首页 / 专利库 / 电子零件及设备 / 偏压 / 多层陶瓷电容器

多层陶瓷电容器

阅读:536发布:2020-05-11

专利汇可以提供多层陶瓷电容器专利检索,专利查询,专利分析的服务。并且【问题】所解决的问题在于提供一种介电组成,其被有利地使用在具有高额定 电压 的电源 电路 中并且具有当施加DC 偏压 时的极好的 介电常数 和极好的高温负荷正常运行时间,并且还在于提供包括所述介电组成的介电元件、 电子 部件和 层压 电子部件。【方案】一种介电组成,其具有包含至少Bi、Na、Sr和Ti的 钙 钛 矿 晶体结构 。所述介电组成包括低Bi相,在所述低Bi相中,Bi浓度是介电组成整体中的平均Bi浓度的不大于0.8倍。,下面是多层陶瓷电容器专利的具体信息内容。

1.具有包含至少Bi、Na、Sr和Ti的晶体结构的介电组成,其特征在于:
所述介电组成包括低Bi相,在所述低Bi相中,Bi浓度是介电组成整体中的平均Bi浓度的不大于0.8倍,其中0 < α ≤ 0.150,其中α是介电组成的横截面中的低Bi相相对于整个所述横截面的面积比例,以及其中,0.125 ≤ β ≤ 2.000,其中β是介电组成中Bi相对于Sr的摩尔比。
2.根据权利要求1所述的介电组成,包括从La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Yb、Ba、Ca、Mg和Zn之中选择的至少一种。
3.根据权利要求2所述的介电组成,其中从La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Yb、Ba、Ca、Mg和Zn之中选择的所述至少一种的含量在1摩尔份和15摩尔份之间,把介电组成的Ti含量看作100摩尔份。
4.介电元件,其设有根据权利要求1至3中任一项所述的介电组成。
5.电子部件,其设有包括根据权利要求1至3中任一项所述的介电组成的介电层。
6.层压电子部件,其具有层压部分,所述层压部分通过使内部电极层和包括根据权利要求1至3中任一项所述的介电组成的介电层交替地层压而形成。
7.层压陶瓷电容器,其包括根据权利要求6所述的层压电子部件,其中,内部电极层以使得其端部表面在该层压电子部件的两个相对端部的表面处交替地暴露这样的方式而堆叠。
8.根据权利要求7所述的层压陶瓷电容器,其中,该内部电极层包括Cu或Cu合金
9.根据权利要求7或8所述的层压陶瓷电容器,其中,Cu合金包括至少95 wt%的Cu含量,把所述Cu合金看作100 wt%。
10.根据权利要求7所述的层压陶瓷电容器,其中,在该层压电子部件的两个端部处形成一对外部电极,并且该对外部电极连接到该内部电极层的暴露的端部表面。
11.根据权利要求10所述的层压陶瓷电容器,其中,该外部电极包括Cu。
12.用于提供根据权利要求7所述的层压陶瓷电容器的工艺方法,其包括以下步骤:
-采用用于介电层的浆料和用于内部电极的浆料、使用片材方法或印刷方法来制备生片,其中,用于介电层的浆料是包括介电起始材料和有机载体的混合物的有机涂料,或者其中,用于介电层的浆料是包括介电起始材料和性载体的混合物的水性涂料,-执行脱粘处理,
-对生片进行焙烧
-然后印刷或转录外部电极,
-然后进行焙烧,
其中,从以下各项的粉末中选择起始材料:化铋Bi2O3、酸钠Na2CO3、碳酸锶SrCO3、碳酸钡BaCO3、碳酸钙CaCO3、碳酸镁MgCO3、氧化锌ZnO、氢氧化镧La(OH)3、氧化钕Nd2O3、氧化钐Sm2O3、氧化钆Gd2O3和氧化钛TiO2,并且其中,以使得焙烧的介电组成具有包含至少Bi、Na、Sr和Ti的钙钛矿晶体结构这样的方式来称出起始材料粉末,其特征在于:
所述介电组成包括低Bi相,在所述低Bi相中,Bi浓度是介电组成整体中的平均Bi浓度的不大于0.8倍。
13.根据权利要求12所述的工艺方法,其中,通过对包括了包含Au、Pt、Ag、Ag-Pd合金、Cu或Ni的金属的导电材料或在焙烧之后形成导电材料的各种类型的氧化物、有机金属化合物、树脂酸盐与上面提到的有机载体进行混合来制备用于内部电极层的浆料,并且其中,以与用于内部电极层的浆料相同的方式来制备用于外部电极的浆料。

说明书全文

多层陶瓷电容器

技术领域

[0001] 本发明涉及介电组成,所述介电组成包括晶体结构并且对于具有高额定电压的高电压应用和中等电压应用是有利的,并且还涉及包括所述介电组成的介电元件、电子部件和层压电子部件。

背景技术

[0002] 近年来,随着电子电路达到更高的密度,对介电元件的小型化和增加的可靠性的需求越来越大。电子部件诸如层压陶瓷电容器的小型化、连同增加的容量和更高的可靠性正在快速进步,同时其应用也正在扩展。随着这些应用扩展,需要各种特性。以钛酸钡(BaTiO3)作为主要组分的材料常规上经常用作介电组成。
[0003] 例如,诸如机动车辆DC-DC转换器或AC-DC逆变器的平滑电容器或缓冲电容器经常用在其中施加数百伏特的高DC偏压位置中。
[0004] 因此,对于具有包括以BaTiO3作为主要组分的介电组成的介电层的常规电子部件存在问题,因为当施加高DC偏压时存在介电常数的减小。该问题是由于如下事实:BaTiO3是电材料,因此DC偏压越高,介电常数趋于降低。例如,因此当具有包括以BaTiO3作为主要组分的介电组成的介电层的电子部件被用于涉及高DC偏压施加的应用时,必要的是想出一种用于使用这样的电子部件的方法。根据已知方法的一个示例,预测介电常数减小的量并且使多个电子部件并联连接以供使用,以便维持需要的电容或介电常数。
[0005] 此外,在以BaTiO3作为主要组分的常规介电组成中,在诸如数伏特或更少的低DC偏压下使用期间施加到介电层上的场强度是小的,因此介电层的厚度能够被设置成不发生击穿的充分薄的平。这意味着基本上不存在诸如作为介电层的击穿的结果而发生的短路缺陷之类的问题。然而,在诸如数百伏特或更高的高DC偏压下使用期间,由介电组成其本身引起的绝缘电阻的减小和短路缺陷等成为问题。形成介电层的介电组成因此需要极其可靠。
[0006] 在现有技术中,已经通过添加顺电性物诸如锆酸钡而开发了具有改进的可靠性的介电组成。然而,近些年,甚至更大的可靠性成为期望的。
[0007] 专利文献1描述了一种层压陶瓷电容器,在其中通过设置具有核-壳结构的介电陶瓷颗粒中的核与壳的表面积比例的特定范围来改进温度特性、介电常数和高温负荷正常运行时间。
[0008] 然而,关于专利文献1中描述的层压陶瓷电容器的高温负荷正常运行时间的改进是不充分的,并且需要进一步的改进。
[0009] 此外,以下提到的专利文献2描述了一种介电瓷制品,其包括钙钛矿钛酸钡晶粒(BTZ型晶粒),在其中BaTiO(3 其是铁电材料)的B位点的部分用Zr来替代,并且同样地包括钙钛矿钛酸铋钠晶粒(BNST型晶粒)。在所述介电瓷制品中,Mg、Mn以及至少一种稀土元素存在于BTZ型晶粒与BNST型晶粒之间的晶界相中。此外,介电瓷制品具有核-壳结构,在所述核-壳结构中BTZ型晶粒和BNST型晶粒二者的平均颗粒尺寸是0.3-1.0 µm。
[0010] 然而,关于专利文献2中描述的介电瓷制品和层压陶瓷电容器,存在介电常数关于DC偏压的大的减小,并且对于使用在高电压下(例如,使用在诸如机动车辆DC-DC转换器或AC-DC逆变器的平滑电容器或缓冲电容器中)而言,介电常数不能够被视为足够的。因此需要当施加DC偏压时的介电常数的进一步改进。
[0011] 现有技术文献
[0012] 专利文献
[0013] 【专利文献 1】JP 2000-223351 A
[0014] 【专利文献 2】JP 2005-22891 A。

发明内容

[0015] 待由本发明解决的问题
[0016] 鉴于以上概述的情形,本发明的目的在于提供一种介电组成,其有利地使用在具有高额定电压的电源电路中,并且具有当施加DC偏压时的极好的介电常数和极好的高温负荷正常运行时间,并且还在于提供包括所述介电组成的介电元件、电子部件和层压电子部件。
[0017] 用于解决该问题的措施
[0018] 为了实现上面提到的目的,根据本发明的介电组成具有包含至少Bi、Na、Sr和Ti的钙钛矿晶体结构,并且其特征在于:
[0019] 所述介电组成包括低Bi相,在所述低Bi相中,Bi浓度是介电组成整体中的平均Bi浓度的不大于0.8倍。
[0020] 具有上面提到的构成的介电组成具有当施加DC偏压时的极好的介电常数和极好的高温负荷正常运行时间。
[0021] 此外,优选地,0 < α ≤ 0.150,其中α是介电组成的横截面中的低Bi相相对于整个所述横截面的表面积比例。
[0022] 通过设置0 < α ≤ 0.150,可能进一步改进高温负荷正常运行时间。
[0023] 此外,优选地,0.125 ≤ β ≤ 2.000,其中β是介电组成中Bi相对于Sr的摩尔比。
[0024] 凭借满足0.125 ≤ β ≤ 2.000的事实,可能进一步改进当施加DC偏压时的介电常数。
[0025] 上面提到的介电组成优选地包括从La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Yb、Ba、Ca、Mg和Zn之中选择的至少一种。
[0026] 凭借介电组成包括从La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Yb、Ba、Ca、Mg和Zn之中选择的至少一种的事实,可能进一步改进DC偏压特性。
[0027] 此外,从La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Yb、Ba、Ca、Mg和Zn之中选择的所述至少一种的含量优选地在1摩尔份和15摩尔份之间,把介电组成的Ti含量看作100摩尔份。
[0028] 通过将从La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Yb、Ba、Ca、Mg和Zn之中选择的所述至少一种的含量设置在1摩尔份和15摩尔份之间,可能进一步改进DC偏压特性。
[0029] 根据本发明的介电元件设有上面提到的介电组成。
[0030] 根据本发明的电子部件设有包括上面提到的介电组成的介电层。
[0031] 根据本发明的层压电子部件具有层压部分,所述层压部分通过使内部电极层和包括上面提到的介电组成的介电层交替地层压而形成。附图说明
[0032] 图1是根据本发明的实施例的一个模式的层压陶瓷电容器的横截面中的视图;
[0033] 图2是根据本发明的实施例的一个模式的介电组成的横截面的示例;以及
[0034] 图3是根据本发明的实施例的一个模式的介电组成的横截面的示例。

具体实施方式

[0035] 以下将参考附图描述根据本发明的实施例的一个模式的层压陶瓷电容器。应该指出,根据本发明的介电组成也可以使用在介电元件中,并且它还可以使用在不同于层压陶瓷电容器的电子部件(诸如单板电容器)中。
[0036] 图1是根据本发明的实施例的一个模式的层压陶瓷电容器的示意性横截面图。
[0037] 如在图1中示出的,根据本发明的实施例的一个模式的层压陶瓷电容器200包括电容器元件主体5,所述电容器元件主体5具有一个结构,在所述结构中,介电层7和内部电极层6A、6B交替堆叠。内部电极层6A、6B通过如下方式堆叠:其端部表面在电容器元件主体5的两个相对端部的表面处交替暴露。一对外部电极11A、11B在电容器元件主体5的两个端部处形成并且连接到交替设置的内部电极层6A、6B的暴露的端部表面,由此形成电容器电路。
[0038] 关于电容器元件主体5的形状没有特别的限制,但是其通常是长方体形状。此外,关于电容器元件主体5的尺寸没有特别的限制。尺寸通常近似使得(长侧)×(短侧)×(高度)=(0.6 mm-7.0 mm) × (0.3 mm-6.4 mm) × (0.3 mm-2.5 mm)。
[0039] 内部电极层6A、6B以使得交替地设有介电层7这样的方式并且以使得其端部表面在电容器元件主体5的两个相对端部的表面处交替暴露这样的方式堆叠。此外,该对外部电极11A、11B在电容器元件主体5的两个端部处形成并且连接到交替设置的内部电极层6A、6B的暴露的端部表面,由此形成层压陶瓷电容器200。
[0040] 此外,内部电极层6A、6B包括导电材料,所述导电材料是贵金属或贱金属并且基本上充当电极。具体地,导电材料(其是贵金属或贱金属)优选地是Ag、Ag合金、Cu或Cu合金中的任一种。关于包括在Ag合金或Cu合金中的不同于Ag和Cu的金属没有特别的限制,但是选自Ni、Mn、Cr、Co、Al和W的一种或多种金属是优选的。此外,当使用Ag合金时,Ag含量优选地是至少95 wt%(重量百分数),把所述Ag合金看作100 wt%。当使用Cu合金时,Cu含量优选地是至少95 wt%,把所述Cu合金看作100 wt%。
[0041] 导电材料也可以以不大于0.1 wt%的总量包含各种痕量组分,诸如P、C、Nb、Fe、Cl、B、Li、Na、K、F、S等等。
[0042] 应该酌情根据预期的目的或应用来确定各种条件,诸如内部电极层6A、6B的厚度和数量。内部电极层6A、6B的厚度优选地是0.1 µm-4.0 µm左右,并且更优选地是0.2 µm-3.0 µm。
[0043] 外部电极11A、11B分别与交替设置在电容器元件主体5内部的内部电极层6A、6B进行传导,并且形成为电容器元件主体5的两个端部处的一对。关于形成外部电极11A、11B的金属没有特别的限制。可以单独使用选自Ni、Pd、Ag、Au、Cu、Pt、Rh、Ru或Ir等的一种类型的金属,或者同样地可以使用两种或更多金属的合金。Cu、Cu合金、Ni、Ni合金、Ag、Ag-Pd合金或者In-Ga合金等通常被用于外部电极11A、11B。
[0044] 外部电极11A、11B的厚度应该酌情根据应用等来确定。外部电极11A、11B的厚度优选地是10-200 µm左右。
[0045] 介电层7包括根据实施例的该模式的介电组成。每个介电层7的厚度可以自由设置并且应该酌情根据预期的目的或应用来确定。关于每个介电层7的厚度没有特别的限制。例如,厚度可以设置在1-100 µm。应该指出,从减小元件的尺寸的观点出发,每个介电层7的厚度通常不大于30 µm并且优选地不大于10 µm。此外,关于介电层7的数量没有特别的限制。这应该酌情根据预期的目的或应用来确定。
[0046] 在这里,根据实施例的该模式的介电层7中包含的介电组成具有钙钛矿晶体结构,其包含至少Bi、Na、Sr和Ti。
[0047] 具有钙钛矿晶体结构的介电组成是多晶材料,其作为主相包括钙钛矿化合物,所述钙钛矿化合物由通式ABO3表示。A位点包括选自Bi、Na和Sr的至少一种,并且B位点包括至少Ti。
[0048] 如果把A位点的全部看作100 at.%(原子百分数),则占据A位点的Bi、Na、Sr的比例优选地是总计至少80 at.%。此外,如果把B位点的全部看作100 at.%,则占据B位点的Ti的比例优选地是至少80 at.%。
[0049] 如以上所指示的,根据实施例的该模式的介电层7包括介电组成。如在图2和图3中所示出的,介电组成包括不包含低Bi相8的烧结颗粒20、包含低Bi相8的烧结颗粒30以及晶界10。应该指出,在根据实施例的该模式的介电层7中包含的介电组成是烧结的介电组成。不包含低Bi相的烧结颗粒20和包含低Bi相的烧结颗粒30在下面还被统称为“烧结颗粒20、
30”。
[0050] 在这里,所述介电组成包括低Bi相8,在所述低Bi相8中,Bi浓度是介电组成整体的平均Bi浓度的不大于0.8倍。
[0051] 此外,除了烧结颗粒20、30和晶界10之外,介电组成还可以包括孔隙(空气孔)(未描绘)。气基本上不存在于孔隙中。关于孔隙的横截面面积没有特别的限制,但是5%或更小的值作为相对于介电组成整体的表面积比例是优选的。
[0052] 低Bi相8可以以任何形式包括在介电组成中。例如,如在图2中示出的,低Bi相8可以包括在烧结颗粒中。如在图3中示出的,低Bi相8可以包括在晶界10中。低Bi相8当然可以包括在烧结颗粒和晶界10二者中。
[0053] 不存在低Bi相8中的Bi浓度的特别的下限。
[0054] 根据实施例的该模式的介电组成具有低Bi相8,并且因此当施加DC偏压时的介电常数被维持在优选的范围内,同时还改进了高温负荷正常运行时间。
[0055] 另一方面,与其中存在低Bi相8的介电组成相比,其中不存在低Bi相8的介电组成具有减小的高温负荷正常运行时间以及减小的可靠性。
[0056] 下面将描述用于区分低Bi相8的方法、用于确定是否存在低Bi相8的方法,以及用于计算由低Bi相8占据的表面积比例α的方法的示例。
[0057] 使用扫描透射电子显微镜(STEM),首先将观察场设置于介电层7的在与内部电极层6A、6B交叉的位置处切割的横截面中。
[0058] 关于观察场的表面积没有特别的限制,但是从EDS分析准确性和分析效率的观点出发,包括20-50个左右的烧结颗粒20、30的表面积是优选的。具体来说,观察场优选地具有约为5 µm × 5 µm的尺寸。此外,观察场的放大倍数优选地在10,000和50,000倍之间。
[0059] 然后借助于能量色散X射线谱(EDS)在整个观察场中实施组成映射分析,并且测量元素Bi的X射线谱。从结果得到的X射线谱计算包括在整个观察场中的元素Bi的平均浓度(平均Bi浓度)。然后通过如下方式使元素Bi的映射图像经受图像处理:可能区分其中元素Bi浓度是平均Bi浓度的不大于0.8倍的区和其中值超过0.8倍的区。
[0060] 在其中元素Bi浓度不大于平均Bi浓度的0.8倍的区中,在低Bi相8与孔隙之间做出区分。应该指出,关于用于区分低Bi相8和孔隙的方法没有特别的限制。它们可以根据介电组成等的状态和构成通过合适的方法来区分。例如,可以通过STEM等等来观察电子图像,并且在烧结颗粒20、30和晶界10之内的具有低Bi浓度的区可以被认为是低Bi相8,而在不同于烧结颗粒20、30和晶界10的任何位置处的具有低Bi浓度的区可以被认为是孔隙。此外,可以通过EDS测量氧气浓度,并且大体上包括氧气并且具有低Bi浓度的区可以被认为是低Bi相8,而大体上不包括氧气并且具有低Bi浓度的区可以被认为是孔隙。
[0061] 然后从已经经过图像处理的映射图像计算低Bi相8相对于整个场所占据的表面积比例α。具体地,通过选择映射图像中的所有低Bi相并且对由所选择的区占据的像素的数目进行计数来计算相对于整个场的表面积比例α。
[0062] 在本申请中,如果低Bi相8存在于整个观察场中的某个地方,则认为包括低Bi相,在所述低Bi相中,Bi浓度是介电组成整体的平均Bi浓度的不大于0.8倍。相反地,如果低Bi相8不存在于整个观察场中的任何地方,则认为不包括低Bi相,在所述低Bi相中,Bi浓度是介电组成整体的平均Bi浓度的不大于0.8倍。
[0063] 应该指出,在映射图像中不是显然的低Bi相8被认为不存在,因为横截面区域不足够大以满足该横截面区域对应于一个像素。
[0064] 以上已经描述了用于区分低Bi相8的方法和用于计算由低Bi相8占据的表面积比例α的方法的示例,但是关于用于区分低Bi相8的方法和用于计算由低Bi相8占据的表面积比例α的方法没有特别的限制。例如,同样可以使用透射电子显微镜(TEM)而不是STEM。
[0065] 应该指出,可能借助于介电组成的构成和用于产生其的方法以及还有焙烧条件等来适当地控制低Bi相8的形成或其他以及表面积比例α。例如,通过包括具有大颗粒尺寸的起始材料粉末或者在相对低的温度下执行焙烧,可能促进低Bi相8的形成。
[0066] 表面积比例α优选地使得0 < α ≤ 0.150。当满足0 < α ≤ 0.150时,可能进一步改进高温负荷正常运行时间。表面积比例α更优选地使得0.001 ≤ α ≤ 0.150。
[0067] 此外,根据实施例的该模式的介电组成优选地使得Bi含量相对于Sr含量的摩尔比β满足0.125 ≤ β ≤ 2.00。当β在上面提到的范围内时,进一步改进当施加DC偏压时的介电常数。
[0068] 此外,根据实施例的该模式的介电组成可以包括从La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Yb、Ba、Ca、Mg和Zn之中选择的至少一种(下面也称为“辅助组分”)。通过加入辅助组分,进一步改进DC偏压特性。
[0069] 辅助组分的含量优选地在1摩尔份与15摩尔份之间,把介电组成的Ti含量看作100摩尔份。当辅助组分的含量在上面提到的范围内时,进一步改进DC偏压特性。辅助组分的含量更优选地在1摩尔份和10摩尔份之间。
[0070] 关于用于产生根据实施例的该模式的层压陶瓷电容器的方法没有特别的限制。例如,它是以与常规层压陶瓷电容器相同的方式产生的,即通过采用浆料使用正常的片材方法或印刷方法制备生片(green chip)、焙烧生片然后印刷或转录(transcribe)外部电极然后焙烧。下面将以特定的术语描述用于产生层压陶瓷电容器的方法。
[0071] 关于用于介电层的浆料的类型没有特别的限制。例如,所述浆料可以是包括介电起始材料和有机载体的混合物的有机涂料,或者它可以是包括介电起始材料和水性载体的混合物的水性涂料。
[0072] 对于介电起始材料,可能使用包含在上面提到的介电组成中的金属,例如从由Bi、Na、Sr、Ti、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Yb、Ba、Ca、Mg、和Zn组成的组中选择的金属的氧化物或其混合物,或者可以使用复合氧化物。此外,可以从作为焙烧的结果而形成上面提到的氧化物或复合氧化物的各种类型的化合物(例如酸盐、草酸盐、硝酸盐、氢氧化物和有机金属化合物等等)中适当地选择介电起始材料,并且可以对这些进行混合以供使用。具有约为0.1-3 µm的平均颗粒尺寸的粉末被用作介电起始材料。介电起始材料优选地是具有0.1-1 µm的平均颗粒尺寸的粉末。此外,可以通过适当地改变混合所述材料的时间来调整介电起始材料的平均颗粒尺寸。
[0073] 当用于介电层的浆料是有机涂料时,应该混合介电起始材料和有机载体,在所述有机载体中粘合剂等等被溶解在有机溶剂中。关于在有机载体中使用的粘合剂没有特别的限制,并且可以从诸如乙基纤维素和聚乙烯醇缩丁之类的各种常规粘合剂中适当地选择它。 此外,关于在有机载体中使用的有机溶剂没有特别的限制,并且可以根据所使用的方法(即印刷方法还是片材方法等)从诸如松油醇、丁基卡必醇、丙甲苯之类的各种类型的有机溶剂中适当地选择它。
[0074] 此外,当用于介电层的浆料是水性涂料时,应该混合介电起始材料和水性载体,在所述水性载体中水溶性粘合剂和分散剂等被溶解在水中。关于在水性载体中使用的水溶性粘合剂没有特别的限制,并且例如可能使用聚乙烯醇、纤维素或水溶性丙烯酸树脂
[0075] 通过对包括上面描述的各种金属或合金的导电材料或各种类型的氧化物(其在焙烧之后形成导电材料)、有机金属化合物、树脂酸盐等等与上面提到的有机载体或水性载体进行混合来制备用于内部电极层的浆料。可以以与用于内部电极层的浆料相同的方式来制备用于外部电极的浆料。
[0076] 当有机载体被用于制备上面提到的浆料时,关于所述有机载体的含量没有特别的限制。例如,相对于介电起始材料,粘合剂可以以约为1-5 wt%(重量百分数)的量存在并且有机溶剂可以以约为10-50 wt%的量存在。此外,按需要,该浆料可以包含从各种类型的分散剂、增塑剂电介质和绝缘体等中选择的添加剂。这些添加剂的总含量优选地不大于10 wt%。
[0077] 当使用印刷方法时,在由聚对苯二甲酸乙二酯(PET)等等制成的基板上交替地且重复地印刷用于介电层的浆料和用于内部电极层的浆料。在印刷之后,将浆料切割成预定形状,在这之后将它们从基板剥离以形成生片。
[0078] 当使用片材方法时,使用用于介电层的浆料来形成生片材,并且将用于内部电极层的浆料印刷在生片材上。在这之后,对生片材进行剥离、堆叠和切割以形成生片。
[0079] 在对生片进行焙烧之前,执行脱粘处理。关于脱粘处理的条件没有特别的限制并且它应该在正常条件下实施。
[0080] 当将单独的贱金属或包括贱金属的合金(诸如Cu或Cu合金)用于内部电极层的导电材料时,优选地在还原性气氛下实施脱粘处理。关于还原性气氛的类型没有特别的限制,并且除了其他许多东西之外,可能使用经加湿的N2气体或包括经加湿的N2和H2的混合气体。
[0081] 关于脱粘处理中的温升速率、保持温度和温度保持时间没有特别的限制。温升速率优选地为0.1-100℃/hr并且更优选地为1-10℃/hr。保持温度优选地为200-500℃并且更优选地为300-450℃。温度保持时间优选地为1-48小时并且更优选地为2-24小时。借助于脱粘处理,诸如粘合剂组分之类的有机组分优选地被移除降至300 ppm左右,并且更优选地被移除降至200 ppm左右。
[0082] 应该根据用于内部电极层的浆料中的导电材料的类型来适当地确定当焙烧生片以获得电容器元件主体时的焙烧气氛。
[0083] 当将单独的贱金属或包括贱金属的合金(诸如Cu或Cu合金)用作用于内部电极层的浆料中的导电材料时,优选地将焙烧气氛中的氧分压设置在10-6到10-8 atm。通过将氧分压设置在10-8 atm或更大,可能限制在介电组成中包含的钙钛矿晶体结构的降级和高温负荷正常运行时间的减小。此外,通过将氧分压设置在10-6 atm或更小,可能限制内部电极层的氧化。
[0084] 此外,在焙烧期间的保持温度是900-1400℃,优选地是900-1200℃,并且更优选地是1000-1100℃。通过将保持温度设置在900℃或更大,这使得致密化更可能由于焙烧而充分地进行。此外,当保持温度被设置在1200℃或更小时,这促进抑制形成内部电极层的各种材料的扩散和内部电极层的异常烧结。通过抑制内部电极层的异常烧结,这促进防止内部电极的破损。通过抑制形成内部电极层的各种材料的扩散,这促进防止高温负荷正常运行时间的减小。
[0085] 通过将焙烧期间的保持温度适当地设置在上面提到的温度范围内,这使得更容易视情况而控制晶粒尺寸。此外,关于焙烧气氛没有特别的限制。该焙烧气氛优选地是还原性气氛以便限制内部电极层的氧化。关于气氛气体没有特别的限制。例如,包括经加湿的N2和H2的混合气体被优选地用作气氛气体。此外,关于焙烧时间没有特别的限制。
[0086] 在根据实施例的该模式的层压陶瓷电容器的产生期间,可以在焙烧之后实施退火(再氧化)。应该在正常条件下实施退火。关于退火气氛没有特别的限制,但是在其中介电层被氧化而内部电极层没有被氧化的气氛是优选的。例如,可以使用经加湿的N2气体或包括经加湿的N2和H2等的混合气体。
[0087] 在上面提到的脱粘处理、焙烧和退火中应该使用湿润剂等等以便对N2气体或包括N2和H2等的混合气体进行加湿。在这种情况下,水温优选地为20-90℃左右。
[0088] 可以连续或独立地实施脱粘处理、焙烧和退火工艺。当连续执行这些工艺时,下面的程序是优选的,即执行脱粘处理,在这之后在不进行冷却的情况下修改气氛,然后通过将温度提升到用于焙烧的保持温度来实施焙烧。另一方面,当独立地执行这些工艺时,下面的程序是优选,即在焙烧期间在N2气体气氛下将温度提升到用于脱粘处理的保持温度,在这之后将气氛修改为用于焙烧的气氛,并且在修改气氛之后,使温度增加继续到用于焙烧的保持温度。在焙烧之后,执行冷却至用于脱粘处理的保持温度,在这之后再次将气氛修改为N2气体气氛并且进一步继续冷却。应该指出,上面提到的N2气体可能经过加湿或者可能没有经过加湿。
[0089] 例如,借助于滚筒抛光喷砂来对以这种方式获得的电容器元件主体的端部表面进行抛光,将用于外部电极的浆料印刷或转录在其上,实施焙烧并且形成外部电极。例如,优选地在包括N2和H2的经加湿的混合气体下在600-800℃处对用于外部电极的浆料进行焙烧达10分钟到1小时左右。然后按需要在外部电极表面上形成涂层。借助于敷等等来形成涂层。
[0090] 上面已经描述了根据本发明的实施例的一个模式的层压陶瓷电容器以及用于产生其的方法,但是绝不将本发明限制于实施例的该模式,并且当然可以在不脱离本发明的基本点的范围内实施各种模式。
[0091] 有利地将根据本发明的介电元件、电子部件和层压电子部件用在其中施加相对高的额定电压的位置。例如,有利地可以将它们用在例如具有高额定电压的电源电路中,诸如用在DC-DC转换器或AC-DC逆变器中。
[0092] 此外,关于根据本发明的实施例的一个模式的层压陶瓷电容器的应用没有特别的限制。例如,它可以用在用于电路保护的缓冲电容器中,对于其而言存在对当施加高DC偏压时的高介电常数的需要,或者它可以用在用于AC-DC逆变器的平滑电容器中,所述AC-DC逆变器将交流电转换成直流电。
[0093] 此外,根据实施例的该模式的层压陶瓷电容器借助于焊接等被安装在印刷电路板等等上。印刷电路板然后用在各种电子装置中,例如数字电视调制解调器等。
[0094] 此外,根据本发明的介电组成不包含铅。因此从环境观点出发,发明的介电组成、介电元件、电子部件和层压电子部件也是优越的。
[0095] 示例性实施例
[0096] 下面将在示例性实施例和比较示例的帮助下进一步详细描述本发明。然而,本发明不受下面的示例性实施例限制。应该指出,根据本发明,施加到介电组成、介电元件、电子部件和层压电子部件上的DC场被称为DC(直流电)偏压。此外,介电常数在施加DC偏压之前和之后的变化率被称为DC偏压特性。DC偏压特性越好,介电常数的变化率的绝对值越小。
[0097] 以下起始材料粉末被制备为用于产生介电层的起始材料:氧化铋(Bi2O3)、碳酸钠(Na2CO3)、碳酸锶(SrCO3)、碳酸钡(BaCO3)、碳酸钙(CaCO3)、碳酸镁(MgCO3)、氧化锌(ZnO)、氢氧化镧(La(OH)3)、氧化钕(Nd2O3)、氧化钐(Sm2O3)、氧化钆(Gd2O3)和氧化钛(TiO2)。
[0098] 通过如下方式来称出上面提到的起始材料粉末:使焙烧的介电组成具有表1中所示的构成。
[0099] 然后使用球磨机将所称量的起始材料粉末湿法混合,在这之后,在750℃-850℃的空气下对结果得到的混合物进行煅烧达2小时以获得煅烧粉末。
[0100] 然后将有机溶剂和有机载体添加到煅烧粉末,使用球磨机来湿法混合该材料并且制备用于介电层的浆料。同时,使Ag粉末、Ag-Pd合金粉末或Cu粉末与有机载体混合作为导电材料粉末,并且制备用于包括Ag、Ag-Pd合金或Cu的内部电极层的各种类型的浆料。然后借助于片材模制方法将用于介电层的浆料模制成片材,并且获得陶瓷生片材。
[0101] 借助于丝网印刷将用于内部电极层的浆料涂覆在陶瓷生片材上以印刷内部电极层。然后使在其上已印刷内部电极层的陶瓷生片材堆叠,在这之后将它们切割成预定形状,由此制备层压生片。该层压生片在300℃-500℃下经受脱粘以将有机组分移除降至300 ppm左右。在脱粘之后,在900℃-1400℃的焙烧温度下在该气氛下或者在还原性气氛下实施焙烧。该焙烧时间视情况而改变。当在还原性气氛下实施焙烧时,包括经加湿的N2和H2的混合气体被用作气氛气体。
[0102] 对结果得到的层压陶瓷焙烧制品的端部表面进行抛光,在这之后将In-Ga施加到其上作为外部电极,并且获得在图1中示出的层压陶瓷电容器的样品。结果得到的电容器样品的尺寸是3.2 mm × 1.6 mm × 0.6 mm,介电层的厚度是20 µm,内部电极层的厚度是
1.5 µm,并且在内部电极层之间插入四个介电层。
[0103] 应该指出,当借助于溶剂来溶解层压陶瓷焙烧制品的介电层并且借助于ICP光学发射光谱学来分析时,确认该介电层的组成与表1中所示的组成相同。
[0104] 此外,从层压陶瓷焙烧制品切割内部电极的交叉处的横截面,并且借助于X射线衍射测量和分析所述横截面处的介电层的晶体结构。因此,确认层压陶瓷焙烧制品的介电层包括具有钙钛矿晶体结构的组成。
[0105] 然后使用下面描述的方法对所获得的层压陶瓷焙烧制品中的每一个测量低Bi相的表面积比例和元素Bi的平均浓度。然后使用下面描述的方法测量介电常数、DC偏压特性和高温负荷正常运行时间。
[0106] 首先从所获得的层压陶瓷焙烧制品切割内部电极层的交叉处的横截面,并且借助于镓离子束将已经切割的横截面切割成薄片以制备用于横截面观察的样品。
[0107] 低Bi相的表面积比例α
[0108] 借助于扫描透射电子显微镜(STEM)观察在与内部电极层交叉的位置处切割的介电层的层横截面。应该指出,观察场是5 µm × 5 µm并且放大倍数是30 000倍。借助于能量色散X射线谱(EDS)在介电层的横截面中设置的整个场中执行映射分析,并且测量元素Bi的X射线谱。从结果得到的X射线谱计算包括在整个场中的元素Bi的平均浓度。然后通过如下方式使元素Bi的映射图像经受图像处理:区分其中元素Bi浓度是平均浓度的不大于0.8倍的相(低Bi相)和其中值超过0.8倍的相。应该指出,关于用于区分低Bi相和空气孔(孔隙)的方法没有特别的限制。例如,可以根据是否存在氧气来做出该区分。然后从已经经过图像处理的图像计算低Bi相在整个场中所占据的表面积比例α。通过对在已经经过图像处理的图像中由低Bi相占据的像素的数目进行计数,并且将这个数目除以整个场中的像素的总数目来计算相对于整个场的表面积比例α。在表1中示出结果。
[0109] 介电常数ε1
[0110] 通过使用数字LCR仪表(Hewlett-Packard;4284A)输入具有1 Vrms的输入信号电平(测量电压)的信号在1 kHz的频率以及25℃下测量层压陶瓷电容器样品的电容。然后从测量的电容、面对的电极的表面积和层间距离来计算介电常数ε1(没有单位)。在本示例性实施例中,将从10个层压陶瓷电容器样品计算的平均值用作介电常数ε1。在表1中示出结果。
[0111] 介电常数ε2
[0112] 在将DC偏压发生器(GLASSMAN高电压;WX10P90)连接至数字LCR仪表(Hewlett-Packard;4284A)并且将8 V/µm的DC偏压施加到层压陶瓷电容器样品上的同时,根据从1kHz的频率和1.0 Vrms的输入信号电平(测量电压)的条件测得的电容、面对的电极的表面积和层间距离来计算介电常数ε2(没有单位)。在本示例性实施例中,将从10个层压陶瓷电容器样品计算的平均值用作介电常数ε2。在本示例性实施例中,对于介电常数ε2,800或更大的值被认为是好的,并且1000或更大的值被认为是更好的。在表1中示出结果。
[0113] DC偏压特性
[0114] 使用介电常数ε1和介电常数ε2借助于下面的公式(1)来计算DC偏压特性。尽管优越的DC偏压特性对于实现本发明的目的而言不是必要的,但是DC偏压特性的更小的绝对值是更可取的。在本示例性实施例中,±30%之内的DC偏压特性被认为是好的。应该指出DC偏压特性超过+30%是不现实的。因此基本上不存在对于DC偏压特性的优选范围的上限:
[0115] DC偏压特性(%)= 100 × (ε2-ε1)/ε1…公式(1)。
[0116] 高温负荷正常运行时间
[0117] 在150℃下通过将DC电压施加的状态维持在50 V/µm的电场下来测量对于层压陶瓷电容器样品的高温负荷正常运行时间。在本示例性实施例中,高温负荷正常运行时间被定义为从DC电压施加的开始一直到绝缘电阻降至个位数的时间。此外,对10个层压陶瓷电容器样品测量高温负荷正常运行时间并且计算其平均值。在本示例性实施例中,20小时或更大的值被认为是好的,并且30小时或更大的值被认为是更好的。在表1中示出结果。
[0118] 表1
[0119]
[0120] 从表1能够看到,其中存在低Bi相的根据示例性实施例1-15的层压陶瓷电容器展现当施加8 V/µm的DC偏压时的800或更大的介电常数ε2以及20小时或更大的高温负荷正常运行时间。
[0121] 此外,其中低Bi相的表面积比例α使得0 < α ≤ 0.150的根据示例性实施例2和4-15的层压陶瓷电容器展现30小时或更大的高温负荷正常运行时间,并且这是甚至更好的高温负荷正常运行时间。
[0122] 另一方面,其中不存在低Bi相的根据比较示例1和2的层压陶瓷电容器展现少于20小时的高温负荷正常运行时间。
[0123] 此外,其中Bi相对于Sr的摩尔比β使得0.125 ≤ β ≤ 2.000的根据示例性实施例2-15的层压陶瓷电容器展现当施加8 V/µm的DC偏压时的1000或更大的介电常数ε2,并且这是甚至更好的。
[0124] 包括1摩尔份和15摩尔份之间的辅助组分的根据示例性实施例6-15的层压陶瓷电容器展现在±30%之内的DC偏压特性。那就是说,包括辅助组分的层压陶瓷电容器样品展现当施加DC偏压时的良好的介电常数ε2、良好的高温负荷正常运行时间、以及还有良好的DC偏压特性。
[0125] 关键符号
[0126] 5...电容器元件主体
[0127] 6A、6B...内部电极层
[0128] 7...介电层
[0129] 8...低Bi相
[0130] 10...晶界
[0131] 11A、11B...外部电极
[0132] 20...不包括低Bi相的烧结颗粒
[0133] 30...包括低Bi相的烧结颗粒
[0134] 200...层压陶瓷电容器
[0135] 300...介电组成。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈