首页 / 专利库 / 电子零件及设备 / 栅极金属 / 金属氧化物半导体装置与其形成方法

金属化物半导体装置与其形成方法

阅读:334发布:2024-02-21

专利汇可以提供金属化物半导体装置与其形成方法专利检索,专利查询,专利分析的服务。并且本 发明 公开一种金属 氧 化物 半导体 装置与其形成方法,该半导体装置包含一栅极结构以及一 外延 结构。栅极结构设在一基底上。外延结构设在栅极结构一侧的基底中,外延结构的部分作为该金属氧化物半导体的一源极/漏极区,其中外延结构包含:一第一 缓冲层 具有一第二导电型掺质、一第二缓冲层,以及一外延层具有一第一导电型掺质,其中第一导电型掺质与第二导电型掺质电性上互补。本发明还提供了一种形成前述金属氧化物半导体装置的方法。,下面是金属化物半导体装置与其形成方法专利的具体信息内容。

1.一种金属化物半导体(metal oxide semiconductor,MOS)装置,包含:
栅极结构,设在一基底上;以及
外延结构,设置在该栅极结构至少一侧的该基底中,该外延结构的部分作为该金属氧化物半导体装置的一源极/漏极区,其中该外延结构包含:
外延层,具有第一导电型掺质;
第二缓冲层;以及
第一缓冲层,具有第二导电型掺质,其中该第二导电型掺质与该第一导电型掺质电性互补。
2.如权利要求1所述的金属氧化物半导体装置,其中该基底具有至少一凹槽设置在该栅极结构其中一侧的该基底中,且该外延结构设置在该凹槽中。
3.如权利要求2所述的金属氧化物半导体装置,其中该第一缓冲层设置在该凹槽的底面。
4.如权利要求2所述的金属氧化物半导体装置,其中该第一缓冲层没有设置在该凹槽的侧壁
5.如权利要求2所述的金属氧化物半导体装置,还包含扩散区,包围该第一缓冲层,该扩散区具有该第二导电型掺质。
6.如权利要求1所述的金属氧化物半导体装置,其中该第二缓冲层设置在该第一缓冲层与该外延层之间。
7.如权利要求1所述的金属氧化物半导体装置,其中该第二缓冲层不具有导电型掺质。
8.如权利要求1所述的金属氧化物半导体装置,其中该外延层被该第二缓冲层包围。
9.如权利要求1所述的金属氧化物半导体装置,其中该金属氧化物半导体装置为N型晶体管,该外延结构包含磷化(SiP)或化硅(SiC),且该第一导电型掺质包含砷(As)、磷(P)或锑(Sb),第二导电型包含(B)或氟化硼(BF)。
10.如权利要求1所述的金属氧化物半导体装置,其中该金属氧化物半导体装置为P型晶体管,且该外延结构包含锗化硅(SiGe),且该第一导电型掺质包含硼(B)或氟化硼(BF),第二导电型包含砷(As)、磷(P)或锑(Sb)。
11.一种形成金属氧化物半导体装置的方法,包含:
在一基底上形成一栅极结构;
在该栅极结构其中一侧的该基底中形成至少一凹槽;以及
形成一外延结构于该凹槽,该外延结构包含:
外延层,具有第一导电型掺质;
第二缓冲层;以及
第一缓冲层,具有第二导电型掺质,其中该第二导电型掺质与该第一导电型掺质电性互补。
12.如权利要求11所述的形成金属氧化物半导体装置的方法,其中形成该第一缓冲层的方法包含进行一第一选择性外延制作工艺,以在该凹槽的底面形成该第一缓冲层。
13.如权利要求12所述的形成金属氧化物半导体装置的方法,其中该第一选择性外延制作工艺后,该第一缓冲层仅形成在该凹槽的底部。
14.如权利要求12所述的形成金属氧化物半导体装置的方法,其中该第一选择性外延制作工艺包含至少一外延成长制作工艺以及至少一蚀刻制作工艺。
15.如权利要求12所述的形成金属氧化物半导体装置的方法,其中该第一选择性外延制作工艺,包含通入该第二导电型掺质。
16.如权利要求11所述的形成金属氧化物半导体装置的方法,其中形成该第二缓冲层的方法包含进行一第二选择性外延制作工艺,以形成一U型剖面的该第二缓冲层。
17.如权利要求11所述的形成金属氧化物半导体装置的方法,其中形成该外延层的方法包含进行一第三选择性外延制作工艺,使该外延层填满该凹槽。
18.如权利要求11所述的形成金属氧化物半导体装置的方法,还包含形成一扩散区包围该第一缓冲层,该扩散区具有该第二导电型掺质。
19.如权利要求11所述的形成金属氧化物半导体装置的方法,其中该金属氧化物半导体装置为N型晶体管,该外延结构包含磷化硅(SiP)或碳化硅(SiC),且该第一导电型掺质包含砷(As)、磷(P)或锑(Sb),第二导电型包含硼(B)或氟化硼(BF)。
20.如权利要求11所述的形成金属氧化物半导体装置的方法,其中该金属氧化物半导体装置为P型晶体管,且该外延结构包含锗化硅(SiGe),且该第一导电型掺质包含硼(B)或氟化硼(BF),第二导电型包含砷(As)、磷(P)或锑(Sb)。

说明书全文

金属化物半导体装置与其形成方法

技术领域

[0001] 本发明是关于一种金属氧化物半导体装置与其形成方法,特别来说,是关于一种具有特殊外延结构的金属氧化物半导体装置与其形成方法。

背景技术

[0002] 近年来,随着各种消费性电子产品不断的朝小型化发展,半导体元件设计的尺寸也不断缩小,以符合高集成度、高效能和低耗电的潮流以及产品需求。
[0003] 然而,随着电子产品的小型化发展,现有的平面晶体管(planar transistor)已经无法满足产品的需求。因此,目前发展出一种非平面晶体管(non-planar)的鳍状晶体管(Fin-FET)技术,其具有立体的栅极通道(channel)结构。鳍状场效晶体管元件的制作工艺能与传统的逻辑元件制作工艺整合,因此具有相当的制作工艺相容性,且由于鳍状结构的立体形状增加了栅极与接触面积,因此可增加栅极对于通道区域电荷的控制,以降低小尺寸元件带来的漏极引发的能带降低(Drain Induced Barrier Lowering,DIBL)效应以及短通道效应(short channel effect)。现有的鳍状晶体管也持续改良,以朝更小尺寸的方向迈进。

发明内容

[0004] 本发明的目的在于提供了一种新颖的金属氧化物半导体装置与其形成方法,能具有较佳的电性表现与可靠度。
[0005] 为达上述目的,根据本发明的一实施例,提供了一种金属氧化物半导体(metal oxide semiconductor,MOS)装置,包含一栅极结构以及一外延结构。栅极结构设在一基底上。外延结构设在栅极结构一侧的基底中,外延结构的部分作为该金属氧化物半导体的一源极/漏极区,其中外延结构包含:一第一缓冲层具有一第二导电型掺质、一第二缓冲层,以及一外延层具有一第一导电型掺质,其中第一导电型掺质与第二导电型掺质电性上互补。
[0006] 根据本发明另一实施例,提供了一种形成金属氧化物半导体装置的方法,包含下列步骤。首先在一基底上形成一栅极结构,并在栅极结构其中一侧的基底中形成至少一凹槽。后续形成一外延结构于凹槽中,此外延结构包含:一第一缓冲层具有一第二导电型掺质、一第二缓冲层以及一外延层具有一第一导电型掺质,其中第一导电型掺质与第二导电型掺质电性上互补。
[0007] 本发明所提供的一种晶体管结构与其形成方法,特征在于特殊的外延结构,由此能获得较佳的稳定度以及防止漏电流的问题,也能维持晶体管的低驱动电压。。附图说明
[0008] 图1至图10为本发明一种形成金属氧化物半导体装置的步骤示意图,[0009] 主要元件符号说明
[0010] 300 基底 312S 凹槽侧壁
[0011] 302 浅沟槽隔离 314 第一缓冲层
[0012] 304 鳍状结构 314D 扩散区
[0013] 306 栅极结构 316 第二缓冲层
[0014] 306A 栅极介电层 318 外延层
[0015] 306B 导电层 320 外延结构
[0016] 306C 盖层 322 源极/漏极区
[0017] 308 轻掺质漏极 324 覆盖
[0018] 310 间隙壁 402 第一方向
[0019] 312 凹槽 404 第二方向
[0020] 312B 凹槽底面

具体实施方式

[0021] 为使熟悉本发明所属技术领域的一般技术者能更进一步了解本发明,下文特列举本发明的数个优选实施例,并配合所附的附图,详细说明本发明的构成内容及所欲达成的功效。
[0022] 请参考图1至图9,所绘示为本发明一种形成金属氧化物半导体装置的步骤示意图,其中图1和图2为立体图,而图3至图9为沿着图1与图2的AA’切线所绘制的剖视图。
[0023] 首先请参考图1,提供一基底300,其用来在其上形成所需的元件或电路,优选具有含硅材质,例如是硅、单晶硅(single crystal silicon)、单晶硅锗(single crystal silicon germanium)、非晶硅(amorphous silicon)或是上述的组合。在另一实施例中,基底300也可以包含其他半导体材质,例如是锗或III/V族的复合半导体材料,如锗砷等。在另一实施例中,基底300也可以包含其他介电材料,例如是硅覆绝缘基底(silicon on insulator,SOI)。基底300具有多个鳍状结构(fin structure)304以及多个浅沟槽隔离(shallow trench isolation,STI)302。如图1所示,鳍状结构304大体上沿着一第一方向
402延伸,且与浅沟槽隔离302彼此间隔地(alternatively)均匀排列。形成鳍状结构304的步骤,例如是先在基底300上形成图案化硬掩模层(图未示),然后再进行一蚀刻制作工艺以在基底300中形成多个沟槽(图未示)。接着以绝缘材料例如二氧化硅(SiO2)填满沟槽,再进行一平坦化及/或蚀刻制作工艺,以形成浅沟槽隔离302,使着突出于浅沟槽隔离
302的基底300的部分形成鳍状结构304。
[0024] 后续,如图2所示,在基底300上形成多个栅极结构306,大体上沿着一第二方向404延伸,第二方向404大体上与第一方向402垂直。在一实施例中,栅极结构306由下至上包含一栅极介电层306A、一导电层306B以及一盖层306C。在一实施例中,栅极介电层
306A例如是二氧化硅,或是高介电材料,例如是介电常数高于4的材料。导电层306B例如金属是或是多晶硅(poly silicon)。盖层306C例如包含氮化硅(SiN)、化硅(SiC)或氮氧化硅(SiON)。在一实施例中,盖层306C可以是一层或多层不同介电材料所组成,例如可以包含一第一盖层(图未示)与第二盖层(图未示),分别包含氧化硅和氮化硅。后续,在栅极结构306的侧壁上形成一间隙壁(spacer)310。间隙壁310可以是单层或复合膜层的结构,其可包含高温氧化硅层(high temperature oxide,HTO)、氮化硅、氧化硅或使用六氯二硅烷(hexachlorodisilane,Si2Cl6)形成的氮化硅(HCD-SiN)。在一实施例中,在形成间隙壁310之前,可以选择性的进行一离子注入制作工艺,以在栅极结构306两侧的鳍状结构
304中形成一轻掺杂漏极(light doped drain,LDD)308(未示于图2,可参考后续图3的剖视图),轻掺杂漏极308具有一第一导电型的掺质,若后续形成的晶体管为P型晶体管,则第一导电型掺质为P型掺质,例如是(B)及/或氟化硼(BF);反之,若后续形成的晶体管为N型晶体管,则第一导电型掺质为N型掺质例如是砷(As)及/或磷(P)及/或锑(Sb)。
[0025] 如图3所示的剖视图,进行一次或多次的蚀刻制作工艺,以在栅极结构306两侧的鳍状结构304中形成至少一凹槽(recess)312。在本发明优选实施例中,所形成的凹槽312具有一相对平的凹槽底面312B与相对垂直的凹槽侧壁312S,且两者的交界处优选为圆弧状。所述凹槽312形成方式例如用一次或多次的干蚀刻制作工艺,并在越后段执行的干蚀刻制作工艺中调整偏压功率(bias power),直至产生圆弧状凹槽312为止。在本发明另一实施例中,凹槽312也可以通过湿蚀刻技术而具有如钻石或六等多边形的角度。在形成凹槽312后,可选择性进行一清洗步骤,以稀释氢氟酸(diluted hydrofluoric acid)或一含有硫酸(H2SO4)、过氧化氢(H2O2)、与去离子水(deionized water,DI water)的Piranha(又称SPM)混合溶液或其他适当的清洗液处理,以去除不纯物质。
[0026] 如图4所示,在凹槽312中形成一第一缓冲层(buffer layer)314,以覆盖在凹槽312内鳍状结构304的表面上。在一实施例中,若后续形成的晶体管为N形晶体管,第一缓冲层314的材料可以是硅化磷(SiP)或硅化碳(SiC);若后续形成的晶体管为P形晶体管,则第一缓冲层314的材料则为硅化锗(SiGe)。在本发明中,第一缓冲层314具有一第二导电型,其与前述的第一导电型为互补(complementary)。本发明其中一个特征在于,第一缓冲层314优选仅形成在凹槽底面314B上,而并不会形成在凹槽侧壁312S上。形成所述第一缓冲层312的方法,包含一第一选择性外延成长(selective epitaxial growth,SEG)制作工艺,在一实施例中,此第一选择性外延成长制作工艺包含至少一选择性外延成长制作工艺以及至少一蚀刻制作工艺。例如,先进行选择性外延成长后,进行一蚀刻制作工艺以移除些许凹槽底部312B形成的外延层且大体上移除凹槽侧壁312S的外延层。若无法完全移除凹槽侧壁312S的外延层,也可重复进行「选择性外延成长制作工艺→蚀刻制作工艺」多次周期,直至完全去除凹槽侧壁312S的外延层为止。而在另一实施例中,第一缓冲层314除了形成在凹槽底部312B,也可些许地形成在凹槽侧面312S,例如形成在凹槽侧面312S由下而上高度的1/2至1/3之间。此外,由于第一缓冲层314具有第二导电型掺质,故可在形成第一缓冲层314时以原位处理(in-situ)的方式伴随着外延成长制作工艺导入第二导电型的掺质。而在另一实施例中,也可在全部选择性外延制作工艺后,再进行离子注入制作工艺以形成具有第二导电型掺质的第一缓冲层314。而在另一实施例中,也可在形成第一缓冲层314之前额外地进行一离子注入制作工艺,形成一掺杂区(图未示)位在凹槽底面312B下方的基底300。
[0027] 如图5所示,在凹槽312中形成一第二缓冲层316,覆盖在凹槽312第一缓冲层314以及凹槽侧壁312S的表面上。第二缓冲层316的材质大体上与第一缓冲层314相同。
在一实施例中,第二外延层316的锗(P型晶体管)或碳/磷(N型晶体管)的浓度大于第一缓冲层314的锗(P型晶体管)或碳/磷(N型晶体管)的浓度,在另一实施例中两者的浓度也可相同。此外,本发明的第二缓冲层316优选为未掺杂外延层(undoped epitaxial layer),亦即不具有第一导电型或第二导电型的掺质。在一实施例中,第二缓冲层314是以一第二选择性外延成长制作工艺形成,且会共形(conformally)地成长于凹槽侧壁312S以及第一缓冲层314的表面上,因此所形成的第二缓冲层316具有一U型剖面,且优选具有均一厚度。
[0028] 接着请参考图6,形成一外延层318于第二缓冲层316上。在一实施例中,外延层318会填满凹槽312,并稍微突出于凹槽312,或者,与凹槽312的开口大体上齐平。在一实施例中,外延层318的锗(P型晶体管)或碳/磷(N型晶体管)的浓度大于第二缓冲层316的锗(P型晶体管)或碳/磷(N型晶体管)的浓度,在另一实施例中,两者的浓度也可以相同。形成外延层318的步骤包含一第三外延成长制作工艺,此第三外延成长制作工艺可以选择用单层或多层的方式来形成,并且锗、碳或磷的浓度梯度可以以选择渐增的方式形成,但不以此为限。所形成的第一缓冲层314、第二缓冲层316与外延层318合称为一外延结构
320。
[0029] 后续,如图7所示,进行一离子注入(implant)制作工艺,以在外延层318的部分或全部中注入第一导电型的掺质,以形成一源极/漏极区322。在本发明另一实施例中,也可在形成外延层318的第三选择性外延成长制作工艺中时以原位处理(in-situ)的方式伴随着外延成长制作工艺导入第一导电型掺质,而一并形成外延层318和源极/漏极区322。
[0030] 接着如图8所示,进行一退火制作工艺(annealing),使第一缓冲层314的第二导电型掺质均匀地向外扩散,以形成一扩散区314D。扩散区314D扩散的位置优选至第一缓冲层314的左右以及下方,或扩散至部分的第二缓冲层316中,而不会扩散至第二缓冲层316靠近基底300的侧面,但在另一实施例中,凹槽侧面312S下部分也可和扩散区314D接触。此外,由于外延层318被第二缓冲层316所包围,因此外延层318中的第一导电型掺质至多扩散至第二缓冲层316中,而优选地不会扩散至基底300中。在另一实施例中,如图9所示,当第一缓冲层314形成在部分的凹槽侧壁312S下方时,形成的扩散区314D也会扩散至凹槽侧面312S的基底300中,但扩散区314D优选不会超过凹槽侧面312S由下而上高度的1/2至1/3。此外,退火制作工艺并不限于在形成源极/漏极区322后才形成,也可选择性地在第一选择性外延成长制作工艺以形成第一缓冲层314后,或第二选择性外延成长制作工艺以形成第二缓冲层316后,或形成第三选择性外延成长以形成外延层318后,分别单次或多次的执行。举例来说,可以在形成第一缓冲层314后执行,形成扩散区314D后再形成第二缓冲层316以及外延层318。值得注意的是,由于先形成扩散区314D才形成不具掺质的第二缓冲层316,故第二缓冲层316并不会具有扩散区314D的第二导电型掺质,也不会具有外延层318的第一导电型掺质;或者,第二缓冲层316不会具有扩散区314D的第二导电型掺质,但部分会具有外延层318的第二导电型掺质。另一方面,在不同制作工艺的情况下,此退火制作工艺也可选择性省略,而结合至前段的步骤中一并执行,例如进行第二选择性外延成长制作工艺以形成第二缓冲层316,或进行第三选择性外延成长制作工艺以形成外延层318,或形成源极/漏极区322时,以上三者至少有一步骤的温度到达一定数值,例如介于摄氏600度或摄氏900度之间时,扩散区314D也可以一并形成。在另一实施例中,也可不进行退火制作工艺,而无需形成扩散区314D。
[0031] 后续,如图9所示,在外延层318的表面上共形地形成一覆盖层324,在一实施例中,覆盖层324包含硅(silicon base)材质,且以化学气相沉积(chemical deposition process,CVD)制作工艺形成。此覆盖层324后续可作为金属硅化物(silicide)制作工艺中的牺牲层,以跟后续形成在其上的金属层如钴反应而形成金属硅化物。在另一实施例中,此覆盖层324也可以视产品设计而省略。
[0032] 之后,进行其余的晶体管制作工艺,例如可依据制作工艺需求形成金属硅化物层(图未示)、接触洞蚀刻停止层(contact etching stop layer,CESL)(图未示)、层间介电层(inter-dielectric layer)(图未示)等一般标准晶体管制作工艺中的元件,甚至可再进行一金属栅极置换(replacement metal gate)制作工艺,将栅极结构306转换为一金属栅极。这些制作工艺为本领域者所熟知技术,在此不另加赘述。此外,前述实施例是以非平面晶体管(non-planar transistor)的实施态样进行说明,但本领域技术人员应可理解本发明也可应用于平面晶体管(planar transistor)。
[0033] 本发明其中一个特点在于外延结构320包含第一缓冲层314、第二缓冲层316与外延层318,其中第一缓冲层314具有第二导电型掺质,仅设置在凹槽底面312B;第二缓冲层316不具有掺质,且具有U型剖面;外延层318则具有第一导电型掺质,其完全填满凹槽312。扩散区314D具有第二导电型掺质,包围第一缓冲层314且较佳不会接触第二缓冲层
316。形成上述结构的优点:第一、外延层318中的第一导电型掺质因第二缓冲层316的屏障而不易向外扩散至基底300,而形成短通道效应。第二、外延层318的第一导电型掺质和第一缓冲层314以及扩散区314D的第二导电型掺质,两者会形成PN接面,可防止晶体管操作时向下产生漏电流问题,可增强晶体管的操控稳定度。第三、第一缓冲层314与扩散区
314D优选不会接触凹槽侧壁312B的第二缓冲层316,故不会增加晶体管通道(channel)的电阻值与电容值,仍可具有较低的驱动电压(threshold voltage,Vt)。
[0034] 综上而言,本发明提供了一种晶体管结构与其形成方法,特征在于特殊的外延层结构,而能获得较佳的稳定度以及防止漏电流的问题,也能维持晶体管的低驱动电压。
[0035] 以上所述仅为本发明的优选实施例,凡依本发明权利要求所做的均等变化与修饰,都应属本发明的涵盖范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈