发光二极管

阅读:138发布:2020-05-11

专利汇可以提供发光二极管专利检索,专利查询,专利分析的服务。并且具有堆叠状结构的发光 二极管 ,其中,所述堆叠状结构包括载体层和镜层和n掺杂的下部包覆层和产生电 辐射 的有源层和p掺杂的上部包覆层和n掺杂的 电流 分配层,并且前面所述的层以所提及的顺序布置。所述有源层包括 量子阱 结构。 隧道二极管 在所述上部包覆层与所述电流分配层之间布置,其中,所述电流分配层主要由n掺杂的含Ga层构成,其中,Ga含量>1%。,下面是发光二极管专利的具体信息内容。

1.一种具有堆叠状结构的发光二极管(10),该发光二极管具有:
载体层(14),
n掺杂的下部包覆层(16),
产生电辐射的有源层(18),其中,所述有源层(18)包括量子阱结构,
p掺杂的上部包覆层(20),
n掺杂的电流分配层(24),
其中,载体层(14)、下部包覆层(16)、有源层(18)、上部包覆层(20)和分配层(24)以所提及的顺序布置,
在所述上部包覆层(20)与所述电流分配层(24)之间布置有隧道二极管(22),其中,所述电流分配层(24)主要具有n掺杂的含Ga层,该n掺杂的含Ga层具有>1%的Ga含量,在所述载体层(14)与所述n掺杂的下部包覆层(16)之间布置有镜层(15),在所述n掺杂的下部包覆层(16)之下构造有n掺杂的接触层,并且
所述隧道二极管(22)包括具有大于3×1018N/cm3的掺杂物浓度的n掺杂层(18.2)和具有大于1×1019N/cm3的掺杂物浓度的p掺杂层(18.1),
其特征在于,
所述电流分配层(24)具有凹槽(30)并且所述凹槽(30)具有上侧边缘面(33)和侧面(32)和底面(31),其中,所述电流分配层(24)在所述底面(31)处完全去除并且所述底面(31)以与邻近的半导体材料不同的填充材料(40)覆盖,并且所述填充材料(40)与所述底面之间的接触电阻比所述填充材料(40)与所述电流分配层(24)之间的接触电阻大,并且所述隧道二极管(22)包括含As层和/或含P层,
其中,所述含As层以掺杂,
其中,所述含P层以碲掺杂。
2.根据权利要求1所述的发光二极管(10),其特征在于,在所述电流分配层(24)上构造有接触层(26)并且所述电流分配层(24)在掺杂方面具有与所述接触层(26)一样的极性,其中,所述接触层(26)的n掺杂比所述电流分配层(24)的n掺杂高。
3.根据权利要求1或2所述的发光二极管,其特征在于,所述堆叠状结构(10)主要包括单片布置的层并且所述单片布置的层的一部分包含III族砷化物化合物半导体和/或III族磷化物化合物半导体。
4.根据权利要求1或2所述的发光二极管(10),其特征在于,发射波长大于600nm。
5.根据权利要求1或2所述的发光二极管(10),其特征在于,所述载体层(14)包括或锗或镍或GaAs或者由硅或锗或镍或GaAs构成并且具有第一连接接触部。
6.根据权利要求1或2所述的发光二极管(10),其特征在于,所述镜层(15)由金属层构成并且所述金属层构成所述载体层(14)与所述下部包覆层和/或所述n掺杂的接触层之间的电接触。
7.根据权利要求1或2所述的发光二极管(10),其特征在于,所述下部包覆层(16)和所述上部包覆层(20)主要包括由GaAs或由AlGaAs或由InGaAsP或由GaAsP或由InGaP或由AlInGaP构成的化合物。
8.根据权利要求1或2所述的发光二极管(10),其特征在于,所述有源层(18)的量子阱结构包括多量子阱结构,所述多量子阱结构具有15nm至350nm之间的厚度。
9.根据权利要求1或2所述的发光二极管(10),其特征在于,所述电流分配层(24)具有
0.1μm至5.0μm之间的厚度。
10.根据权利要求1或2所述的发光二极管(10),其特征在于,所述电流分配层(24)是n掺杂的并且由GaAs或AlGaAs或InGaP或InAlP或AlInGaP构成。
11.根据权利要求1或2所述的发光二极管(10),其特征在于,所述电流分配层(24)包括n掺杂的AlxGa1-xAs层,所述n掺杂的AlxGa1-xAs层具有0%至20%之间的Al含量x。
12.根据权利要求1或2所述的发光二极管(10),其特征在于,所述电流分配层(24)具有
18 3
大于1.0×10 N/cm的n掺杂物浓度。
13.根据权利要求1或2所述的发光二极管(10),其特征在于,所述电流分配层(24)具有层电阻Rs<70Ω/sq并且所述包覆层具有层电阻Rs>400Ω/sq。
14.根据权利要求1或2所述的发光二极管(10),其特征在于,所述有源层(18)由InxGa1-xAs/GaAs1-yPy多量子阱结构构成,其中,0.1≤x≤0.2且0.1≤y≤0.3,或由AlxGa1-xAs/AlyGa1-yAs多量子阱结构构成,其中,0≤x≤0.25且0.2≤y≤0.85。
15.根据权利要求1或2所述的发光二极管(10),其特征在于,边缘区域和/或所述侧面(32)至少部分地或完全以所述填充材料(40)覆盖。
16.根据权利要求1或2所述的发光二极管(10),其特征在于,所述填充材料(40)包括金属化合物,并且所述金属化合物在所述底面(31)的区域中构造如下接触电阻:所述接触电阻是至所述侧面(32)和/或至所述边缘面(33)的接触电阻的至少10倍。
17.根据权利要求1或2所述的发光二极管(10),其特征在于,在所述填充材料(40)与围绕所述填充材料(40)的包围层之间的边界面处构造有化学化合物或合金或半导体中间层
18.根据权利要求1或2所述的发光二极管(10),其特征在于,所述填充材料(40)包含Au和/或Ni和/或Pd和/或Pt和/或Ag。
19.根据权利要求17所述的发光二极管(10),其特征在于,所述填充材料(40)包含用于具有所述包围层的边界面的掺杂的掺杂物。
20.根据权利要求1或2所述的发光二极管(10),其特征在于,所述填充材料(40)和/或所述电流分配层(24)和所述接触层(26)具有以元素Si、Ge和Te中一个或多个的掺杂。
21.根据权利要求1或2所述的发光二极管(10),其特征在于,在所述底面(31)的区域中构造有肖特基接触。
22.根据权利要求1或2所述的发光二极管(10),其特征在于,所述凹槽(30)不穿透或部分穿透或完全穿透所述隧道二极管层结构(22.1,22.2)。
23.根据权利要求1或2所述的发光二极管(10),其特征在于,所述底面(31)的至少一部分构造在所述上部包覆层(20)的区域中。
24.根据权利要求1或2所述的发光二极管(10),其特征在于,所述凹槽(30)环形地或椭圆形地或有地构造并且所述凹槽(30)的面积最大为所述有源层(18)的面积的25%。
25.根据权利要求1或2所述的发光二极管(10),其特征在于,所述凹槽(30)中心地或偏心地布置在所述发光二极管(10)的上表面上并且在所述凹槽(30)内的填充材料的上表面上布置有呈接合形式的第二连接接触部。
26.根据权利要求25所述的发光二极管(10),其特征在于,从所述凹槽(30)出发,多个导电指(28.1,28.2)布置在所述发光二极管(10)的上表面上并且所述指(28.1,28.2)与所述第二连接接触部电连接。

说明书全文

发光二极管

技术领域

[0001] 本发明涉及一种发光二极管

背景技术

[0002] 由DE 102 44 200 A1、DE 10 2010 032 497 A1并且由K.Streubel等人的“High Brightness AlGaInP Light-Emitting Diodes”,IEEE《量子电子学》选题期刊,第8卷,2002年3/4月第2期中已知不同的LED结构。

发明内容

[0003] 在这种背景下,本发明的任务在于,说明一种扩展现有技术的装置。
[0004] 所述任务通过一种发光二极管解决。
[0005] 根据本发明的主题,提供一种具有堆叠状结构的发光二极管,其中,所述堆叠状结构包括载体层和镜层(Spiegelschicht)和n掺杂的下部包覆层(Mantelschicht)和产生电辐射的有源层和p掺杂的上部包覆层和n掺杂的电流分配层(Stromverteilerschicht)并且前面所述的层以所提及的顺序布置。
[0006] 有源层包括量子阱结构(Quantentopfstruktur)。隧道二极管在上部包覆层与电流分配层之间布置,其中,所述电流分配层主要由n掺杂的含Ga层构成,其中,Ga含量>1%。
[0007] 值得注意的是,在例如Ga或Al或In的元素的百分表达中分别涉及相应层的化学化合物的III族元素的原子数量。那么,表达Al0.1Ga0.9As意指由半导体材料构成的层,在所述半导体材料中,原子的50%是V族元素(As)并且原子的50%是III族元素,其中,又将III族元素构造为10%来自Al原子并且90%来自Ga原子。类似地,在例如GaAs0.8P0.2的半导体材料中,在V族元素的混合中使用所述命名法。
[0008] 显而易见的是,堆叠状结构的概念包括相叠布置的半导体层。优选地,从N包覆层开始直到并包括N接触层,层单片构造并且外延(Epitaxie)尤其借助MOVPE(金属有机物化学气相外延)制造。鉴于制造的不同,也将单片构造的层接合到载体层上。
[0009] 显而易见的是,在有源层上安放的其他的层——包括隧道二极管的层——对于有源层的发射波长尽可能透明地构造。
[0010] 所述结构的优点是,以简单和成本有利的方式提高光输出,而可以保持所述结构——在所述结构中,p区位于有源层上——的极性。具有有源区上的p区的传统的LED具有非常少的光输出(Lichtausbeute)。仅能够借助具有集成金属镜的薄膜LED实现更高的光功率。但是,这些薄膜LED总是在有源层下具有p区。在此,“在有源层下”总是意指在光退耦合方面位于背向侧上的层,“在有源层上”意指位于面向光退耦合的侧上的层。
[0011] 在所述构件中,仅通过开销高并且成本高的附加的接合过程以及附加的辅助载体材料可以实现有源区域上的p区。借助具有在有源层上的隧道二极管和极性反转的结构,能够以简单并且有利的方式和方法实现更高的光功率,其中,与在相应的p极性情况下相比,n电流分配层中的吸收损耗更低并且n电流分配层中的横向导电性更高。在此,令人惊讶地示出,与现有技术的在有源层与N电流分配层之间具有N包覆层的层序列相比,尽管隧道二极管的结构和有源层上的层的极性反转,光输出至少是可比的,但是在此,具有总结构的有利的极性。另外,保留n接触层的与p接触层相比非常低的接触电阻的优点。
[0012] 换言之,用于提高效率的镜层处于成本原因至今仅在高功率LED中应用。本领域专业人员则仍然总是在n上(n-up)结构的情况下——也就是说在没有隧道二极管的情况下——保留,以便在n层中基于电子的小的有效质量获得需要的横向导电性。
[0013] 在高功率的p上(p-up)LED的情况下的高的电流密度然而总是需要透明的并且非常好的导电隧道二极管。令人感到意外地,这种隧道二极管以简单和成本有利的方式尤其由以碲和掺杂的砷化物层和磷化物层构成。
[0014] 另一优点是,高功率p上LED简单地相对于至今的“常规”p上LED替换,而不需要完全重新设计。
[0015] 在一种扩展方案中,接触层在电流分配层上构造,其中,电流分配层在掺杂方面具有与接触层相同的极性。优选地,接触层的掺杂高于电流分配层的掺杂。
[0016] 在一种实施方式中,堆叠状结构主要包括单片布置的层,其中,层的一部分包含III族砷化物化合物半导体(Gruppe-III-Arsenid-Verbindungshalbleiter)和/或III族磷化物化合物半导体(Gruppe-III-Phosphid-Verbindungshalbleiter)。
[0017] 在另一扩展方案中,有源层具有大于600nm或大于700nm的发射波长。
[0018] 在一种扩展方案中,载体层包括或由或锗或镍或GaAs构成。优选地,载体层在底侧整面地具有第一连接接触部。在一种实施方式中,n掺杂的接触层在n掺杂的下部包覆层下面构造。
[0019] 在另一种实施方式中,镜层包括或由金属层构成。在此,金属层构成支撑部与下部包覆层和/或n掺杂的下部接触层之间的电接触。在另一实施方式中,镜层包括半导体镜。
[0020] 在一种扩展方案中,下部包覆层和上部包覆层(20)主要包括由GaAs或由AlGaAs或由InGaAsP或由GaAsP或由InGaP或由AlInGaP构成的化合物。
[0021] 在另一种扩展方案中,量子阱结构包括多量子阱结构(Mehrfach-Quantentopfstruktur),其中,多量子阱结构具有15nm至350nm之间的厚度或30nm至300nm之间的厚度。在一种实施方式中,有源层由InxGa1-xAs/GaAs1-yPy多量子阱结构构成,其中0.1≤x≤0.2且0.1≤y≤0.3,或由AlxGa1-xAs/AlyGa1-yAs多量子阱结构构成,其中0≤x≤0.25并且0.2≤y≤0.85。
[0022] 在一种实施方式中,n掺杂的电流分配层具有0.1μm至0.5μm之间的厚度。优选地,电流分配层由GaAs或AlGaAs或InGaP或InAlP或AlInGaP化合物构成。电流分配层尤其包括n掺杂的AlxGa1-xAs层,所述n掺杂的AlxGa1-xAs层具有0%至20%之间的Al含量x。在一种扩展3
方案中,电流分配层具有大于1.0E18N/cm的n掺杂物浓度。研究表明,有利的是,电流分配层具有层电阻Rs<70Ω/sq(ohm/square)并且包覆层具有层电阻Rs>400Ω/sq。
[0023] 在一种扩展方案中,隧道二极管包括含As层和/或含P层,其中,含As层以碳掺杂。优选地,隧道二极管的含P层以碲掺杂。优选地,隧道二极管包括具有大于3×1018N/cm3的掺
19 3
杂物浓度的n掺杂层和具有大于1×10 N/cm的掺杂物浓度的p掺杂层。
[0024] 在一种实施方式中,电流分配层具有凹槽,其中,所述凹槽包括上侧边缘面和侧面和底面,其中,电流分配层在底面处完全去除并且底面以相对于第一半导体材料不同的填充材料覆盖,并且填充材料与底面之间的接触电阻大于填充材料与电流分配层之间的接触电阻。凹槽主要或优选完全以填充材料填充。填充材料表现为前侧接触部的一部分并且至少在上侧处具有金属导电性。
[0025] 在另一实施方式中,边缘区域和/或侧面至少部分地或完全以填充材料覆盖。优选地,完全以填充材料填满凹槽。优选地,填充材料包含Au和/或Ni和/或Pd和/或Pt和/或Ag。
[0026] 在一种扩展方案中,填充材料包括金属化合物,其中,金属化合物在底面处构造如下接触电阻:所述接触电阻是至侧面和/或至边缘面的接触电阻的至少10倍。
[0027] 在另一种扩展方案中,在填充材料与围绕填充材料的包围层之间的边界面处构造化学化合物或合金或半导体中间层
[0028] 研究表明,有利的是,填充材料包含用于具有包围层的边界面的掺杂的掺杂物。在此,掺杂物从填充材料扩散到邻接的层中。优选地,填充材料具有如下掺杂物:所述掺杂物具有电流分配层的掺杂物的极性。
[0029] 在一种实施方式中,填充材料和/或电流分配层和接触层具有以元素Si、Ge和Te中一个或多个的掺杂。在另一实施方式中,在底面区域中构造肖特基接触。
[0030] 在一种扩展方案中,凹槽不或部分或完全穿透隧道二极管层结构。优选地,凹槽的底面的至少一部分在上部包覆层的区域中构造。
[0031] 在另一扩展方案中,凹槽环形地或椭圆形地或有地(eckig)构造,其中,凹槽的面积最大为有源层的面积的25%。
[0032] 优选地,电流分配层中的凹槽在该层的面重心的附近中布置。最优选地,凹槽包括面重心,即凹槽在面的中间构造。换言之,凹槽中心地或偏心地在发光二极管的上表面上布置。在一种实施方式中,第二连接接触部以接合、优选以接合线的形式在凹槽内的填充材料的上表面上构造。
[0033] 在一种扩展方案中,从凹槽出发,多个导电指(Finger)在发光二极管的上表面上布置,其中,指与第二连接接触部电连接。附图说明
[0034] 接下来参考附图进一步阐述本发明。在此,同种的部分以相同的标记标注。所示出的实施方式是高度示意性的,即距离和横向的和纵向的延伸不是按比例的,并且只要未特别说明,也不具有能导出的几何关系。附图中示出:
[0035] 图1:一种LED层堆叠的根据本发明的实施方式的视图;
[0036] 图2:图1的实施方式的隧道二极管的详细视图;
[0037] 图3:图1的实施方式的有源层的结构的详细视图;
[0038] 图4:图1的具有一种凹槽的实施方式的实施方式的详细视图;
[0039] 图5:图1的实施方式的具有凹槽的第二实施方式的完整视图并且示出有源层中的优选发射区域。

具体实施方式

[0040] 图1的图示出发光二极管10的根据本发明的实施方式的视图。发光二极管10具有堆叠状结构,所述堆叠状结构具有相互垂直布置的层。载体层14构造在背侧接触层12上。镜层15布置在所述载体层14上。n掺杂的下部包覆层16构造在镜层15上。优选地,镜层15由金属层构成。金属层构成载体层14与下部包覆层16或未示出的还位于下部包覆层16下面的n掺杂的接触层之间的良好的电接触。
[0041] 产生电辐射的有源层18在下部包覆层16上布置,其中,有源层18包括量子阱结构。p掺杂的上部包覆层20在有源层18上构造。隧道二极管22在上部包覆层20上布置。n掺杂的电流分配层24在隧道二极管22上构造。n掺杂的接触层26在n掺杂的电流分配层24上布置。
电流分配层24主要具有n掺杂的含Ga层,所述n掺杂的含Ga层具有大于1%的Ga含量。
[0042] 前侧接触部28在n掺杂的接触层26上布置。显而易见的是,与背侧接触层12不同的是,前侧接触部28未整面地构造。还要注意的是,所提及的层以前面所提及的顺序布置。
[0043] 在图2的图中示出图1的实施方式的隧道二极管的详细的视图。以下仅阐述与图1的图示的不同。隧道二极管22具有在上部包覆层20上布置的第一p掺杂层22.1。第一层的掺19 3
杂大于1×10 N/cm。第一层优选包括As,其中,第一层以碳掺杂。
[0044] 第二n掺杂层22.2在第一层22.1上布置。第二层的掺杂大于3×1018N/cm3。第二层优选包括P,其中,第二层以碲掺杂。
[0045] 在图3的图中示出图1的实施方式的有源层18的详细视图。以下仅阐述与图1的图示的不同。对于有源层,在第一替代方案中,示出构造为多量子阱结构的第一层堆叠18.1,并且在第二替代方案中,示出同样构造为多量子阱结构的第二层堆叠18.2。
[0046] 第一层堆叠18.1具有第一层a1和第二层b1的序列。现在,该序列重复恰好三次。第一层a1作为第一层堆叠18.1的最上面的层布置。第一层a1是20nm厚并且由GaAs0.8P0.2化合物构成。第二层b1是10nm厚并且由In0.15Ga0.85As化合物构成。
[0047] 第二层堆叠18.2具有第一层a2和第二层b2的序列。现在,该序列重复恰好三次。第一层a2作为第二层堆叠18.2的最上面的层布置。第一层a2是20nm厚并且由Al0.5Ga0.5As化合物构成。第二层b2是10nm厚并且由Al0.15Ga0.85As化合物构成。
[0048] 在图4的图中示出用于图1的实施方式的凹槽的第一实施方式的详细视图。以下仅阐述与图1中的图示的不同。
[0049] 发光二极管10的堆叠状单片结构的上部分具有环形的或椭圆形的或矩形的凹槽30,所述凹槽具有底31、具有侧面32和上侧边缘面33。凹槽30在n掺杂的接触层26的——未示出的——面的中心中布置,并且完全穿透n掺杂的接触层26和位于下面的n掺杂的电流分配层24以及隧道二极管22的第二层22.2并且在图4中位于隧道二极管22的第一层22.1上面。显而易见的是,鉴于刻蚀过程或结构化过程的时长和种类的不同,凹槽30的底31在第一层22.1中不同深度地构造。
[0050] 凹槽的面积最多为有源层的面积的25%。否则,n掺杂的接触层26的光发射面积太小。
[0051] 显而易见的是,在图5中示出的另一种实施方式中,凹槽30的底31在上部包覆层20中或内构造,其中,鉴于干法刻蚀过程的时长和种类的不同,凹槽30的底31在上部包覆层20中不同深度地构造。
[0052] 以与层20、22.1、22.2、24、26的包围半导体材料不同的填充材料40填充凹槽30。优选地,填充材料40包括Au和/或Ni和/或Pd和/或Pt和/或Ag。
[0053] 凹槽30主要或优选地完全以填充材料40填满。填充材料40示出前侧接触部28的一部分并且至少在上侧处具有金属导电性。填充材料40与底31之间的接触电阻是填充材料40与电流分配层24之间的接触电阻的至少10倍。抑制穿过底31垂直至有源层18的不期望的电流。
[0054] 填充材料40与底面31之间的接触电阻优选大于至紧靠在侧面的层22.2、24、26的接触电阻。
[0055] 在未示出的实施方式中,绝缘层在底31的区域中和/或在侧面32处构造。例如在将填充材料40引入之前构造绝缘层。另一种可行方案是,半导体/包覆层自己通过掺杂物从填充材料的扩散构造绝缘层。
[0056] 填充材料40包含用于填充材料之间的边界面31与32的掺杂的掺杂物。作为掺杂,填充材料40具有元素Si、Ge和Te中的一个或多个。在一种未示出的实施方式中,填充材料40在底31的区域中具有肖特基接触。
[0057] 在上侧边缘面33上,作为前侧接触部28的一部分,金属印制导线以指28.1的形式构造,以便在上表面处尽可能低电阻地连接n掺杂的接触层26。所有指28.1与填充材料40低电阻地连接。在同样未示出的实施方式中,引线接合(Drahtbond)作为第二连接接触部的一部分在填充材料的上侧上构造。
[0058] 在图5的图中示出图1的实施方式的具有凹槽的第二实施方式的视图,并且示出有源层中的优选发射区域。以下仅阐述与图4中的实施方式的不同。
[0059] 通过如下方式,即电流分配层24已经具有良好的导电性和至上部第二连接接触部的低接触电阻,不必要构造n掺杂接触层26。优点是,发光二极管10的发射率提高。
[0060] 凹槽30的底31在上部包覆层20处或内构造。在底3的区域中构造肖特基接触区域50,借助所述肖特基区域,有效地抑制垂直至有源层18的的电流。
[0061] 载体层14非常薄地构造并且具有100μm至450μm之间的厚度。填充材料40包括PdGe化合物。
[0062] 底面区域的左边和右边示出有源层18的两个发射区域EM。在未示出的视图中,发射区域完全围绕凹槽30构造。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈