量和第二同相信号分量的乘积的平均值;以及,获得与第一平均和第二平均之比成正比的值;和
振幅调节装置,用于对第一同相信号分量和第一正交信号分量进行调节,以使所述与第一平均和第二平均之比成正比的值趋近于一期望值。
8.根据权利要求1、4和7中的任何一项所述的正交调制系统,其中
其振幅由调节装置进行调节的第一同相信号分量和第一正交信号分量采用数字格式和模拟格式中的一种格式。

说明书全文

正交调制系统

[0001] 本申请是原案申请号200410083133.6的发明专利申请(申请日:2004年9月30日,发明名称:正交调制系统)的分案申请。

技术领域

[0002] 本发明总体上涉及数字无线电通信的技术领域,尤其涉及一种正交调制系统和一种安装有该正交调制系统的发射机。

背景技术

[0003] 在无线通信系统如IMT 2000中利用宽频带来传送无线信号,在下一代移动通信系统中带宽变得更大。为了传送这种信号,通常采用以下做法,即,将复合基带信号转换成中频(IF)带的信号,然后转换成射频(RF)带的信号。然而,为了有效地减少频率转换阶段带来的多余RF分量,就需要诸如带通滤波器的部件来提供陡峭和平坦的特性,使得只允许所希望的信号通过。随着频带在将来的进一步增宽,就需要高性能的部件,这往往增加设备尺寸和产品成本。由于这个原因,用于将基带信号直接转换成RF频带的直接RF调制技术引起了注意。例如,在专利文献1到10中公开了上述传统调制技术。
[0004] [专利文献1]JPA 6-350658
[0005] [专利文献2]JPA 7-123123
[0006] [专利文献3]JPA 7-177188
[0007] [专利文献4]JPA 8-116343
[0008] [专利文献5]JPA 2000-270037
[0009] [专利文献6]JPA 2001-339452
[0010] [专利文献7]JPA 2002-27007
[0011] [专利文献8]JPA 5-207080
[0012] [专利文献9]JPA 2002-77285
[0013] [专利文献10]JPA 8-97873
[0014] 然而,如果采用直接RF调制技术,模拟部件的部件间特征差异、长期变化等往往造成在同相信号分量与正交信号分量之间产生误差。相应地,如果将信号分量输入到正交调制器中,除产生并输出希望的信号之外,还可能产生并输出映像信号(image signal)(不必要的信号)(参照图1),导致信号质量的下降。

发明内容

[0015] 本发明的总目的是提供一种正交调制系统,其基本上消除了一个或更多个由现有技术的局限和缺点所造成的问题。
[0016] 本发明的特征和优点将在随后的说明中得到阐述,并且部分地根据所述说明和附图将变得清楚,或者可以通过根据所述说明中提供的教导实施本发明来获知。通过在说明书中具体指出的正交调制系统可以实现并获得本发明的目的以及其他特征和优点,本说明书以全面、清晰、简洁和准确的术语进行了描述,使得本领域的普通技术人员能够实施本发明。
[0017] 具体来说,本发明的目的在于提供一种能够产生正交调制模拟信号的正交调制系统,其中映像信号分量(不必要的信号分量)的量与传统技术相比减少了,本发明的目的还在于提供一种配备有该正交调制系统的发射机。
[0018] 为了实现这些以及其他优点,并且根据本发明的目的,如这里所具体实现和广泛描述的,本发明提供以下内容。
[0019] 根据本发明的一个方面,正交调制系统输入同相信号分量和正交信号分量,它们被提供给用于输出正交调制信号的正交调制器,正交调制信号的一部分用作反馈信号,该正交调制系统包括:
[0020] 时间差计算装置,用于
[0021] 计算关于反馈信号的同相信号分量的计算结果的第一累计总值,[0022] 计算关于反馈信号的正交信号分量的计算结果的第二累计总值,以及[0023] 基于第一和第二累计总值获得同相信号分量与正交信号分量之间的时间差;和[0024] 延迟调节装置,用于对提供给正交调制器的同相信号分量和正交信号分量进行调节,以对时间差进行补偿。
[0025] 根据本发明,减少了由正交调制方法产生的混同在模拟信号中的映像信号分量的量。

附图说明

[0026] 图1是显示调制信号与映像信号分量(不必要的信号)之间的典型关系的曲线图;
[0027] 图2是根据本发明一实施例的正交调制系统的框图
[0028] 图3是延迟量调节流程图
[0029] 图4图示了延迟量与平均误差值之间的关系;
[0030] 图5是所述正交调制系统的变型例的框图;
[0031] 图6是显示所述延迟量调节流程图的变型例的流程图;
[0032] 图7图示了延迟量与平均乘积值之间的关系;
[0033] 图8图示了当延迟量等于1/8码元时的抽头系数
[0034] 图9图示了当延迟量等于5/8码元时的抽头系数;
[0035] 图10是显示补偿电路的变型例的框图;
[0036] 图11图示了同相信号分量和正交信号分量的振幅与适用的相位旋转之间的关系;
[0037] 图12是根据本发明一实施例的正交调制系统的框图;
[0038] 图13是振幅平衡调节流程图;
[0039] 图14图示了同相信号分量和正交信号分量的正交性与每个象限的平均振幅矢量之间的关系;
[0040] 图15是根据本发明一实施例的正交调制系统的框图;
[0041] 图16是振幅平衡调节流程图;
[0042] 图17是根据本发明一实施例的正交调制系统的框图;
[0043] 图18是振幅平衡调节流程图;
[0044] 图19是根据本发明一实施例的正交调制系统的框图;
[0045] 图20是振幅平衡调节流程图;
[0046] 图21是补偿电路的变型例的框图;
[0047] 图22图示了在信号点排列图(signal point arrangement plan)中同相信号分量与正交信号分量之间的关系;
[0048] 图23是根据本发明一实施例的正交调制系统的框图;
[0049] 图24是显示正交性偏转补偿电路示例的框图;
[0050] 图25是正交性偏转调节流程图;
[0051] 图26图示了补偿次数N的值与累计误差|DiffAcm1|之间的关系;
[0052] 图27是根据本发明一实施例的正交调制系统的框图;
[0053] 图28图示了同相信号分量和正交信号分量的乘积的累计总值与正交性偏转之间的关系;
[0054] 图29是正交性偏转调节流程图;
[0055] 图30是根据本发明一实施例的正交调制系统的框图;
[0056] 图31是根据本发明一实施例的正交调制系统的框图;
[0057] 图32是根据本发明一实施例的正交调制系统的框图;
[0058] 图33图示了不同时间下的产生信号和反馈信号;
[0059] 图34是根据本发明一实施例的正交调制系统的框图;
[0060] 图35是根据本发明一实施例的正交调制系统的框图;
[0061] 图36是根据本发明一实施例的正交调制系统的框图;以及
[0062] 图37是根据本发明一实施例的正交调制系统的框图。

具体实施方式

[0063] 下面将参照附图描述本发明的实施例。
[0064] 实施例包括实施例1到实施例4。总的来说,实施例1用于通过调节同相信号分量和正交信号分量之间的定时关系来减少混合在产生的模拟信号中的映像信号分量。实施例2用于通过调节同相信号分量和正交信号分量的振幅来获得同样的效果。实施例3用于通过调节实轴与虚轴之间的正交性偏转(角偏转)来获得同样的效果。实施例4用于通过综合调节同相信号分量和正交信号分量的定时、振幅和角偏转来获得同样的信号。
[0065] [实施例1]
[0066] 图2是根据本发明实施例1的正交调制系统的框图。该正交调制系统对表示待传送内容的数字信号的同相信号分量Txi(I信道)和正交信号分量Txq(Q信道)进行正交调制,并输出作为模拟RF信号的输出信号S。所述正交调制系统包括用作调节电路的补偿电路202、数模转换器204和206、滤波器208和210以及正交调制器212。所述正交调制系统包括乘法单元216、本机振荡器214、模数转换器218、正交解调器220以及相位检测器236,这些构成反馈路径。所述正交调制系统包括加法器224和226(在所示出的示例中,它们用作减法器)、积分器228和230、时间差检测器232以及延迟电路234,这些用作时间差检测装置。所述正交调制系统包括补偿电路202,该补偿电路202进一步包括用于同相信号分量的Ich补偿电路237和用于正交信号分量的Qch补偿电路238。
[0067] 数模转换器204和206分别将同相信号分量和正交信号分量从数字格式转换到模拟格式。
[0068] 滤波器208和210是用于各模拟信号的带通滤波器。
[0069] 正交调制器212对由各数模转换器提供的同相信号分量和正交信号分量进行组合,并输出所述输出信号S。理想地,输出信号S表示如下。
[0070] S=yi(n)cos(ωt)-yq(n)sin(ωt)
[0071] 其中,yi(n)表示输入到正交调制器212中的同相信号分量,它是通过对数字格式的同相信号分量TXi(n)进行数模转换所获得的模拟信号的量。类似地,yq(n)表示输入到正交调制器212中的正交信号分量,它是通过对数字格式的正交信号分量TXq(n)进行数模转换所获得的模拟信号的量。而且,n表示指定采样的参数,ω表示载波角频率。
[0072] 乘法单元216将输出信号S与由本机振荡器214提供的信号相乘,由此执行从高频到低频的频率转换(下变频),从而提供低频的模拟信号。
[0073] 模数转换器218用于将模拟信号转换成数字信号。
[0074] 正交解调器220用于对模数转换器218的输出进行解调,并且输出反馈信号的同相信号分量Fbi和正交信号分量Fbq。
[0075] 加法器224在这里用作减法器,用于获得(正交调制前的)同相信号分量Txi与(反馈信号的)同相信号分量Fbi之间的差。该差由积分器228进行累计,并计算出第一累计值。
[0076] 加法器226也用作减法器,用于获得(正交调制前的)正交信号分量Txq与(反馈信号的)正交信号分量Fbq之间的差。该差由积分器230进行累计,并计算出第二累计值。
[0077] 时间差检测器232基于第一累计值和第二累计值获得同相信号分量与正交信号分量之间的时间差。时间差主要是在以模拟格式对信号分量进行处理的过程中产生的。特别地,时间差主要是在数模转换器204与正交调制器212之间以及在数模转换器206与正交调制器212之间产生的。尽管对于反馈信号而言时间差可能是由于正交调制器212与正交解调器220之间的模拟信号处理产生的,但是将在反馈路径中产生的时间差等同地引入到同相信号分量和正交信号分量上。因此,在反馈路径中产生的时间差对同相信号分量与正交信号分量之间的时间差不起作用。
[0078] 延迟电路234用于调节分别要由加法器224和226相加(实际进行的是减法运算)的信号Txi和Txq的定时,另外还能够用于设置数字信号TxI与Txq之间的时间差。虽然例如可以通过调节有限脉冲响应(FIR)滤波器的抽头系数来设置时间差,但本发明并不局限于此。
[0079] 补偿电路202中的Ich补偿单元237和Qch补偿单元238设置各个信号分量的延迟量,以对由时间差检测器232检测到的时间差进行补偿。
[0080] 相位检测器236对数字信号同相分量TXi和反馈信号同相分量Fbi进行比较,这两个分量都被输入到加法器224。相位检测器236对数字信号正交分量Txq与反馈信号正交分量Fbq进行比较,这两个分量都被输入到加法器226。然后,相位检测器236确定数字信号与反馈信号之间的相位旋转角φ。将关于相位旋转角φ的信息提供给正交解调器220,以对正交调制前后的信号之间的相位旋转进行补偿。
[0081] 下面参照图3说明本实施例的操作。
[0082] 图3是时间差量调节流程图。该流程从步骤302开始,进行至步骤304。在步骤304,由延迟电路234将同相信号分量Txi与正交信号分量Txq之间的时间差t设置为初始值(例如,t=0)。进一步,由相位检测器236获得相位旋转角φ,并且由正交解调器220对相位旋转角φ进行补偿。
[0083] 在步骤306,更新时间差t(例如,t=t+Δt)。
[0084] 在步骤308,利用下列公式(1)获得用作“第一累计总值”的实部误差平均ErrIch(t)和用作“第二累计总值”的虚部误差平均ErrQch(t)。
[0085] [公式1]
[0086]
[0087]
[0088] 其中,n是用于指定数字信号的采样的参数,N表示每个积分器228和230执行总计的次数。其中的操作是,加法器224和积分器228进行实部误差平均的计算,加法器226和积分器230进行虚部误差平均的计算。
[0089] 在步骤310,确定是否为所有时间延迟量t都获得了第一和第二累计总值。更具体来说,就是确定时间延迟t是否以Δt的增量从0增加到预定最大值Tmax。如果t尚未达到最大值Tmax,则过程返回到步骤306,在此t递增Δt,然后进行同样的过程。按这种方式,通过改变延迟电路234所设置的延迟量来更新时间延迟t的值。
[0090] 在时间延迟量t达到最大值Tmax的情况下,过程进行至步骤312。通过重复步骤306、308和310,获得了时间延迟量t与第一累计总值(关于同相信号分量的平均误差值)之间以及时间延迟量t与第二累计总值(关于正交信号分量的平均误差值)之间的关系,如图4所示。如果同相信号与正交信号之间没有时间差,那么这两个图将重合。在步骤312,由时间差检测器232获得使实部误差平均最小的延时量Δt1和使虚部误差平均最小的延时量Δt2。
[0091] 在步骤314,将基于Δt1和Δt2的合适的延迟量提供给补偿电路202,以对在步骤312处检测到的同相信号分量与正交信号分量之间的时间差进行补偿。在这种情况下,将同相信号分量和正交信号分量的时间延迟量中的一个设为零,而将另一个时间延迟量设为正值,是可以接受的。另选地,将同相信号分量和正交信号分量的时间延迟量都设为正值。这是因为,同相信号分量和正交信号分量的定时相对来说是一致的。例如,可以为用于同相信号分量的Ich补偿电路237设置等于(Δt1-Δt2)/2的延时量,并且可以为用于正交信号分量的Qch补偿电路238设置等于(Δt2-Δt1)/2的延时量。从诸如控制动作的稳定性的角度来看,比较理想的是在两侧都进行补偿。
[0092] 然后,过程进行至步骤316,以结束该过程。
[0093] 在上述示例中,尽管是通过累计加法器224和226的运算(减法)结果来计算第一和第二累计总值的,但本发明并不局限于这种形式。例如,如图5所示,可以分别利用乘法单元524和526计算数字信号分量Txi和Txq的乘积以及反馈信号分量Fbi和Fbq的乘积,并且分别利用积分器228和230对乘积(功率)进行总计,由此来获得时间差。
[0094] 图6是显示其中如上所述使用乘积的过程的流程图。该流程从步骤602开始,进行至步骤604。在步骤604,将同相信号分量Txi与正交信号分量Txq之间的时间差t设为初始值(例如,t=0)。进一步,由相位检测器236获得相位旋转角φ,并且利用正交解调器220对相位旋转角φ进行补偿。
[0095] 在步骤606,时间延迟量t递增(例如,t=t+Δt)。
[0096] 在步骤608,根据下列公式(2)来计算用作第一累计总值的实部乘积平均PowIch(t)以及用作第二累计总值的虚部乘积平均PowQch(t)。
[0097] [公式2]
[0098]
[0099]
[0100] 其中,n是用于指定数字信号的采样的参数,N表示每个积分器228和230执行总计的次数。乘法单元524和积分器228进行实部乘积平均的计算,乘法单元526和积分器230进行虚部乘积平均的计算。
[0101] 在步骤610,确定是否针对所有t值计算了第一累计总值和第二累计总值。如果t<Tmax,则过程返回到步骤606,然后执行相同的过程。
[0102] 在时间延迟量t达到Tmax的情况下,过程进行至步骤612。通过重复步骤606、608和610,获得时间延迟量t与第一累计总值(关于同相信号分量的平均乘积值)之间以及时间延迟量t与第二累计总值(关于正交信号分量的平均乘积值)之间的关系,如图7所示。如果同相信号分量与正交信号分量之间没有时间差,那么这两个图将重合。在步骤612,时间差检测器232获得用于提供最大实部乘积平均的延时量Δt1和用于提供最大虚部乘积平均的延时量Δt2。
[0103] 在步骤614,将基于Δt1和Δt2的合适的延迟量提供给补偿电路202,以对在步骤612检测到的同相信号分量与正交信号分量之间的时间差进行补偿。然后,过程进行至步骤
616,以结束该过程。
[0104] 其中,用于对同相信号分量和正交信号分量的定时进行调节的补偿电路202的补偿单元237和238中的每一个分别可以由例如有限脉冲响应滤波器(FIR滤波器)构成。通过恰当地设置FIR滤波器的抽头系数,可以向输入信号提供希望的时间延迟量,以便输出。例如,可以通过采用如图8所示的FIR滤波器的脉冲响应特性的8点的值作为抽头系数,来提供等效于1/8码元的延时。而且,可以通过采用如图9所示的8点的值作为抽头系数,来获得等效于5/8码元的延时。
[0105] 而且,作为补偿电路202的变型例,将每个数模转换器204和206的时钟定时都设置为可调节的,以获得希望的时间延迟量。图10是显示补偿电路变型例的框图。根据这个变型例,补偿电路包括时钟源1002、延迟元件1004以及选择器1006和1008。时钟源1002产生用于驱动数模转换器204(DA1)和206(DA2)时钟信号。延迟元件1004使时钟源1002提供的时钟信号的定时发生延迟,以输出具有不同延迟τn的经延迟的时钟信号。在所述示例中,准备了具有延迟时间τ0到τ4的5个时钟信号。选择器1006和1008用于根据时间差检测器232提供的延迟信息选择一个具有延迟时间τn的时钟信号,并且用于分别向数模转换器204和206提供具有所选时间延迟的时钟信号。
[0106] [实施例2]
[0107] 下面将说明实施例2,其中通过调节同相信号分量和正交信号分量的振幅来减少映像信号分量。首先,简要概述同相信号分量和正交信号分量的振幅平衡。
[0108] 图11显示了同相信号分量和正交信号分量的振幅与可采用的相位旋转角之间的关系。在0到360度的范围内对信号点排列图(星座图)上的微小单位角内存在的信号点的平均值进行计算,从而将每种关系都画作轨迹。如果同相信号分量和正交信号分量被恰当输出,则将得到圆轨迹,如图11的(A)所示。反之,如果同相信号和正交信号的振幅彼此不相等,将得到椭圆轨迹,如图11的(B)所示。在这种情况下,对同相信号和/或正交信号的振幅进行调节,使得椭圆轨迹转变成圆轨迹,即,使得实轴与虚轴的振幅比为1,也就是说,使得实轴与虚轴的振幅差变为零。
[0109] 除了同相信号分量和正交信号分量的振幅不平衡的情况以外,还存在这样的情况,其中来自输出信号的反馈信号旋转了某个角度(相位旋转角)φ,如图11的(C)所示。例如,相位旋转通常是由反馈路径中的模拟信号过程产生的。如果相位旋转角φ的值相对较小,则可以通过调节同相信号分量和正交信号分量的振幅来获得振幅平衡。然而,如果相位旋转角φ大到45度(л/4弧度),如图11的(D)所示,则即使轨迹是椭圆形的,实轴(I)中的平均振幅A0和虚轴中的平均振幅B0也变得相等。也就是说,如果相位旋转角φ约等于45度,就不能够恰当地检测到振幅差,从而很难对振幅的不平衡进行补偿。
[0110] 有鉴于此,根据本实施例,除测量了实轴和虚轴中的平均振幅A0和B0(如图11(C)所示)以外,还测量了平均振幅A45和B45。在此,A45和B45是在如图11的(E)所示反馈信号沿箭头方向旋转45度(即-,45度)时的幅值。这样,将获得两对同相信号分量和正交信号分量。即,一对是在没有旋转反馈信号的情况下测量到的成对的平均幅值A0和B0,另一对是在反馈信号旋转45度的情况下测量到的成对的平均幅值A45和B45,如图11的(F)所示。本实施例将根据这两对幅值实现振幅平衡。
[0111] 图12是根据本发明实施例的正交调制系统的框图。该正交调制系统包括补偿电路1202、数模转换器1204和1206、正交调制器1212以及本机振荡器1211。所述正交调制系统包括:连接到另一本机振荡器1214的乘法单元1216,模数转换器1218,以及正交解调器1220,这些位于反馈路径中。所述正交调制系统包括振幅差计算单元1240,该振幅差计算单元1240进一步包括振幅平衡检测单元1222、平均化单元(Ave)1224、复合乘法器1225、振幅平衡补偿值计算单元1226,以及开关1228和1230。补偿电路1202包括乘法单元1232和1234。振幅平衡检测单元1222包括乘法单元1236和1238。
[0112] 数模转换器1204和1206分别将同相信号分量和正交信号分量从数字格式转换成模拟格式。正交调制器1212接收同相信号分量和正交信号分量并对其进行组合,然后输出所述输出信号S。乘法单元1216用于将输出信号S和来自本机振荡器1214的信号相乘,其中执行的是下变频。模数转换器1218将下变频的信号(是模拟信号)转换成数字信号。正交解调器1220对来自模数转换器1218的输出信号进行正交解调,并输出反馈信号的同相信号分量Fbi和正交信号分量Fbq。
[0113] 振幅平衡检测单元1222的乘法单元1236和1238分别对反馈信号的同相信号分量Fbi和正交信号分量Fbq的振幅进行临时调节,然后将Fbi和Fbq输出到平均化单元1224和复合乘法器1225。
[0114] 复合乘法器1225将输出反馈信号的相位旋转45度,然后输出经旋转的反馈信号。
[0115] 平均化单元1224计算输入的各个信号的平均值。即,根据本示例,将计算在反馈信号没有旋转的情况下测量到的幅值的平均值A0和B0,以及在反馈信号旋转45度的情况下检测到的振幅的平均值A45和B45。
[0116] 振幅平衡补偿值计算单元1226根据平均化单元1224获得的平均值,来计算振幅平衡补偿值Ci和Cq。最终(见下),将振幅平衡补偿值Ci和Cq分别与数字信号Txi和Txq相乘。
[0117] 将开关1228和1230转向标为“1”的一侧(“1”侧),直至振幅平衡补偿值Ci和Cq收敛,并且使来自振幅平衡补偿值计算单元1226的输出导向“1”侧。当振幅平衡补偿值Ci和Cq收敛时,将来自振幅平衡补偿值计算单元1226的输出导向标为“0”的一侧(“0”侧)。
[0118] 图13是振幅平衡调节流程图。该过程从步骤1302开始,并进行至步骤1304。在步骤1304,初始化各种不同的参数,如先前误差量PreErr、补偿方向d、步长μ以及误差阈值Err_th。在本示例中,分别将用于同相信号分量和正交信号分量的振幅平衡补偿值Ci和Cq设为1。为先前误差量PreErr设置一较大的值。将补偿方向d设为+1。根据本实施例,如果补偿方向d是+1,那么Cq增加而Ci减小;如果补偿方向d被设为-1,那么Cq减小而Ci增加。
[0119] 在步骤1306,在不进行相位旋转的情况下,测量反馈信号的同相信号分量的平均振幅A0和正交信号分量的平均振幅B0,并获得A0与B0之差的绝对值,将该值称作Err0。
[0120] Err0=Abs(A0-B0)
[0121] 进一步,在反馈信号的相位旋转45度的情况下,测量反馈信号的同相信号分量的平均振幅A45和正交信号分量的平均振幅B45,并获得A45与B45之差的绝对值,将该值称作Err45。
[0122] Err45=Abs(A45-B45)
[0123] 在步骤1308,对绝对值A0和A45进行比较,将两个中较大的一个(或者相等时将Err45)指定为误差值Err,在下面的操作中,即,在步骤1310和1312中,将计算该误差值Err。
[0124] 然后,步骤1314确定误差Err是否大于阈值Err_th。如果确定是肯定的,则过程将进行至步骤1316。
[0125] 然后,步骤1316确定误差Err是否大于或等于先前误差量PreErr。如果确定是肯定的,则过程将进行至步骤1318,在此补偿方向d的值将改变;否则,过程进行至步骤1320。
[0126] 在步骤1320,更新振幅平衡补偿值Ci和Cq。根据本实施例,更新振幅平衡补偿值Ci和Cq,以使Ci与Cq之差的改变量等于μ·Err。其中,参数μ表示用于更新补偿值的步长。其中,不是通过仅改变Ci和Cq中的一个而固定另一个来进行更新的,而是通过沿相反的方向按相同的量同时改变Ci和Cq来进行更新的。采用这种方式,可以执行更新操作,而使控制动作保持稳定。
[0127] 在步骤1322,将经更新的振幅平衡补偿值Ci和Cq提供给振幅平衡检测单元1222。
[0128] 在步骤1324,将误差Err赋值给先前误差量PreErr,过程返回到步骤1306,随后执行与上述相同的操作。
[0129] 在步骤1314,如果确定误差Err小于或等于阈值Err_th,则过程将进行至步骤1326。
[0130] 在步骤1326,开关1228和1230转向“0”侧,以将来自振幅平衡补偿值计算单元1226的输出导向补偿电路1202。相应地,将最佳的振幅平衡补偿值Ci和Cq分别提供给补偿电路1202的乘法单元1232和1234。然后,过程进行至步骤1328,以结束该过程。采用这种方式,对振幅平衡进行了调节。
[0131] 图14是用于解释本发明另一实施例的原理图。图14显示了同相信号分量和正交信号分量的正交性与每个象限的平均振幅矢量之间的关系。尽管在本实施例中采用了诸如QPSK的调制技术,但本实施例当然也适用于其他调制技术。在本实施例中,为对应象限计算了平均振幅矢量r1、r2、r3和r4。当恰当输出同相信号分量和正交信号分量时,取自微小单位角的平均振幅矢量在信号点排列图(即,星座图)上将画出圆形轨迹,如图14中的(A)所示。在这种情况下,四个平均振幅矢量r1、r2、r3和r4的大小彼此相等,r1和r2相互正交,r1和r4相互正交;类似地,r3和r2相互正交,r3和r4相互正交。
[0132] 反之,如果同相信号分量和正交信号分量的振幅彼此不相等,则可考虑以下情况。第一种情况如图14中的(B)所示,其中不是所有平均振幅矢量的大小都相等,并且平均振幅矢量不正交。第二种情况如图14中的(C)所示,其中不是所有平均振幅矢量的大小都相等,而平均振幅矢量相互正交。第三种情况如图14中的(D)所示,其中尽管所有平均振幅矢量的大小都相等,但它们彼此不正交。本实施例利用平均振幅矢量之间的关系来对振幅的不平衡进行补偿。
[0133] 图15是根据本实施例的正交调制的框图。该正交调制系统包括补偿电路1502、数模转换器1504和1506,以及连接到本机振荡器1511的正交调制器1512。所述正交调制系统包括:连接到本机振荡器1514的乘法单元1516,模数转换器1518,以及正交解调器1520,这些都位于反馈路径中。所述正交调制系统包括振幅差计算单元1540,该振幅差计算单元1540进一步包括振幅平衡检测单元1522、象限平均化单元1524、振幅平衡补偿值计算单元1526,以及开关1528和1530。
[0134] 数模转换器1504和1506分别将同相信号分量和正交信号分量从数字格式转换成模拟格式。正交调制器1512对由各数模转换器提供的同相信号分量和正交信号分量进行组合,并输出所述输出信号S。乘法单元1516将输出信号S和来自本机振荡器1514的信号相乘,其中执行了下变频。模数转换器1518将经下变频的信号(是模拟信号)转换成数字信号。正交解调器1520对模数转换器1518的输出进行正交解调,并输出反馈信号的同相信号分量Fbi和正交信号分量Fbq。
[0135] 振幅平衡检测单元1522临时调节反馈信号的同相信号分量Fbi和正交信号分量Fbq,然后将Fbi和Fbq输出到象限平均化单元1524。
[0136] 象限平均化单元1524对属于信号点排列图(星座图)的四个象限中的每个象限的振幅矢量进行平均化。而且,平均化单元1524输出由平均振幅矢量r1、r2、r3和r4的预定组合所限定的第一矢量R1和第二矢量R2。具体来说,R1和R2定义如下。
[0137] R1=(r1-r3)/2
[0138] R2=(r2-r4)/2
[0139] R1等效于椭圆的一个主轴方向上的平均矢量,R2等效于椭圆的另一个主轴方向上的平均矢量。如果获得恰当的振幅平衡,则|R1|等于|R2|,且R1和R2垂直相交。
[0140] 振幅平衡补偿值计算单元1526根据象限平均化单元1524获得的平均值来计算振幅平衡补偿值Ci和Cq。最终,将振幅平衡补偿值Ci和Cq提供给补偿电路1502,用作分别与数字信号Txi和Txq相乘的系数。
[0141] 在振幅平衡补偿值Ci和Cq收敛前将开关1528和1530转向“1”侧,以将来自振幅平衡补偿值计算单元1526的输出导向补偿电路1502。当振幅平衡补偿值Ci和Cq收敛时,将开关1528和1530转向“0”侧。
[0142] 图16是振幅平衡调节流程图。该过程从步骤1602开始,并进行至步骤1604。在步骤1604,初始化各种参数,如振幅平衡补偿值Ci和Cq、开关位置SW、步长μ、先前振幅误差值PreErrAmp,以及平均振幅误差的阈值Err_th。在本示例中,分别将用于同相信号分量和正交信号分量的振幅平衡补偿值Ci和Cq设为1。为先前振幅误差值PreErrAmp和先前相位误差值PreErrPh设置一较大的值。将补偿方向d设为+1,在这种情况下,Ci增加而Cq减小。如果将补偿方向d设为-1,那么当Ci减小而Cq增加。
[0143] 在步骤1606,由象限平均化单元1524计算平均振幅矢量r1、r2、r3和r4。进一步,根据下列公式计算第一复合矢量R1和第二复合矢量R2。
[0144] R1=(r1-r3)/2
[0145] R2=(r2-r4)/2
[0146] 在步骤1608,利用振幅平衡补偿值计算单元1526获得ErrAmp,作为R1与R2之间的振幅差的绝对值,即ErrAmp=Abs(R1-R2)。
[0147] 在步骤1614,确定振幅误差ErrAmp是否大于预定的阈值ErrAmp_th。如果确定是肯定的,则过程进行至步骤1616。
[0148] 在步骤1616,确定振幅误差ErrAmp是否大于或等于前一误差PreErrAmp。如果确定是肯定的,则过程将进行至步骤1618,在此补偿方向d的值将改变,并且过程进行至步骤1620。如果在步骤1616处的确定是否定的,则过程进行至步骤1620。
[0149] 在步骤1620,更新振幅平衡补偿值Ci和Cq。根据本实施例,更新振幅平衡补偿值Ci和Cq,使得Ci与Cq之差的改变量等于μ·ErrAmp。
[0150] 在步骤1622,将经更新的振幅平衡补偿值Ci和Cq设置给振幅平衡检测单元1522。
[0151] 在步骤1624,将振幅误差ErrAmp设为先前振幅误差PreErrAmp的值,然后过程返回到步骤1606。随后执行与上述相同的操作。
[0152] 在步骤1614中,如果确定振幅误差ErrAmp小于或等于预定的阈值ErrAmp_th,则过程进行至步骤1632。
[0153] 在步骤1632,利用振幅平衡补偿值计算单元1526计算Rli与Rlq之间的相位差的绝对值,并将其作为相位误差ErrPh,即,ErrPh=Abs(Rli-Rlq)。其中,Rli表示矢量沿着椭圆的一个主轴的同相分量,Rlq表示矢量沿着椭圆的另一主轴的正交分量。在如图14中的(D)所示的情况下,过程进行至步骤1632。
[0154] 在步骤1634,确定相位误差ErrPh是否大于预定阈值ErrPh_th。如果确定是肯定的,则过程进行至步骤1636。
[0155] 在步骤1636,确定相位误差ErrPh是否大于或等于先前误差PreErrPh。如果确定是肯定的,则过程进行至步骤1638,在此改变补偿方向d的值,然后过程进行至步骤1640。如果在步骤1636处的确定是否定的,则过程直接进行至步骤1640。
[0156] 在步骤1640,更新振幅平衡补偿值Ci和Cq。根据本实施例,更新振幅平衡补偿值Ci和Cq,使得Ci与Cq之差的改变量大于μ·ErrPh。
[0157] 在步骤1642,将经更新的振幅平衡补偿值Ci和Cq设置给振幅平衡检测单元1522。
[0158] 在步骤1644,将相位误差ErrPh设为先前相位误差PreErrPh。过程返回到步骤1606,随后执行与上述相同的操作。
[0159] 在步骤1634,如果确定相位误差ErrPh小于或等于预定阈值ErrPh_th,则过程进行至步骤1646。
[0160] 在步骤1646,使开关1528和1530转向“0”侧,以将振幅平衡补偿值计算单元1526的输出提供给补偿电路1502。然后,过程进行至步骤1648,在此振幅平衡调节过程结束。
[0161] 根据本实施例,在正交放置R1和R2之前,使|R1|和|R2|基本上彼此相等。次序对本发明而言不是实质性的,可以颠倒。
[0162] 图17是根据本发明另一实施例的正交调制系统的框图。该正交调制系统包括:补偿电路1702,数模转换器1704和1706,以及连接到本机振荡器1711的正交解调器1712。所述正交调制系统包括:连接到本机振荡器1714的乘法单元1716,模数转换器1718,以及正交解调器1720,这些都位于反馈路径中。所述正交调制系统包括振幅差计算单元1740,该振幅差计算单元1740进一步包括振幅平衡检测单元1722、振幅平衡补偿值计算单元1726以及开关1728和1730。而且,所述正交调制系统包括相位检测器1732。
[0163] 数模转换器1704和1706分别将同相信号分量和正交信号分量从数字格式转换成模拟格式。正交调制器1712对由各数模转换器提供的同相信号分量和正交信号分量进行组合,然后输出所述输出信号S。乘法单元1716将输出信号S和来自本机振荡器1714的信号相乘,其中执行的是下变频。模数转换器1718将经下变频的信号(是模拟信号)转换成数字信号。正交解调器1720对模数转换器1718的输出信号进行正交解调,并输出反馈信号的同相信号分量Fbi和正交信号分量Fbq。
[0164] 振幅平衡检测单元1722临时调节反馈信号的同相信号分量Fbi和正交信号分量Fbq的振幅,然后将Fbi和Fbq输出到振幅平衡补偿值计算单元1726。
[0165] 振幅平衡补偿值计算单元1726根据振幅平衡检测单元1722的输出来计算振幅平衡补偿值Ci和Cq。
[0166] 在振幅平衡补偿值Ci和Cq收敛之前使开关1728和1730都转向“1”侧,以将来自振幅平衡补偿值计算单元1726的输出提供给振幅平衡检测单元1722。当振幅平衡补偿值Ci和Cq收敛时,使开关1728和1730转向“0”侧,以将来自振幅平衡补偿值计算单元1726的输出提供给补偿电路1702。
[0167] 相位检测器1732将数字信号分量Txi和Txq分别与反馈信号分量Fbi和Fbq进行比较,并获得数字信号与反馈信号之间的相位旋转角φ。将关于相位旋转角φ的信息提供给正交解调器1720,以对两个信号之间的相位旋转进行补偿。
[0168] 图18是振幅平衡调节流程图。过程从步骤1802开始,并进行至步骤1804。在步骤1804,初始化各种参数,如开关位置SW、步长μ,以及平均振幅误差的阈值Err_th。在本示例中,将分别用于同相信号分量和正交信号分量的振幅平衡补偿值Ci和Cq设为1。
[0169] 在步骤1806,测量正交调制之前的同相信号分量Txi和正交信号分量Txq的平均振幅,将其分别用作Aref和Bref。
[0170] 在步骤1808,测量反馈信号的同相信号分量Fbi和正交信号分量Fbq的平均振幅,将其分别用作Afb和Bfb。
[0171] 在步骤1810,计算同相信号分量的平均振幅误差ErrA=Aref-Afb。此外,还计算正交信号分量的平均振幅误差ErrB=Bref-Bfb。
[0172] 在步骤1812,根据振幅值Aref和Bref分别规格化平均振幅误差ErrA和ErrB。将规格化后的值分别称作ErrA_norm和ErrB_norm。
[0173] 在步骤1814,确定规格化后的振幅误差ErrA_norm的绝对值是否大于预定的阈值Err_th。此外,确定规格化后的振幅误差ErrB_norm的绝对值是否大于预定的阈值Err_th。如果确定规格化后的振幅误差的绝对值中的至少一个大于所述阈值,则过程进行至步骤1816。
[0174] 在步骤1816,更新振幅平衡补偿值Ci和Cq。根据本实施例,用于同相信号分量的振幅平衡补偿值Ci的改变量为μ·ErrA_norm,用于正交信号分量的振幅平衡补偿值Cq的改变量为μ·ErrB_norm。然而,也可以利用其他方法来更新振幅平衡补偿值。
[0175] 在步骤1818,将更新后的振幅平衡补偿值Ci和Cq设置给振幅平衡检测单元1722,然后过程返回到步骤1806。随后执行与上述相同的操作。
[0176] 在步骤1814,如果确定规格化后的振幅误差小于或等于预定阈值Err_th,则过程将进行至步骤1820。
[0177] 在步骤1820,使开关1728和1730转向“0”侧,以将振幅平衡补偿值计算单元1726的输出提供给补偿电路1702。然后,过程进行至步骤1822,以结束振幅平衡调节。
[0178] 图19是根据本发明另一实施例的正交调制系统的框图。该正交调制系统包括:补偿电路1902,数模转换器1904和1906,以及连接到本机振荡器1911的正交调制器1912。所述正交调制系统包括:连接到本机振荡器1914的乘法单元1916,模数转换器1918,以及正交解调器1920。所述正交调制系统包括振幅差计算单元1940,该振幅差计算单元1940进一步包括:振幅平衡检测单元1922,振幅平衡补偿值计算单元1926,开关1928和1930,乘法单元1932和1934,以及平均化单元(Ave)1936和1938。
[0179] 数模转换器1904和1906分别将同相信号分量和正交信号分量从数字格式转换成模拟格式。正交调制器1912对由各数模转换器提供的同相信号分量和正交信号分量进行组合,然后输出所述输出信号S。乘法单元1916将输出信号S和来自本机振荡器1914的信号相乘,其中执行的是下变频。模数转换器1918将下变频后的信号(是模拟信号)转换成数字信号。正交解调器1920对来自模数转换器1918的输出信号进行正交解调,并输出反馈信号的同相信号分量Fbi和正交信号分量Fbq。
[0180] 振幅平衡检测单元1922临时调节反馈信号的同相信号分量Fbi和正交信号分量Fbq的振幅,并将信号分量Fbi和Fbq输出到振幅平衡补偿值计算单元1926。
[0181] 振幅平衡补偿值计算单元1926根据振幅平衡检测单元1922的输出来计算振幅平衡补偿值Ci和Cq。
[0182] 在振幅平衡补偿值Ci和Cq收敛之前使开关1928和1930转向“1”侧,以将来自振幅平衡补偿值计算单元1926的输出提供给振幅平衡检测单元1922。当振幅平衡补偿值Ci和Cq收敛时,将开关1928和1930转向“0”侧,以将来自振幅平衡补偿值计算单元1926的输出提供给补偿电路1902。
[0183] 乘法单元1932将正交调制之前的同相信号分量Txi(作为基准信号Refi)和反馈信号的正交信号分量Fbq相乘。由平均化单元1936对乘积进行平均化,并且将其输出为第一平均值Ave1。
[0184] 乘法单元1934将正交调制之前的正交信号分量Txq(作为基准信号Refq)和反馈信号的同相信号分量Fbi相乘。由平均化单元1938对乘积进行均衡,并且将其输出为第二平均值Ave2。
[0185] 下面将解释本实施例的操作原理。由以下公式表示从反馈信号获得的基带中的解调的信号Fb的同相分量Fbi和正交分量Fbq,其中φ表示反馈信号的相位旋转。
[0186] Fbi=A·Refi·cosφ+B·Refq·sinφ
[0187] Fbq=A·Refi·sinφ-B·Refq·cosφ
[0188] 其中,A和B分别表示所测振幅值的同相信号分量和正交信号分量。如果假定同相信号分量与正交信号分量不相关,则反馈信号的正交信号分量Fbq和正交调制之前的同相信号分量Refi的乘积的第一平均值Ave1=E[Fbq·Refi]可以近似如下。在此以及其他地方,E[]是均衡化的表示,其是通过用一合适的因子去除由积分器总计的值来获得的。
[0189]
[0190]
[0191]
[0192] 类似地,反馈信号的同相信号分量Fbi和正交调制之前的正交信号分量Refq的乘积的第二平均值Ave2=E[Fbi·Refq]可以近似如下。
[0193]
[0194]
[0195]
[0196] 其中,Pref_i和Pref_q分别表示正交调制之前的同相信号分量和正交信号分量的平均功率。然后,考虑比值(Ave1·Pref_q)/(Ave2·Pref_i)。该比值表达如下。
[0197] [公式3]
[0198]
[0199] 也就是说,该比值提供了一个关于振幅平衡的度量。如果该比值接近1,则振幅平衡是恰当的,如果该比值偏离1,则振幅不平衡增加。在本实施例中,计算该比值,并且将同相信号分量和正交信号分量的振幅调整得使该比值接近1。
[0200] 图20是振幅平衡调节流程图。该过程从步骤2002开始,并进行至步骤2004。在步骤2004,初始化各种参数,如先前平衡误差量PreErr、补偿方向d、步长μ,以及平衡误差的阈值Err_th。在本示例中,将同相信号分量和正交信号分量的振幅平衡补偿值Ci和Cq分别设为1。为先前平衡误差量PreErr设置一较大的值。将补偿方向d(可以设置为+1和-1中的一个)设为+1。
[0201] 在步骤2006,计算第一平均Ave1和第二平均Ave2。
[0202] 在步骤2008,测量正交调制之前的同相平均功率Pref_i和正交平均功率Pref_q。
[0203] 在步骤2010,根据下列公式计算误差Err。
[0204] Err=Abs((Ave1·Pref_q)/(Ave2·Pref_i)-1)
[0205] 在步骤2014,确定确定误差Err是否大于预定的阈值Err_th。如果确定是肯定的,则过程将进行至步骤2016。
[0206] 在步骤2016,确定误差Err是否大于或等于先前误差PreErr。如果确定是肯定的,则过程进行至步骤2018,在此将改变补偿方向d的值,接着过程进行至步骤2020。如果在步骤2016处的确定是否定的,则过程将直接进行至步骤2020。
[0207] 在步骤2020,更新振幅平衡补偿值Ci和Cq。在本实施例中,更新振幅平衡补偿值Ci和Cq,使得Ci与Cq之差的改变量大于μ·Err。
[0208] 在步骤2022,将更新后的振幅平衡补偿值Ci和Cq设置给振幅平衡检测单元1922。
[0209] 在步骤2024,将误差Err设为先前误差PreErr的值,然后过程返回到步骤2006。随后执行与上述相同的操作。
[0210] 在步骤2014中,如果确定误差Err小于或等于预定的阈值Err_th,则过程进行至步骤2026。
[0211] 在步骤2026,使开关1928和1930转向“0”侧,以将振幅平衡补偿值计算单元1926的输出提供给补偿电路1902。然后,过程进行至步骤2028,以结束振幅平衡调节。
[0212] 其中,可以将振幅平衡补偿值Ci和Cq提供给数字信号,如图12所示,或者另选地提供给模拟信号,如图21所示。
[0213] [实施例3]
[0214] 下面将说明实施例3,其中通过调节实轴和虚轴之间正交性的偏差(角度偏转和正交性偏转)来减小映像信号分量。首先,简要概述正交性偏转。
[0215] 在图22中的(A)中,显示了信号点的平均的轨迹,该信号点呈现在0-360度范围内的微小单位角内,该轨迹表示同相信号分量和正交信号分量被恰当输出的情况。在这种情况下,实轴和虚轴成正交关系。反之,在图22中的(B)中,实轴Re和虚轴Im以与90度相差θ的角度相交。在这种情况下,同相信号分量I和正交信号分量Q发生失真,并且各由如下公式表示。
[0216] I’=I-Q·sinθ
[0217] Q’=Q·cosθ
[0218] 由于该失真,在信号点排列图(星座图)上的信号点的轨迹形成椭圆,并且输出信号S发生了失真。另外,应该注意,参照图2、5、11、14和17所讨论的相位旋转角Ф指的是当使实轴和虚轴保持90度时反馈信号的围绕原点的相位旋转角。
[0219] 图23是根据实施例3的正交调制系统的框图。该正交调制系统包括:正交性偏转补偿电路2302,数模转换器2304和2306,以及连接到本机振荡器2311的正交调制器2312。所述正交调制系统包括:连接到本机振荡器2314的乘法单元2316,模数转换器2318,以及正交解调器2320。所述正交调制系统包括角偏转计算单元2336,该角偏转计算单元2336进一步包括:正交性偏转检测单元2322,绝对值累计单元2324和2326,以及差量确定单元
2328。
[0220] 数模转换器2304和2306分别将同相信号分量和正交信号分量从数字格式转换成模拟格式。正交调制器2312对由各数模转换器提供的同相信号分量和正交信号分量进行组合,并输出所述输出信号S。乘法单元2316将输出信号S和来自本机振荡器2314的信号相乘,其中执行的是下变频。模数转换器2318将下变频后的信号(是模拟信号)转换成数字信号。正交解调器2320对模数转换器2318的输出信号进行正交解调,并输出反馈信号的同相信号分量Fbi和正交信号分量Fbq。
[0221] 正交性偏转检测单元2322临时调节反馈信号的同相信号分量Fbi和正交信号分量Fbq的角偏转,然后将信号分量分别输出到绝对值累计单元2324和2326。
[0222] 绝对值累计单元2324接收同相信号分量Fbi的绝对值并对其进行总计,然后将该总计值输出为第一累计总值。此外,绝对值累计单元2326接收反馈信号的正交信号分量Fbq的绝对值并对其进行总计,然后将该总计值输出为第二累计总值。
[0223] 差量确定单元2328根据从绝对值累计单元2324和2326获得的第一和第二累计总值来计算正交性偏转θfb。最终,正交性偏转θfb成为正交性偏转θ,其被提供给正交性偏转补偿电路2302。
[0224] 图24是显示正交性偏转补偿电路2302示例的框图。正交性偏转补偿电路2302包括加法器2402、乘法单元2404和2406以及系数倍乘单元2408和2410。加法器2402输出同相信号分量Txi和乘法单元2404的输出的和。乘法单元2404输出正交信号分量Txq和系数倍乘单元2408的输出的乘积。乘法单元2406输出正交信号分量Txq和系数倍乘单元2410的输出的乘积。系数倍乘单元2408根据作为差量确定单元2328的输出的角度偏转θ输出tanθ。系数倍乘单元2410根据作为差量确定单元2328的输出的角度偏转θ输出1/cosθ。
[0225] 加法器2402的输出等于Txi+Txq·tanθ,其被提供给数模转换器2304。乘法单元2406的输出等于Txq/cosθ,其被提供给数模转换器2306。这些信号都经受了如参照图22所说明的失真。提供给数模转换器2304的同相信号分量经受了失真,变成如下公式所示。
[0226] (Txi+Txq·tanθ)-(Txq/cosθ)·sinθ=Txi
[0227] 也就是说,消除了正交性偏转。提供给数模转换器2306的正交信号分量接受失真,变成如下公式所示。
[0228] (Txq/cosθ)·cosθ=Txq
[0229] 也就是说,消除了正交性偏转。
[0230] 另外,尽管在参照图22描述本实施例时实轴是固定的,而考虑虚轴有一个误差θ,但本发明并不局限于此,相反实轴发生偏转的变型例也是可行的。
[0231] 图25是调节实轴和虚轴之间的角偏转的流程图。过程从步骤2502开始,并进行至步骤2504。在步骤2504,初始化各种参数。即,将用于正交性偏转检测单元2322的补偿角θfb以及用于正交性偏转补偿电路2302的补偿角θ设置为零。将用于确定收敛的参数N设置为零。此外,将更新补偿角时的改变量Δθ设置为一个合适的值。
[0232] 在步骤2506,计算反馈信号的实部Fbi的绝对值的累计总值,作为第一累计值。
[0233] 在步骤2508,计算反馈信号的虚部Fbq的绝对值的累计总值,作为第二累计值。
[0234] 在步骤2510,计算第一累计总值与第二累计总值之差的绝对值,作为误差DiffAcm1。
[0235] 在步骤2512,确定误差DiffAcm1是否小于或等于先前误差DiffAcm2。如果确定是肯定的,则过程进行至步骤2518。否则,过程进行至步骤2514。
[0236] 在步骤2514,倒置待提供给正交性偏转检测单元2322的补偿角θfb的方向(符号)。
[0237] 在步骤2516,使参数N的值递增1。
[0238] 在步骤2518,更新补偿角θfb。
[0239] 在步骤2520,将误差DiffAcm1设置给先前误差DiffAcm2的值。
[0240] 在步骤2522,确定参数N是否大于预定值。如果确定是否定的,则过程返回到步骤2506和2508,随后重复相同的过程。如果确定是肯定的,即参数N大于预定值,则过程进行至步骤2524。
[0241] 在步骤2524,将提供给正交性偏转检测单元2322的补偿角θfb,设为正交性偏转补偿电路2302的补偿角θ的值。由正交性偏转补偿电路2302利用补偿角θ=θfb来对正交性偏转进行补偿。然后,过程进行至步骤2526,以结束该过程。
[0242] 图26显示误差DiffAcm1的绝对值与补偿值的更新次数N之间的典型关系。当误差的绝对值几乎收敛到一个值时,误差的绝对值与先前误差的值之间的大小关系会经常改变。相应地,可以假定,通过监测参数N的值,误差的绝对值在趋近一收敛值。
[0243] 图27是根据本发明另一实施例的正交调制系统的框图。该正交调制系统包括正交性偏转补偿电路2702、数模转换器2704和2706,以及连接到本机振荡器2711的正交调制器2712。所述正交调制系统包括连接到本机振荡器2714的乘法单元2716、模数转换器2718,以及正交解调器2720。所述正交调制系统包括角偏转计算单元2736,该角偏转计算单元2736进一步包括正交性偏转检测单元2722、乘法单元2724、累计单元2726,以及符号确定单元2728。
[0244] 数模转换器2704和2706分别将同相信号分量和正交信号分量从数字格式转换成模拟格式。正交调制器2712对由各数模转换器提供的同相信号分量和正交信号分量进行组合,并输出所述输出信号S。乘法单元2716将输出信号S和来自本机振荡器2714的信号相乘,其中执行的是下变频。模数转换器2718将下变频后的信号(是模拟信号)转换成数字信号。正交解调器2720对模数转换器2718的输出进行正交解调,并输出反馈信号的同相信号分量Fbi和正交信号分量Fbq。
[0245] 正交性偏转检测单元2722临时调节反馈信号的同相信号分量Fbi和正交信号分量Fbq的角偏转,然后将Fbi和Fbq提供给乘法单元2724。
[0246] 乘法单元2724计算反馈信号的同相信号分量Fbi和正交信号分量Fbq的乘积。
[0247] 累计单元2726对乘法单元2724的输出乘积进行总计。
[0248] 符号确定单元2728根据同相信号分量Fbi和正交信号分量Fbq的乘积的累计总值计算正交性偏转θfb。最后,正交性偏转θfb成为待提供给正交性偏转补偿电路2702的正交性偏转θ。
[0249] 下面将解释本实施例的操作原理。从反馈信号获得解调的基带信号Fb,其由下列公式表示。
[0250] Fbi=Txi·cosφ+Txq·sin(θ-φ)
[0251] Fbq=Txi·sinφ-Txq·cos(θ-φ)
[0252] 其中,θ表示实轴与虚轴之间的正交性偏转,φ表示反馈信号的相位旋转角。反馈信号的同相信号分量Fbi和正交信号分量Fbq的乘积由如下公式表示。
[0253] Fbi·Fbq=Txi·Txq·cos(2φ-θ)
[0254] +(1/2)Txi2·sin2φ
[0255] +(1/2)Txq2·sin(2θ-2φ)
[0256] 假定同相信号分量Txi和正交信号分量Txq不相关,该公式等号右侧第一项,即Txi·Txq·cos(2φ-θ),通过累计单元2726对乘积进行累计而变成零。第二项,即(1/2)2 2
Txi·sin2φ,独立于正交性偏转θ。因此,只有第三项即(1/2)Txq·sin(2θ-2φ)依赖于正交性偏转θ。此外,如果同相信号分量Txi和正交信号分量Txq不相关,则反馈信号的同相信号分量和正交信号分量的乘积的累计总值变成零,平均值E[Fbi·Fbq]变成零。相应地,反馈信号Fb的同相信号分量和正交信号分量的乘积的累计总值IqAcm形成如图28中的(A)所示的图。因此,通过在改变补偿角θ时监视乘积的累计总值IqAcm并且通过确定使IqAcm=0的最佳补偿角θ,可以获得最佳补偿角θ。
[0257] 图29是调节实轴与虚轴之间的角偏转的流程图。过程从步骤2902开始,并进行至步骤2904。在步骤2904,初始化各种参数。
[0258] 在步骤2906,将当前累计总值IqAcm1复位为0。
[0259] 在步骤2908,计算反馈信号的实部Fbi和虚部Fbq的乘积的累计总值IqAcm1。
[0260] 在步骤2910,将累计总值变成绝对值。尽管这一步骤不是必要的,但由于下列原因通过该步骤还是值得的。即,如果不执行到绝对值的变换,则最佳补偿角只由一个准则来确定,该准则用于获得提供累计总值零点的补偿角,如图28中的(A)所示。另一方面,如果如图28中的(B)所示提供累计总值的绝对值,则可以利用另一个准则,即可以确定累计总值变化率发生改变的点以提供最佳补偿角。在补偿角之前和之后变化率发生了改变,因为斜率的符号发生了改变。由此,根据后一种方法,提高了确定最佳补偿角的精度
[0261] 在步骤2912,确定表示最近和当前累计总值的IqAcm1是否小于或等于表示先前累计总值的IqAcm2。如果确定是肯定的,则过程进行至步骤2918。否则,过程进行至步骤2914。
[0262] 在步骤2914,倒置待提供给正交性偏转检测单元2722的补偿角θfb的方向(符号)。
[0263] 在步骤2916,使参数N的值递增1。
[0264] 在步骤2918,更新补偿角θfb。
[0265] 在步骤2920,将最近和当前的累计总值IqAcm1设为先前累计总值IqAcm2的值。
[0266] 在步骤2922,确定参数N是否大于预定值。如果确定是否定的,则过程返回到步骤2906以重复相同的过程。如果确定是肯定的,则过程进行至步骤2924。
[0267] 在步骤2924,将待提供给正交性偏转补偿电路2902的补偿角θ设置为提供给正交性偏转检测单元2922的补偿角θfb。正交性偏转补偿电路2702利用补偿角θ=θfb对正交性偏转进行补偿。然后,过程进行至步骤2926,以结束该过程。
[0268] 图30是根据本发明另一实施例的正交调制系统的框图。该正交调制系统包括正交性偏转补偿电路3002、数模转换器3004和3006,以及连接到本机振荡器3011的正交调制器3012。所述正交调制系统包括连接到本机振荡器3014的乘法单元3016、模数转换器3018,以及正交解调器3020。所述正交调制系统包括角偏转计算单元3036,该角偏转计算单元3036包括正交性偏转检测单元3022、快速傅立叶变换(FFT)处理单元3024、功率分析单元3026、正交性偏转补偿值计算单元3028,以及开关3030。
[0269] 数模转换器3004和3006分别将同相信号分量和正交信号分量从数字格式转换成模拟格式。正交调制器3012对由各数模转换器提供的同相信号分量和正交信号分量进行组合,并输出所述输出信号S。乘法单元3016将输出信号S和来自本机振荡器3014的信号相乘,其中执行的是下变频。模数转换器3018将下变频后的信号(是模拟信号)转换成数字信号。正交解调器3020对模数转换器3018的输出信号进行正交解调,并将反馈信号的同相信号分量Fbi和正交信号分量Fbq输出到正交性偏转检测单元3022。
[0270] 正交性偏转检测单元3022临时调节反馈信号的同相信号分量Fbi和正交信号分量Fbq的角偏转,然后将Fbi和Fbq提供给FFT处理单元3024。
[0271] FFT处理单元3024输出表示包含在反馈信号中的频率分量的信号。
[0272] 功率分析单元3026对来自FFT处理单元3024的信号进行分析,监测不必要的信号(映像信号频率),然后输出监测结果。
[0273] 正交性偏转补偿值计算单元3028计算并输出补偿值θ,以根据功率分析单元3026提供的监测结果来矫正正交性偏转。
[0274] 在补偿值θ收敛之前,使开关3030转向“1”侧,以将补偿角θ提供给正交性偏转检测单元3022,补偿值θ用作θfb。当补偿值θ收敛到一合适值时,使开关3030转向“0”侧,以将补偿值θ提供给正交性偏转补偿电路3002。
[0275] 在本实施例中,正交性偏转θfb逐渐改变,对不必要的信号(映像信号)进行监测,确定使不必要信号最小化的正交性偏转θfb,并将其提供给正交性偏转补偿电路3002。
[0276] 另外,虽然在本实施例中获得了使不必要信号最小化的正交性偏转,也可以利用这种技术来补偿I与Q之间的定时差以及振幅不平衡。如图36所示,在根据反馈信号的同相信号分量Fbi和正交信号分量Fbq对IQ定时差进行补偿时,由定时检测单元获得一表示同相信号分量与正交信号分量之间的时间差的信号。表示该时间差的信号由FFT处理单元转换成频域中的信号,并且功率分析单元对该频率分量进行监测。将监测结果提供给定时补偿值计算单元,在此计算用于补偿时间差的补偿值Ci和Cq。将补偿值Ci和Cq提供给定时检测单元,直到补偿值Ci和Cq收敛,并且当补偿值Ci和Cq收敛时将补偿值Ci和Cq提供给定时补偿电路,以对定时差进行补偿。如图37所示,在根据反馈信号的同相信号分量Fbi和正交信号分量Fbq来补偿振幅不平衡的情况下,由振幅平衡检测单元获得一表示同相信号分量与正交信号分量之间的振幅不平衡的信号。该信号由FFT处理单元转换成频域中的信号,并且由功率分析单元对频率分量进行监测。将监测结果提供给振幅平衡补偿值计算单元,在此计算用于补偿振幅平衡的补偿值Ci和Cq。将补偿值Ci和Cq提供给振幅平衡检测单元,直到补偿值Ci和Cq收敛,而当补偿值Ci和Cq收敛时将补偿值Ci和Cq提供给振幅平衡补偿电路,从而获得振幅平衡。
[0277] 图31是根据本发明另一实施例的正交调制系统的框图。该正交调制系统包括正交性偏转补偿电路3102、数模转换器3104和3106,以及连接到本机振荡器3111的正交调制器3112。所述正交调制系统包括连接到本机振荡器3114的乘法单元3116、模数转换器3118,以及正交解调器3120。所述正交调制系统包括角偏转计算单元3136,该角偏转计算单元3136包括正交性偏转检测单元3122、减法单元3124和3126、绝对值累计单元3128和
3130,以及补偿值运算单元3132。此外,所述正交调制系统包括相位检测器3134。
[0278] 数模转换器3104和3106分别将同相信号分量和正交信号分量从数字格式转换成模拟格式。正交调制器3112对由各数模转换器提供的同相信号分量和正交信号分量进行组合,并输出所述输出信号S。乘法单元3116将输出信号S和来自本机振荡器3114的信号相乘,其中执行的是下变频。模数转换器3118将下变频后的信号(是模拟信号)转换成数字信号。正交解调器3120对来自模数转换器3118的输出信号进行正交解调,并输出反馈信号的同相信号分量Fbi和正交信号分量Fbq。
[0279] 正交性偏转检测单元3122临时调节反馈信号的同相信号分量Fbi和正交信号分量Fbq的角偏转,然后将Fbi和Fbq提供给减法器3124。
[0280] 减法器3124输出正交调制之前的同相信号分量Txi与反馈信号的同相信号分量Fbi之间的差。由绝对值累计单元3128对该差值以累计方式进行总计,并将其输出为第一累计总值。
[0281] 减法器3126输出正交调制之前的正交信号分量Txq与反馈信号的正交信号分量Fbq之间的差。由绝对值累计单元3130对该差值以累计方式进行总计,并将其输出为第二累计总值。
[0282] 补偿值运算单元3132计算使第一和第二累计总值最小化的正交性偏转θfb。
[0283] 相位检测器3134对正交调制之前的数字信号与反馈信号进行比较,并获得反馈信号的相位旋转角φ。由正交解调器3120对相位旋转角φ进行补偿。
[0284] 在本实施例中,在正交性偏转θfb渐变时对第一和第二累计总值进行监测,并将使第一和第二累计总值最小化的正交性偏转θfb提供给正交性偏转补偿电路3102。
[0285] 图32是根据本发明另一实施例的正交调制系统的框图。该正交调制系统包括正交性偏转补偿电路3202、数模转换器3204和3206,以及连接到本机振荡器3211的正交调制器3212。所述正交调制系统包括连接到本机振荡器3214的乘法单元3216、模数转换器3218、正交解调器3220,以及角偏转计算单元3222。
[0286] 数模转换器3204和3206分别将同相信号分量和正交信号分量从数字格式转换成模拟格式。正交调制器3212对由各数模转换器提供的同相信号分量和正交信号分量进行组合,并输出所述输出信号S。乘法单元3216将输出信号S和来自本机振荡器3214的信号相乘,其中执行的是下变频。模数转换器3218将下变频后的信号(是模拟信号)转换成数字信号。正交解调器3220对模数转换器3218的输出信号进行正交解调,并输出反馈信号的同相信号分量Fbi和正交信号分量Fbq。
[0287] 角偏转计算单元3222根据正交调制之前的数字信号和反馈信号计算正交性偏转θ。将正交性偏转θ提供给正交性偏转补偿电路3202。角偏转计算单元3222包括乘法单元3230和3232以及加法器3234,它们用于获得正交调制之前的数字信号大小的平方值,即2 2
Powref=Txi+Txq。角偏转计算单元3222包括乘法单元3224和3226以及加法器3228,它
2 2
们用于获得反馈信号的大小的平方值,即Powback=Fbi+Fbq。角偏转计算单元3222包括加法器3236,其用于输出数字信号与反馈信号的大小的平方值的差,即Powback-Powref。角偏转计算单元3222包括乘法单元3238和3240,它们用于获得正交调制之前的同相信号分量和正交信号分量的乘积的两倍,即2·Txi·Txq。角偏转计算单元3222包括除法器3242,其用于获得乘法单元3240的输出与加法器3236的输出之比。此外,角偏转计算单元3222包括补偿值更新单元3244,其用于根据除法器3242的输出获得正交性偏转θ。
[0288] 正交调制之前的数字信号的功率Powref由幅值的平方来表示,即,[0289] Powref=Txi2+Txq2
[0290] 反馈信号Fb的功率Powback表示如下:
[0291] Powback=Fbi2+Fbq2
[0292] =(Txi·cosφ+Txq·sin(θ-φ))2+(Txi·sinφ-Txq·cos(θ-φ))2[0293] =Txi2+Txq2+2Txi·Txq·sinθ
[0294] 相应地,由下列公式获得正交性偏转θ。
[0295] [公式4]
[0296]
[0297] 计算正交性偏转θ的方法不局限于此,也可以采用其他方法(将根据所要求的运算算法修改角偏转计算单元3222的配置)。例如,如下所述,可以利用时间中某一点处的一信号和时间中另一点处的另一信号来获得正交性偏转。
[0298] 图33显示了一示例。在图33中的(A)中,显示了某一时间处的正交调制之前的一数字信号,即Tx(t)=Txi(t)+jTxq(t),以及下一时间点处的一数字信号,即Tx(t+1)=Txi(t+1)+jTxq(t+1)。在图33中的(B)中,显示了对应于数字信号Tx(t)和Tx(t+1)的反馈信号。在反馈信号中反映了正交性偏转θ的影响和相位旋转φ的影响。在这种情况下,数字信号Tx(t)和Tx(t+1)的点积的虚部表示如下。
[0299] Im[(Txi(t)+jTxq(t))·(Txi(t+1)+jTxq(t+1))*]
[0300] =Txq(t)Txi(t+1)-Txi(t)Txq(t+1)
[0301] 其中,“*”表示复共轭,Im[]表示该变量的虚部。另一方面,与数字信号Tx(t)和Tx(t+1)相对应的反馈信号的点积的虚部表示如下。
[0302] Im[{(Txi(t)+Txq(t)sinθ+jTxq(t)cosθ)exp(jφ)}·{(Txi(t+1)+Txq(t+1)sinθ+jTxq(t+1)cosθ)exp(jφ)}*]
[0303] =cosθ(Txq(t)Txi(t+1)-Txi(t)Txq(t+1))
[0304] 相应地,利用以下公式来获得正交性偏转θ。
[0305] θ=cos-1(Im[反馈信号的点积]/Im[正交之前的信号的点积])
[0306] [实施例4]
[0307] 下面将描述实施例4,其中,将对同相信号分量和正交信号分量的定时、振幅以及角偏转集总进行调节。
[0308] 图34是根据本发明实施例4的正交调制系统的框图。该正交调制系统包括补偿电路3402、数模转换器3404和3406,以及正交调制器3412。所述正交调制系统包括模数转换器3418、正交解调器3420,以及失配量计算单元3422。
[0309] 数模转换器3404和3406分别将同相信号分量和正交信号分量从数字格式转换成模拟格式。正交调制器3412对由各数模转换器提供的同相信号分量和正交信号分量进行组合,并输出一输出信号。模数转换器3418将所述输出信号(是模拟信号)转换成数字信号。正交解调器3420对模数转换器3418的输出信号进行正交解调,并输出反馈信号的同相信号分量Fbi和正交信号分量Fbq。
[0310] 失配量计算单元3422根据正交调制之前的数字信号Tx与反馈信号Fb计算同相信号分量与正交信号分量之间的失配(差)量,即定时差、正交性偏转以及振幅差。将失配量提供给补偿电路3402,以对失配进行补偿。失配量计算单元3422包括:延迟电路3424,乘法单元3426、3428、3430和3432,积分器3434、3436、3438和3440,以及补偿值计算单元3442。
[0311] 积分器3434输出E[Txi(t)·Fbi(t)],作为输出P。在此以及其他地方,E[]是均衡化的表达,其是通过将积分器进行总计得到的值除以一合适的因子来获得的。假定同相和正交信号分量彼此不相关,则输出P近似如下。
[0312]
[0313]
[0314]
[0315] 其中,Δt表示同相信号分量与正交信号分量之间的定时差,φ表示相位旋转角,θ表示实轴和虚轴的正交性偏转。
[0316] 类似地,积分器3436输出一输出Q,其中输出Q等于E[Txi(t)·Fbq(t)];积分器3438输出一输出R,其中输出R等于E[Txq(t)·Fbi(t)];以及积分器3440输出一输出S,其中输出S等于E[Txq(t)·Fbq(t)]。Q、R以及S近似如下。
[0317]
[0318]
[0319]
[0320]
[0321]
[0322]
[0323]
[0324]
[0325]
[0326]
[0327]
[0328] 接下来,由补偿值计算电路3442计算P2+Q2和R2+S2,其表示如下。
[0329] P2+Q2=E[Txi(t)·Fbi(t)]2+E[Txi(t)·Fbq(t)]2=A2E[Txi2(t)]2[0330] R2+S2=E[Txq(t)·Fbi(t)]2+E[Txq(t)·Fbq(t)]2=B2E[Txq2(t)]2[0331] 其中,P2+Q2和R2+S2既不依赖于相位旋转角φ,也不依赖于正交性偏转θ。因此,就可以在延迟电路3424逐渐改变延迟量时通过监测和比较这些值来计算最佳延迟量。
[0332] 接下来,将确定振幅差。在本实施例中,例如使用以下公式。
[0333] E[Txi2(t)]/(P2+Q2)1/2=1/A,以及
[0334] E[Txq2(t)]/(R2+S2)1/2=1/B
[0335] 可以通过其他方法,如通过确定振幅之间的差(|A-B|),和通过确定振幅比(A/B或B/A),来获得振幅差。
[0336] 接下来,利用下列公式确定相位旋转角φ和正交性偏转θ。
[0337] Q/P=tanφ
[0338] -R/S=tan(φ-θ)
[0339] 将由补偿值计算电路3422获得的时间差、振幅差以及正交性偏转提供给补偿电路3422,以对这些差进行补偿。
[0340] 图35是根据本发明另一实施例的正交调制系统的框图。该正交调制系统包括补偿电路3502、数模转换器3504和3506,以及正交调制器3512。所述正交调制系统包括模数转换器3518、正交解调器3520、失配量计算单元3522,以及相位检测器3544。
[0341] 数模转换器3504和3506分别将同相信号分量和正交信号分量从数字格式转换成模拟格式。正交调制器3512对由各数模转换器提供的同相信号分量和正交信号分量进行组合,并输出一输出信号。模数转换器3518将下变频后的信号(是模拟信号)转换成数字信号。正交解调器3520对模数转换器3518的输出进行正交解调,并输出反馈信号的同相信号分量Fbi和正交信号分量Fbq。
[0342] 失配量计算单元3522根据正交调制之前的数字信号Tx和反馈信号Fb计算同相信号分量与正交信号分量之间的失配量,即定时差、正交性偏转以及振幅差。将这些失配量提供给补偿电路3502,以对失配进行补偿。失配量计算单元3522包括:延迟电路3524,乘法单元3526、3528、3530和3532,积分器3534、3536、3538和3540,以及补偿值计算单元3542。此外,失配量计算单元3522包括减法器3546、3550、3554和3558。此外,失配量计算单元3522包括乘法单元3548、3552、3556和3560,它们用于插入权重α1、α2、α3和α4。
[0343] 在图34所示的示例中,当相位旋转角φ较小时,输出Q和输出R也较小,并且可能不能获得准确的结果。在图35所示的示例中,将相位旋转角φ的值故意设置一较大的值,例如,使坐标轴旋转45度。然后,测量输出P、Q、R和S。采用这种方式,减小了计算准确度可能的下降。为此,失配量计算单元3522包括乘法单元3548、3552、3556以及3560,它们用于引入权重α1、α2、α3和α4,并且失配量计算单元3522还包括相位检测器3544。具体来说,图34所示情况中的P、Q、R和S表示如下。
[0344] P=E[Txi(t)·Fbi(t)]
[0345] Q=E[Txi(t)·Fbq(t)]
[0346] R=E[Txq(t)·Fbi(t)]
[0347] S=E[Txq(t)·Fbq(t)]
[0348] 按下列公式对这4个值进行坐标变换。
[0349] P=E[Txi(t)·{Fbi(t)-α1Txq}]
[0350] Q=E[Txi(t)·{Fbq(t)-α2Txq}]
[0351] R=E[Txq(t)·{Fbi(t)-α3Txi}]
[0352] S=E[Txq(t)·{Fbq(t)-α4Txi}]
[0353] 如果进行45度的坐标变换,例如,权重将采取以下值。
[0354] α1=α2=α3=α4=(1/2)1/2
[0355] 不同的权重值为坐标变换提供不同的角度。
[0356] 此外,本发明并不局限于这些实施例,相反在不偏离本发明的范围的条件下可以进行各种变型和修改。
相关专利内容
标题 发布/更新时间 阅读量
三分正交分频器 2020-05-12 116
采样正交解调器 2020-05-12 21
正交连接器系统 2020-05-12 720
正交底板连接器 2020-05-13 512
正交时钟除法器 2020-05-13 113
正交检测器、正交解调器及采样正交解调器 2020-05-11 10
正交望远镜 2020-05-11 174
正交导流整流器 2020-05-12 850
正交调制系统 2020-05-12 384
正交调制系统 2020-05-13 207
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈