首页 / 专利库 / 灯光 / 手电筒 / 光源 / 白炽灯 / 卤素灯 / Method of manufacturing tungsten halogen lamp

Method of manufacturing tungsten halogen lamp

阅读:74发布:2023-03-27

专利汇可以提供Method of manufacturing tungsten halogen lamp专利检索,专利查询,专利分析的服务。并且The fill of a tungsten halogen lamp includes an organic halide. After the exhausting, filling and sealing steps, the lamp is heated in a monoxidizing atmosphere to the dissociation temperature of the organic halide prior to lamp finishing.,下面是Method of manufacturing tungsten halogen lamp专利的具体信息内容。

I claim:1. In the manufacturing of a tungsten halogen lamp containing a fill including an organic halide, the steps which comprise exhausting the lamp, adding said fill to the lamp, sealing the lamp and then heating the lamp in a nonoxidizing atmosphere to a temperature sufficient to dissociate the organic halide.2. The process of claim 1 wherein said heating step occurs prior to any lamp burning.3. The process of claim 1 wherein said organic halide is chloroform.

说明书全文

THE INVENTION

This invention is concerned with tungsten halogen lamps in which the halogen is introduced into the lamp as an organic halide, such as is disclosed in U.S. Pat. Nos. 3,788,725, 3,811,063 and 3,912,961. It is particularly concerned with minimizing the problem resulting from dark carbon deposits on the wall of the lamp envelope, as mentioned in U.S. Pat. No. 3,854,786. Such problems are particularly severe in lamps used in reprographic applications, such as are disclosed in U.S. Pat. No. 3,943,395. In such lamps, the active filament sections comprise only part of the total filament length and since the carbon deposit occurs on the wall only in the vicinity of the hot filament, the reduction of light emission is worse in such lamps.

Methods of eliminating carbon deposits are known. For example, heating of the exhaust tubulation during the filling step will dissociate the organic halide and deposit the carbon on the exhaust tubulation. This requires modification of the exhaust tubulation to permit heating thereof to the dissociation temperature and, therefore, adds considerable cost to the lamp. This method also removes the carbon from the lamp which is undesirable, since the carbon acts as a getter for oxygen and water.

Another method, disclosed in U.S. Pat. No. 3,854,786, involves cooling the lamp to liquid nitrogen temperatures and then energizing the filament at slightly below and above rated voltage. This method is not readily conducive to automation and, also, undesirably deposits the carbon mainly on the tungsten filament, where it can cause tungsten embrittlement.

It is an object of this invention to provide a method for the use of hydrocarbon halides in the fill of tungsten halogen lamps which overcomes the disadvantages mentioned above.

According to the present invention, the manufacture of the lamp is in standard fashion through the exhaust, filing and sealing operation. But after tip-off of the exhaust tube, and before the lamp bases are attached, the lamp is heated in an inert atmosphere (to prevent lead-in wire oxidation) to the dissociation temperature of the organic halide for a sufficient time to accomplish dissociation. When the organic halide is dissociated in this manner, results are obtained which are not totally understood. The bulb wall remains devoid of carbon deposits both after the heating step and after lamp burning. Also, in the case of reprographic lamps which are burned with short duty cycles, characteristic halogen deposits which normally occur on the bulb over the inactive filament sections are greatly minimized. Gettering by the freed carbon of contaminants driven from the quartz and other lamp parts may occur during the high temperature heating step, forming CO and CO2 which are relatively inert and invisible. Essentially, a clean lamp throughout life results because of the step of heating the organic halide to dissociation before lamp burning. Because of the gettering action of the carbon and the removal of O2 from the halogen cycle, a higher average lamp life is obtainable.

In a specific example, a 1000W-115V-T21/2 tungsten halogen lamp was exhausted, filled with a mixture of argon (partial pressure of 2.5 atmospheres) and chloroform (partial pressure of 4 torr), tipped off and then heated to the dissociation temperature of chloroform (about 800° C) for 5 minutes in a nitrogen-flushed lehr. The lamp was then finished by adding bases to the ends of the lamp.

When the lamp was burned at a duty cycle of 2 seconds on, 20 seconds off for several hundred thousand cycles, there were no black carbon deposits, and the halogen deposits over inactive filament sections were light. In contrast, lamps which were not heated to the dissociation temperature before burning exhibited black swirls on the bulb wall and heavy halogen deposits during similar burning, with failure in some cases occurring before 50,000 cycles.

高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈