首页 / 专利库 / 电子零件及设备 / 激子扩散 / 一种利用甲醇-氩气制备纳米金刚石膜的方法

一种利用甲醇-氩气制备纳米金刚石膜的方法

阅读:35发布:2020-05-11

专利汇可以提供一种利用甲醇-氩气制备纳米金刚石膜的方法专利检索,专利查询,专利分析的服务。并且本 发明 公开一种利用甲醇-氩气制备纳米金刚石膜的方法,该方法步骤为:(1)将单面 抛光 的P型 硅 片 进行表面 缺陷 化预处理;(2)将硅基片放入 微波 等离子体 化学气相沉积 设备的反应腔体,并调节腔体压强;(3)通入高纯氢气并激发等离子体加热 硅片 ,去除表面有机物及杂质后缓慢降低氢气流量直至关闭;(4)氩气流经甲醇溶液扩散源后形成甲醇-氩气混合气体进入反应腔体;(5)调节反应工艺参数形成等离子体,开始在硅片上沉积纳米金刚石膜。采用 微波等离子 化学气相沉积法制备 纳米级 金刚石膜,完全避免了易燃易爆气体的使用,在无氢气直接参与的条件下成功制备出纳米级金刚石膜,降低了纳米金刚石膜的制备成本,极大保证了制备过程中的实验安全。,下面是一种利用甲醇-氩气制备纳米金刚石膜的方法专利的具体信息内容。

1.一种利用甲醇-氩气制备纳米金刚石膜的方法,其特征在于具体步骤如下:
(1)将单面抛光的P型片进行表面缺陷化预处理;
(2)将硅基片放入微波等离子体化学气相沉积设备的反应腔体,将腔体压强调至0.1-
10Pa;
(3)通入高纯氢气并激发等离子体处理硅片,去除表面有机物及杂质;
(4)缓慢调低氢气流量直至关闭,同时将氩气流经甲醇溶液扩散源后形成的甲醇-氩气混合气体充入反应腔体;
(5)调节反应工艺参数维持形成稳定的等离子体球,开始在硅片上沉积纳米金刚石膜。
2.根据权利要求1所述的一种利用甲醇-氩气制备纳米金刚石膜的方法,其特征在于:
所述步骤(1)中的预处理方法为:将金刚石微粉分散在乙醇中形成悬浮液,放入硅基片后超声处理20-30min,然后依次在丙、乙醇和蒸馏中超声清洗10-15min,最后在氮气环境中干燥。
3.根据权利要求1所述的一种利用甲醇-氩气制备纳米金刚石膜的方法,其特征在于:
步骤(3)中通入高纯氢气并激发等离子体处理硅片的时间为10-30min。;
4.根据权利要求1所述的一种利用甲醇-氩气制备纳米金刚石膜的方法,其特征在于:
步骤(4)中为了维持等离子体球形状及保持其他参数的稳定,需同时进行调低氢气流量和调高氩气流量的操作。
5.根据权利要求1所述的一种利用甲醇-氩气制备纳米金刚石膜的方法,其特征在于:
步骤(4)中甲醇气体采用液态源扩散方式产生。
6.根据权利要求1所述的一种利用甲醇-氩气制备纳米金刚石膜的方法,其特征在于:
步骤(4)中氩气分两路进入腔体,第一路氩气用于甲醇鼓泡产生甲醇气体,其流量为2~
7sccm;第二路高纯氩气直接通入反应腔体,其流量为100~300sccm。
7.根据权利要求1所述的一种利用甲醇-氩气制备纳米金刚石膜的方法,其特征在于:
步骤(4)沉积过程中腔体压强10~20kPa,沉积温度450~650℃,微波功率为1000~1800W,沉积时间为6~12小时。
8.根据权利要求1所述的一种利用甲醇-氩气制备纳米金刚石膜的方法,其特征在于:
所用的氢气和氩气纯度均在99.99%以上,甲醇为分析纯。
9.根据权利要求1所述的一种利用甲醇-氩气制备纳米金刚石膜的方法,其特征在于:
使用的高纯氩气可用氮气、氦气等惰性气体替代。
10.根据权利要求1所述的一种利用甲醇-氩气制备纳米金刚石膜的方法,其特征在于:
步骤(5)所述纳米金刚石膜中的金刚石相含量约为70-80%。

说明书全文

一种利用甲醇-氩气制备纳米金刚石膜的方法

技术领域

[0001] 本发明涉及一种利用甲醇和氩气制备纳米金刚石膜的方法,属于纳米级金刚石膜制备技术领域。

背景技术

[0002] 金刚石中原子采用sp3杂化方式形成交替连接的正四面体空间结构,被公认为自然界硬度最大的材料。纳米金刚石膜是由纳米级金刚石颗粒通过外延生长而形成的二维材料,其物理化学性质稳定,且兼具极其优良的导热性、红外透过率等性能,几乎是在极端环境下服役的唯一候选材料,在航空航天、集成电路等高新领域具有广阔的应用前景。
[0003] 化学气相沉积法(CVD)是目前制备金刚石膜的主要方法,依据气体的激励源差异可分为:热丝化学气相沉积法、微波等离子体化学气相沉积法、等离子体频射化学气相沉积法等。其中,微波等离子体化学气相沉积法(MPCVD)采用微波作为激励源,可将气态碳源激发电离后形成集中放电的等离子球,在基片上沉积得到金刚石膜。由于MPCVD法利用无源电极放电的方式产生等离子体,且形成的等离子体功率密度大,使得制备的金刚石膜样品具有均匀性好、金刚石相纯度高等优点。因此微波等离子体化学气相沉积法被广泛用于高品质金刚石膜的制备。
[0004] 传统的MPCVD法制备金刚石膜通常采用高纯甲烷(CH4)作为碳源,同时利用高纯氢气(H2)作为辅助气体来刻蚀沉积过程中产生的石墨相,采用CH4-H2为基础的混合气体可成功制备出性能优良的金刚石膜样品。
[0005] 公开号为CN102251231A的中国专利公开一种纳米金刚石薄膜的制备方法,先采用偏压增强形核方法在衬底上沉积一层纳米金刚石膜,然后在3~8kPa的气气氛中加热到100~300℃,保温5~60min,可去除金刚石膜表面的氢化物,从而使金刚石薄膜获得更高更稳定的电导率,在电学领域具有较好的应用前景。所述发明专利使用的气体为:高纯甲烷、氢气、氩气和氧气。
[0006] 公开号为CN104561925A的中国专利公开了一种自支撑金刚石膜的制备方法,首先在基底表面及侧面预沉积一层金属涂层,然后在钛金属涂层上沉积一层钼金属涂层,接着采用热丝化学气相沉积在钼金属涂层上沉积金刚石膜,最后使用草酸对样品进行腐蚀后得到自支撑金刚石膜。本发明可以加快金刚石膜的形核率,缩短沉积时间,且硅片可以重复使用降低成本,更重要的是能避免氢氟酸盐酸腐蚀所带来的环境问题。所述发明在沉积金刚石膜时使用的气体为:高纯甲烷、氢气。
[0007] 多年来甲烷和氢气被人们视为金刚石膜制备过程中不可或缺的原料气体,并在金刚石膜制备方面取得了一定进展。但是高纯甲烷和氢气不仅价格昂贵,且在金刚石膜生长动辄数十小时的制备过程中存在易燃易爆隐患,特别是在调整金刚石膜的生长速率或进行金刚石膜表面修饰时常需要采用氧气等辅助气体,更是进一步放大了金刚石膜制备的实验险。
[0008] 近年来,利用甲烷在贫氢或无氢环境中制备纳米或超纳米金刚石膜的方法逐渐引起关注。如Xiao等发表的论文“Low temperature growth of ultrananocrystalline diamond”中,以高纯甲烷、氩气为气源,采用微波等离子化学气相沉积法在400~ 800℃下制备出超纳米金刚石膜。由于未采用氢气参与反应,形成的等离子对金刚石膜中的非金刚石相刻蚀能明显不足,因超纳米金刚石膜晶粒细小存在大量晶界,造成金刚石含量相对较低。虽然本方法避免了高纯氢气的使用,但依然无法摆脱对易燃爆甲烷作为碳源的依赖。
[0009] 探索安全可靠的MPCVD制备方法,完全避免易燃易爆气体的使用,在纳米金刚石膜制备领域具有创新性。经文献调研可知利用甲醇-氩气混合气体为原料制备纳米金刚石膜的方法还未见报道。

发明内容

[0010] 针对上述现有技术存在的局限性,本发明提供一种利用甲醇和氩气制备纳米金刚石膜的方法。采用的微波等离子化学气相沉积法制备纳米级金刚石膜,与传统方法必须采用甲烷或氢气混合气体作为合成原料相比,该方法完全避免了易燃易爆气体的使用,在无氢气直接参与的条件下成功制备出纳米级金刚石膜,不仅降低了纳米金刚石膜的制备成本,而且保证了制备过程中的实验安全。
[0011] 一种利用甲醇和氩气制备纳米金刚石膜的方法,其具体步骤如下:
[0012] (1)将单面抛光的P型硅片进行表面缺陷化预处理;
[0013] (2)将硅基片放入微波等离子体化学气相沉积设备的反应腔体,将腔体压强调至0.1-10Pa;
[0014] (3)通入高纯氢气并激发等离子体处理硅片10-30min,去除表面有机物及杂质;
[0015] (4)缓慢调低氢气流量直至关闭,同时将氩气流经甲醇溶液扩散源后形成的甲醇-氩气混合气体充入反应腔体;
[0016] (5)调节反应工艺参数维持形成稳定的等离子体球,开始在硅片上沉积纳米金刚石膜。
[0017] 所述步骤(1)中的预处理方法为:将金刚石微粉分散在乙醇中形成悬浮液,放入硅基片后超声处理20-30min,然后依次在丙、乙醇和蒸馏中超声清洗 10-15min,最后在氮气环境中干燥;
[0018] 所述步骤(4)中为了维持等离子体球形状及保持其他参数的稳定,需同时进行调低氢气流量和调高氩气流量的操作;
[0019] 所述步骤(4)中甲醇气体采用液态源扩散方式产生,氩气分两路进入腔体,第一路氩气用于甲醇鼓泡产生甲醇气体,其流量为2~7sccm;第二路高纯氩气直接通入反应腔体,其流量为100~300sccm。沉积过程中腔体压强10~20kPa,沉积温度450~650℃,微波功率为1000~1800W,沉积时间为6~12小时;
[0020] 所述发明中的氢气和氩气纯度均在99.99%以上,甲醇为分析纯。
[0021] 所述发明中使用的高纯氩气可用氮气、氦气等惰性气体替代。附图说明
[0022] 图1是本发明实施例2中所制备的纳米金刚石膜的扫描电镜照片;
[0023] 图2是本发明实施例2中所制备的纳米金刚石膜的拉曼光谱分析图谱;
[0024] 图3是本发明实施例2中所制备的纳米金刚石膜的XPS分析图谱。

具体实施方式

[0025] 下面结合附图和具体实施方式,对本发明作进一步说明。
[0026] 实施例1
[0027] 利用甲醇和氩气制备纳米金刚石膜的方法,其具体步骤如下:
[0028] (1)将硅片进行表面缺陷化预处理30min,然后依次在丙酮、乙醇和蒸馏水中分别超声处理15min,最后在氮气环境中干燥;
[0029] (2)将硅基片放入微波等离子体化学气相沉积设备的反应腔体,将腔体压强调到0.1Pa;
[0030] (3)通入高纯氢气并激发等离子体处理硅片20min,去除表面有机物及杂质;
[0031] (4)缓慢调低氢气直至流量为零,同时将氩气流经甲醇溶液扩散源后形成的甲醇-氩气混合气体充入反应腔体,氩气总流量为100sccm,其中用于甲醇气体扩散鼓泡的氩气流量为2sccm。
[0032] (5)调节微波等离子体化学气相沉积设备形成稳定的等离子体球,工艺参数为:沉积压强10kPa,沉积温度450℃,微波功率1000W,沉积时间6h。
[0033] 此实施例制备的纳米金刚石膜,样品中的金刚石相含量约为70.45%。
[0034] 实施例2
[0035] 利用甲醇和氩气制备纳米金刚石膜的方法,其具体步骤如下:
[0036] (1)将硅片进行表面缺陷化预处理30min,然后依次在丙酮、乙醇和蒸馏水中分别超声处理15min,最后在氮气环境中干燥;
[0037] (2)将硅基片放入微波等离子体化学气相沉积设备的反应腔体,将腔体压强调到0.1Pa;
[0038] (3)通入高纯氢气并激发等离子体处理硅片20min,去除表面有机物及杂质;
[0039] (4)缓慢调低氢气直至流量为零,同时将氩气流经甲醇溶液扩散源后形成的甲醇-氩气混合气体充入反应腔体,氩气总流量为300sccm,其中用于甲醇气体扩散鼓泡的氩气流量为5sccm。
[0040] (5)调节微波等离子体化学气相沉积设备形成稳定的等离子体球,工艺参数为:沉积压强15kPa,沉积温度550℃,微波功率1400W,沉积时间8h。
[0041] 此实施例制备的纳米金刚石膜,样品中的金刚石相含量约为70.45%。
[0042] 利用甲醇-氩气制备金刚石膜的方法,其具体步骤如下:
[0043] 此实施例制备的纳米金刚石膜样品微结构信息如图1至图3所示,金刚石相含量约为75.71%。
[0044] 实施例3
[0045] 利用甲醇和氩气制备纳米金刚石膜的方法,其具体步骤如下:
[0046] (1)将硅片进行表面缺陷化预处理20min,然后依次在丙酮、乙醇和蒸馏水中分别超声处理10min,最后在氮气环境中干燥;
[0047] (2)将硅基片放入微波等离子体化学气相沉积设备的反应腔体,将腔体压强调到0.1Pa;
[0048] (3)通入高纯氢气并激发等离子体处理硅片20min,去除表面有机物及杂质;
[0049] (4)缓慢调低氢气直至流量为零,同时将氩气流经甲醇溶液扩散源后形成的甲醇-氩气混合气体充入反应腔体,氩气总流量为300sccm,其中用于甲醇气体扩散鼓泡的氩气流量为7sccm。
[0050] (5)调节微波等离子体化学气相沉积设备形成稳定的等离子体球,工艺参数为:沉积压强20kPa,沉积温度650℃,微波功率1800W,沉积时间12h。
[0051] 此实施例制备的纳米金刚石膜,样品中的金刚石相含量约为70.45%。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈