首页 / 专利库 / 控制系统 / 延迟锁相环 / 用于光学距离测量的系统和方法

用于光学距离测量的系统和方法

阅读:301发布:2020-05-11

专利汇可以提供用于光学距离测量的系统和方法专利检索,专利查询,专利分析的服务。并且提供执行光学距离测量的系统(100,150,400)和方法。在一方面,一种用于测量到物体(160)距离的系统(100,150,400)包括被配置为发射出射光脉冲的光发射器(101,402),以及被配置为接收从物体(160)发射的返回光脉冲并输出表示该返回光脉冲的模拟脉冲 信号 (502)的光 传感器 (404)。所述系统(100,150,400)还包括耦合到光传感器的现场可编程 门 阵列(FPGA)。所述FPGA被配置为将模拟脉冲信号(502)转换为多个 数字信号 值,并生成基于多个数字信号值的多个时间测量。该系统还包括被配置为基于多个数字信号值和多个时间测量来计算到物体(160)的距离的 控制器 (171,172,406)。,下面是用于光学距离测量的系统和方法专利的具体信息内容。

1.一种测量到物体的距离的系统,所述系统包括:
光发射器,被配置为发射出射光脉冲;
传感器,被配置为接收从所述物体反射的返回光脉冲并输出表示所述返回光脉冲的模拟脉冲信号
耦合到所述光传感器的现场可编程阵列“FPGA”,被配置为:
将所述模拟脉冲信号转换为多个数字信号值,以及
通过采样每个数字信号值生成与所述多个数字信号值相对应的多个时间测量,其中,采样的时间分辨率短于所述FPGA的时钟周期;以及
控制器,被配置为基于所述多个数字信号值和所述多个时间测量来计算到所述物体的距离。
2.如权利要求1所述的系统,其中所述光发射器、所述光传感器、所述FPGA和所述控制器由无人载运工具、自主载运工具或机器人承载。
3.如权利要求1所述的系统,其中所述时间分辨率比所述FPGA的时钟周期短至少5倍。
4.如权利要求1所述的系统,其中所述FPGA包括彼此顺序耦合的多个延迟单元,并且其中所述FPGA被配置为使用所述多个延迟单元执行采样。
5.如权利要求4所述的系统,其中所述多个延迟单元包括至少25个延迟单元。
6.如权利要求4所述的系统,其中所述多个延迟单元包括进位链或查找表“LUT”。
7.如权利要求4所述的系统,其中所述多个延迟单元中的每一个被配置为产生从5皮秒到2000皮秒的范围内的延迟。
8.如权利要求4所述的系统,其中所述FPGA包括多个存器,其中每个锁存器耦合到所述多个延迟单元中的对应延迟单元,并且其中每个锁存器被配置为响应于所述对应延迟单元接收到数字信号值而被锁存。
9.如权利要求8所述的系统,其中所述FPGA被配置为通过以下操作生成所述多个时间测量:
沿着所述多个延迟单元顺序发送数字信号值;
确定在所述FPGA的时钟周期内触发的多个锁存器的数量;以及
基于确定的数量计算与所述数字信号值相对应的时间测量。
10.如权利要求9所述的系统,还包括置于所述FPGA之上、之内或附近的温度传感器,其中所述FPGA被配置为通过以下操作生成所述多个时间测量:
从所述温度传感器接收温度值;以及
基于所述温度值计算时间测量。
11.如权利要求1所述的系统,其中所述FPGA包括多个锁相环“PLL”时钟,每个锁相环时钟都被配置为生成具有不同相位时钟信号,并且其中所述FPGA被配置为使用所述多个PLL时钟执行采样。
12.如权利要求11所述的系统,其中所述多个PLL时钟包括至少2个PLL时钟。
13.如权利要求11所述的系统,其中由所述多个PLL时钟生成的时钟信号彼此相移π/8、π/4、π/2或π。
14.如权利要求11所述的系统,其中所述FPGA被配置为通过以下操作生成所述多个时间测量:
将数字信号值与所述多个PLL时钟中的每一个PLL时钟生成的时钟信号进行比较;以及基于所述比较计算与所述数字信号值相对应的时间测量。
15.如权利要求1所述的系统,其中所述FPGA包括所述控制器。
16.如权利要求1所述的系统,其中所述控制器耦合到所述FPGA。
17.一种测量到物体的距离的方法,所述方法包括:
通过光发射器发射出射光脉冲;
在光传感器处接收从所述物体反射的返回光脉冲;
通过所述光传感器输出表示所述返回光脉冲的模拟脉冲信号;
使用现场可编程门阵列“FPGA”将所述模拟脉冲信号转换为多个数字信号值;
使用所述FPGA,通过采样每个数字信号值生成与所述多个数字信号值相对应的多个时间测量,其中,采样的时间分辨率短于所述FPGA的时钟周期;以及
基于所述多个数字信号值和所述多个时间测量计算到所述物体的距离。
18.如权利要求17所述的方法,其中所述光发射器、所述光传感器、和所述FPGA由无人载运工具、自主载运工具或机器人承载。
19.如权利要求17所述的方法,其中所述时间分辨率比所述FPGA的时钟周期短至少5倍。
20.如权利要求17所述的方法,其中所述FPGA被配置为使用彼此顺序耦合的多个延迟单元执行采样。
21.如权利要求20所述的方法,其中所述多个延迟单元包括至少25个延迟单元。
22.如权利要求20所述的方法,其中所述多个延迟单元包括进位链或查找表“LUT”。
23.如权利要求20所述的方法,其中所述多个延迟单元中的每一个被配置为产生从5皮秒到2000皮秒的范围内的延迟。
24.如权利要求20所述的方法,其中所述FPGA包括多个锁存器,其中每个锁存器耦合到所述多个延迟单元中的对应延迟单元,并且其中每个锁存器被配置为响应于所述对应延迟单元接收到数字信号值而被锁存。
25.如权利要求24所述的方法,其中生成多个时间测量的步骤包括:
沿着所述多个延迟单元顺序发送数字信号值;
确定在所述FPGA的时钟周期内触发的多个锁存器的数量;以及
基于确定的数量计算与所述数字信号值相对应的时间测量。
26.如权利要求25所述的方法,其中生成多个时间测量的步骤包括:
从置于所述FPGA之上、之内或附近的温度传感器接收温度值;以及
基于所述温度值计算时间测量。
27.如权利要求17所述的方法,其中所述FPGA被配置为使用均被配置为生成具有不同相位的时钟信号的多个锁相环“PLL”时钟来执行采样。
28.如权利要求27所述的方法,其中所述多个PLL时钟包括至少2个PLL时钟。
29.如权利要求27所述的方法,其中由所述多个PLL时钟生成的时钟信号彼此相移π/8、π/4、π/2或π。
30.如权利要求27所述的方法,其中生成多个时间测量的步骤包括:
将数字信号值与所述多个PLL时钟中的每一个PLL时钟生成的时钟信号进行比较;以及基于所述比较计算与所述数字信号值相对应的时间测量。
31.一种测量到物体的距离的系统,所述系统包括:
光发射器,被配置为发射出射光脉冲;
光传感器,被配置为接收从所述物体反射的返回光脉冲并输出表示所述返回光脉冲的模拟脉冲信号;
耦合到所述光传感器的现场可编程门阵列“FPGA”,被配置为:
通过(1)将所述模拟脉冲信号与多个阈值进行比较,并且(2)基于所述比较生成多个数字信号值,将所述模拟脉冲信号转换为所述多个数字信号值,以及
生成与所述多个数字信号值相对应的多个时间测量;以及
控制器,被配置为基于所述多个数字信号值和所述多个时间测量计算到所述物体的距离。
32.如权利要求31所述的系统,其中所述光发射器、所述光传感器、所述FPGA和所述控制器由无人载运工具、自主载运工具或机器人承载。
33.如权利要求31所述的系统,其中多个不同的阈值包括至少2个不同的阈值。
34.如权利要求31所述的系统,其中所述FPGA包括多个差分输入端口,并且其中所述FPGA被配置为使用所述多个差分输入端口转换所述模拟脉冲信号。
35.如权利要求34所述的系统,其中每个差分输入端口包括低压差分信令“LVDS”接口或发射极耦合逻辑“ECL”接口。
36.如权利要求34所述的系统,其中所述FPGA进一步被配置为:在所述多个差分输入端口中的每一个差分输入端口处接收所述模拟脉冲信号和阈值,其中每个差分输入端口接收不同的阈值。
37.如权利要求36所述的系统,其中每个差分输入端口被配置为基于所述模拟脉冲信号是大于还是小于所接收的阈值来生成数字信号值。
38.如权利要求36所述的系统,其中每个差分输入端口包括:
被配置为接收所述模拟脉冲信号的第一引脚;以及
被配置为接收所述阈值的第二引脚。
39.如权利要求38所述的系统,其中所述第二引脚被配置为接收调整电压,并且其中调整电压被配置为补偿所述差分输入端口的第一引脚和第二引脚之间的偏移电压。
40.如权利要求31所述的系统,其中所述控制器被配置为通过以下操作计算所述距离:
将所述多个数字信号值和所述多个时间测量输入到函数中;以及
使用所述函数导出所述返回光脉冲的估计时间值。
41.如权利要求40所述的系统,其中所述函数包括脉冲信号模型,并且其中通过将所述多个数字信号值和所述多个时间测量拟合到所述脉冲信号模型来导出所述估计时间值。
42.如权利要求40所述的系统,其中所述多个差分输入端口中的每一个差分输入端口与测量偏移电压相关联,并且其中所述控制器被配置为将每个差分输入端口的测量偏移电压输入到所述函数中。
43.如权利要求40所述的系统,其中所述控制器被配置为将偏移调整参数输入到所述函数中,并且其中所述偏移调整参数被配置为补偿所述多个差分输入端口的偏移电压。
44.如权利要求34所述的系统,其中每个差分输入端口与延迟时间相关联,并且其中所述FPGA被配置为在生成所述多个时间测量时补偿每个差分输入端口的延迟时间。
45.如权利要求31所述的系统,其中所述FPGA包括所述控制器。
46.如权利要求31所述的系统,其中所述控制器耦合到所述FPGA。
47.一种用于测量到物体的距离的方法,所述方法包括:
通过光发射器发射出射光脉冲;
在光传感器处接收从所述物体反射的返回光脉冲;
通过所述光传感器输出表示所述返回光脉冲的模拟脉冲信号;
使用现场可编程门阵列“FPGA”,通过(1)将所述模拟脉冲值与多个阈值进行比较,并且(2)基于所述比较生成多个数字信号值,将所述模拟脉冲信号转换为所述多个数字信号值;
使用所述FPGA,生成与所述多个数字信号值相对应的多个时间测量,以及基于所述多个数字信号值和所述多个时间测量来计算到所述物体的距离。
48.如权利要求47所述的方法,其中所述光发射器、所述光传感器和所述FPGA由无人载运工具、自主载运工具或机器人承载。
49.如权利要求47所述的方法,其中所述多个阈值包括至少2个不同的阈值。
50.如权利要求47所述的方法,其中所述FPGA包括多个差分输入端口,并且其中转换步骤是使用所述多个差分输入端口来执行的。
51.如权利要求50所述的方法,其中每个差分输入端口包括低压差分信令“LVDS”接口或发射极耦合逻辑“ECL”接口。
52.如权利要求50所述的方法,还包括:在所述多个差分输入端口中的每一个差分输入端口处接收所述模拟脉冲信号和阈值,其中每个差分输入端口接收不同的阈值。
53.如权利要求52所述的方法,还包括:使用每个差分输入端口,基于所述模拟脉冲信号是大于还是小于所接收的阈值来生成数字信号值。
54.如权利要求52所述的方法,其中所述模拟脉冲信号在每个差分输入端口的第一引脚接收,并且所述阈值在每个差分输入端口的第二引脚接收。
55.如权利要求54所述的方法,还包括:向每个差分输入端口的第二引脚施加调整电压,其中所述调整电压被配置为补偿所述差分输入端口的第一引脚和第二引脚之间的偏移电压。
56.如权利要求50所述的方法,其中所述计算步骤包括:
将所述多个数字信号值和所述多个时间测量输入到函数中;以及
使用所述函数导出所述返回光脉冲的估计时间值。
57.如权利要求56所述的方法,其中所述函数包括脉冲信号模型,并且其中通过将所述多个数字信号值和所述多个时间测量拟合到所述脉冲信号模型来导出所述估计时间值。
58.如权利要求56所述的方法,其中所述多个差分输入端口中的每一个与测量偏移电压相关联,并且其中所述计算步骤包括:将每个差分输入端口的测量偏移电压输入到所述函数中。
59.如权利要求56所述的方法,其中所述计算步骤还包括:将偏移调整参数输入到所述函数中,并且其中所述偏移调整参数被配置为补偿所述多个差分输入端口的偏移电压。
60.如权利要求50所述的方法,其中每个差分输入端口与延迟时间相关联,并且其中生成多个时间测量的步骤包括:补偿每个差分输入端口的延迟时间。
61.一种用于校准距离测量设备的方法,所述方法包括:
提供包括多个差分输入端口的现场可编程门阵列“FPGA”,其中所述多个差分输入端口中的每一个差分输入端口与偏移电压相关联,并且其中所述FPGA被配置为:
接收表示从物体反射的返回光脉冲的模拟脉冲信号;
通过(1)使用所述多个差分输入端口将所述模拟脉冲值与多个阈值进行比较,以及(2)基于所述比较生成多个数字信号值,将所述模拟脉冲信号转换为所述多个数字信号值;以及
生成与所述多个数字信号值相对应的多个时间测量;以及
校准所述FPGA以补偿当转换模拟脉冲信号时与所述多个差分输入端口中的每一个差分输入端口相关联的偏移电压。
62.如权利要求61所述的方法,其中所述FPGA由无人载运工具、自主载运工具或机器人承载。
63.如权利要求61所述的方法,还包括:测量与每个差分输入端口相关联的偏移电压。
64.如权利要求63所述的方法,其中每个差分输入端口包括:
被配置为接收所述模拟脉冲信号的第一引脚;以及
被配置为接收阈值的第二引脚。
65.如权利要求64所述的方法,其中所述测量步骤包括:
向所述第一引脚施加可变电压信号;
向所述第二引脚施加固定电压信号;
检测所述差分输入端口的输出信号的变化;以及
在检测到所述变化时,确定所述第一引脚和所述第二引脚之间的电压差。
66.如权利要求65所述的方法,其中所述确定步骤包括:测量所述第一引脚和所述第二引脚之间的电压差。
67.如权利要求65所述的方法,其中所述确定步骤包括:
确定检测到所述输出信号的变化的时间点;以及
基于所述时间点和所述可变电压信号的波形来计算所述电压差。
68.如权利要求65所述的方法,其中所述可变电压信号包括增大的电压信号。
69.如权利要求65所述的方法,其中所述可变电压信号包括三波信号或梯形波信号。
70.如权利要求64所述的方法,其中所述校准步骤包括:将调整电压施加到每个差分输入端口的第二引脚,其中所述调整电压被配置为补偿与所述差分输入端口相关联的偏移电压。
71.如权利要求63所述的方法,其中所述校准步骤包括:使用所述多个差分输入端口的偏移电压作为函数的输入参数,其中所述函数被配置为基于所述多个数字信号值、所述多个时间测量和所述输入参数导出所述返回光脉冲的估计时间值。
72.如权利要求61所述的方法,其中所述校准步骤包括:
确定偏移调整参数,其中所述偏移调整参数被配置为补偿所述多个差分输入端口的偏移电压;以及
使用所述偏移调整参数作为函数的输入,其中所述函数被配置为基于所述多个数字信号值、所述多个时间测量和所述偏移调整参数导出所述返回光脉冲的估计时间值。

说明书全文

用于光学距离测量的系统和方法

技术领域

[0001] 本公开总体上涉及距离测量,并且更具体地涉及使用光检测和测距(LIDAR)的用于距离测量的系统和方法。

背景技术

[0002] 无人载运工具如无人机(UAVs)可应用于许多应用,包括农作物监测、摄影、建筑物和其他结构的检测、消防和安全任务、边境巡逻以及产品交付等。这些无人载运工具可被配置用于检测周围环境中的障碍物和其他物体的传感器。LIDAR系统可用于提供三维障碍物检测和环境测绘的距离测量。然而,现有的LIDAR系统的测量精度可能不足以用于复杂的环境。因此,有需要对无人载运工具和其他可移动物体携带的LIDAR系统实施的改进技术。发明内容
[0003] 本公开涉及使用LIDAR和其他光学技术进行距离测量的系统和方法。
[0004] 在一个方面,提供一种用于测量到物体距离的系统。所述系统包括被配置为发射出射光脉冲的光发射器。所述系统还包括被配置为接收物体反射的返回光脉冲并输出表示所述返回光脉冲的模拟脉冲信号的光传感器。所述系统还包括耦合到光传感器的FPGA。所述FPGA被配置为将模拟脉冲信号转换为多个数字信号值,并通过对每个数字信号值进行采样以生成与多个数字信号值相对应的多个时间测量值。采样的时间分辨率比FPGA的时钟周期短。所述系统还包括配置为基于多个数字信号值和多个时间测量值计算到物体的距离的控制器
[0005] 另一方面,提供一种用于测量到物体距离的方法。所述方法包括通过光发射器发射出射光脉冲。物体反射的返回光脉冲由光传感器接收。由光传感器输出表示返回光脉冲的模拟脉冲信号。使用FPGA来将模拟脉冲信号转换为多个数字信号值。所述FPGA被用来通过对每个数字信号值进行采样以生成与多个数字信号值相对应的多个时间测量值,其中采样的时间分辨率比FPGA的时钟周期短。基于多个数字信号值和多个时间测量值计算到物体的距离。
[0006] 另一方面,提供一种用于测量到物体距离的系统。所述系统包括被配置为发射出射光脉冲的光发射器。所述系统还包括被配置为接收物体反射的返回光脉冲并输出表示所述返回光脉冲的模拟脉冲信号的光传感器。所述系统还包括耦合到光传感器的FPGA。所述FPGA被配置为通过(1)将所述模拟脉冲信号与多个阈值比较,并且(2)基于所述比较生成多个数字信号值,将所述模拟脉冲信号转换为多个数字信号值。所述FPGA还被配置为生成与多个数字信号值相对应的多个时间测量值。所述系统还包括配置为基于多个数字信号值和多个时间测量值计算到物体的距离的控制器。
[0007] 另一方面,提供一种用于测量到物体距离的方法。所述方法包括通过光发射器发射出射光脉冲。物体反射的返回光脉冲由光传感器接收。由光传感器输出表示返回光脉冲的模拟脉冲信号。使用FPGA来(1)将所述模拟脉冲信号与多个阈值比较,并且(2)基于所述比较生成多个数字信号值,以将所述模拟脉冲信号转换为多个数字信号值。所述FPGA还被用来生成与多个数字信号值相对应的多个时间测量值。基于多个数字信号值和多个时间测量值计算到物体的距离。
[0008] 另一方面,提供一种用于校准距离测量设备的方法。所述方法包括提供具有多个差分输入端口的FPGA,其中多个差分输入端口中的每一个与偏移电压相关联。所述FPGA被配置为接收表示物体反射的返回光脉冲的模拟脉冲信号。所述FPGA还被配置为通过(1)使用多个差分输入端口将所述模拟脉冲值与多个阈值比较,并且(2)基于所述比较生成多个数字信号值,将所述模拟脉冲信号转换为多个数字信号值。所述FPGA还被配置为生成与多个数字信号值相对应的多个时间测量值。所述方法还包括校准FPGA以补偿转换模拟脉冲信号时与多个差分输入端口中的每一个相关联的偏移电压。附图说明
[0009] 在附图、说明书权利要求书中更详细地描述了以上和其他方面及其实现。
[0010] 图1A是根据本技术的实施例的包括可移动物体的代表系统的示意图。
[0011] 图1B是根据本技术的实施例的示例性LIDAR系统的示意图。
[0012] 图2A是根据本技术的实施例的基于比较器的采样配置的示意图。
[0013] 图2B示出了根据本技术的实施例的图2A的比较器的输入和输出波形
[0014] 图3是根据本技术的实施例的多比较器采样配置的示意图。
[0015] 图4是根据本技术的实施例的使用FPGA距离测量的系统的示意图。
[0016] 图5A是根据本技术的实施例的被配置用于脉冲数字化的FPGA的示意图。
[0017] 图5B示出了使用根据本技术的实施例的图5A的FPGA进行模拟脉冲信号的数字化。
[0018] 图6示出根据本技术的实施例用于执行偏移校准的梯形波信号。
[0019] 图7是根据本技术的实施例用于测量端口延迟的方法的示意图。
[0020] 图8A是根据本技术的实施例被配置用于以高时间分辨率进行时间-数字转换的FPGA的示意图。
[0021] 图8B示出了根据本技术的实施例的上升沿信号的时间-数字转换。
[0022] 图8C示出了根据本技术的实施例的下降沿信号的时间-数字转换。
[0023] 图9示出了根据本技术的实施例的用于时间-数字转换的多个PLL时钟信号
[0024] 图10示出了根据本技术的实施例的用于测量到物体的距离的方法。
[0025] 图11示出了根据本技术的实施例的用于校准距离测量设备的方法。

具体实施方式

[0026] 本公开涉及使用电磁辐射(诸如光)来测量到物体的距离的系统和方法。在一些实施例中,通过使用FPGA来处理表示检测的光脉冲的模拟脉冲信号,本文的系统和方法提供改进的测量精度(例如,厘米级精度)以及降低的成本、功耗和处理负担。本技术的基于FPGA的方法可用于准确地数字化模拟脉冲信号,并且以增大的时间分辨率(例如,皮秒级分辨率)测量该信号的定时信息。此外,本技术可以集成到各种可移动物体中,包括但不限于无人载运工具、自主载运工具和机器人。因此,这里描述的实施例对依赖于复杂和动态环境中的高精度距离测量的应用特别有利,诸如由自主或半自主载运工具执行的障碍物检测和环境测绘。
[0027] 在下文中,阐述了许多具体细节以提供对当前公开的技术的透彻理解。在其他实施例中,这里介绍的技术可以在没有这些具体细节的情况下实施。在其他情况下,为了避免不必要地模糊本公开,没有详细描述如特定制造技术的公知特征。在本说明书中对“实施例”、“一个实施例”等的引用表示所描述的特定特征、结构、材料或特性被包括在本公开的至少一个实施例中。因此,本说明书中这些短语的出现不一定都参考相同的实施例。另一方面,这样的引用也不一定是互相排斥的。此外,特定特征、结构、材料或特性可在一个或多个实施例中以任何合适的方式组合。并且,应当理解,附图所示的各种实施例仅仅是示例性的表示,并且不一定按比例绘制。
[0028] 在本公开中,用语“示例性”用于表示用作示例、实例或说明。在此描述为“示例性”的任何实施例或设计不一定被解释为比其他实施例或设计更优选或者更有利。相反,使用用语“示例性”旨在以具体的方式呈现概念。
[0029] 本处使用的A和/或B包括A或B中的一个或多个,以及它们的组合,诸如A和B。
[0030] 在以下描述中,尽管某些实施例的介绍结合了UAV,在其他实施例中,本技术可以类似的方式应用于其他类型的可移动物体中,包括但不限于其他类型的无人载运工具(例如,地面载运工具)、自主载运工具(例如,自动驾驶汽车)、手持设备或机器人。
[0031] 图1A是具有根据本技术的实施例的元件的代表性系统150的示意图。系统150包括可移动物体160(例如,UAV)和控制系统170。可移动物体160可以是可在各种实施例中使用的任何适合类型的可移动物体,诸如无人载运工具、自主载运工具或机器人。
[0032] 可移动物体可包括承载搭载物162的主体161(例如,机身)。许多不同类型的搭载物可与此处描述的实施例一起使用。在一些实施例中,搭载物包括一个或多个传感器,诸如成像设备或光电扫描设备(例如,LIDAR设备)。例如,搭载物162可以是照相机、摄像机和/或静态照相机。所述照相机可以对各种适合的波段,包括可视、紫外线、红外线和/或其他波段的波长敏感。搭载物162还可包括其他类型的传感器和/或其他类型的负载(例如,包裹或其他可交付物)。
[0033] 在一些实施例中,搭载物162通过承载机构163(例如,万向节)相对于主体161被支撑。承载机构163可允许搭载物162相对于主体161独立放置。例如,承载机构163可允许搭载物162绕一个、二个、三个或更多个轴旋转。承载机构163还可允许搭载物162沿一个、二个、三个或更多个轴线性移动。用于旋转或平移运动的轴可以彼此正交或者不彼此正交。例如,当搭载物162包括成像设备时,所述成像设备可经由承载机构163相对于主体161移动以拍照、录像或跟踪目标。
[0034] 可移动物体160可包括一个或多个配置为相对于多达三个平移自由度和/或多达三个旋转自由度移动可移动物体160的推进单元180。例如,对于可移动物体160是UAV的实施例,推进单元180可允许可移动物体160相对于多达三个平移自由度和多达三个旋转自由度在空中起飞、降落、悬停和/或移动。
[0035] 各种类型的推进单元适合与本实施例一起使用。在一些实施例中,推进单元180可包括一个或多个转子。转子可包括连接到轴的一个或多个转子叶片。转子叶片和轴可通过适合的驱动机构旋转。例如,推进单元180可通过任何适合的电机驱动,诸如DC电机(例如,刷式或无刷式)或AC电机。所述电机可被配置为安装和驱动转子叶片。尽管可移动物体160的推进单元180被描绘为基于螺旋桨并且可具有四个转子,但可使用任何适合数量、类型和/或布置的推进单元。例如,转子的数量可以为一个、二个、三个、四个、五个或更多。转子可以相对于可移动物体160垂直、平、或其他任何适合的度定向。转子的角度可以是固定的或可变的。
[0036] 可移动物体160被配置为接收来自控制系统170的控制命令和/或向控制系统170传输数据。图1A所示的实施例中,控制系统170包括一些承载在可移动物体160上的部件以及一些位于可移动物体160之外的部件。例如,控制系统170可包括由可移动物体160承载的第一控制器171和位于可移动物体160之外的第二控制器172(例如,人工操作的远程控制器),二者之间通过通信链路176(例如,诸如基于射频(RF)链路的无线链路)连接。第一控制器171可包括执行指示可移动物体160的动作的指令的计算机可读介质173,所述动作包括但不限于推进单元180和搭载物162(如照相机)的操作。第二控制器172可包括一个或多个输入/输出设备,例如,显示器和控制按钮。在一些实施例中,操作者操纵第二控制器172以远程控制可移动物体160,并通过第二控制器172上的显示器和/或其他接口接收可移动物体160的反馈。在其他实施例中,可移动物体160可自主地操作,在这种情况下,可取消第二控制器172,或者可以仅用于操作者的超控功能。
[0037] 为了保证安全并有效的操作,UAV和其他类型的无人载运工具能够自主地或者半自主地检测障碍物和/或参与避开的操作以避开障碍物可能是有益的。此外,对于UAV的功能,诸如导航、目标跟踪和测绘而言,特别当UAV以半自主或全自主方式操作时,对环境物体的感测是有用的。
[0038] 因此,本文描述的UAV可包括一个或多个配置为检测UAV周围环境中的物体的传感器。在一些实施例中,UAV包括配置为测量物体与UAV之间的距离的传感器,在本文中称为“距离测量设备”。距离测量设备可以各种方式定位在UAV上,诸如上方、下面、侧面或UAV主体的内部。可选地,所述距离测量设备可通过万向节或其他承载机构与UAV耦合,以允许所述设备相对于UAV平移和/或旋转。
[0039] 在一些实施例中,距离测量设备是LIDAR设备或激光距离测量仪。LIDAR设备和激光距离测量仪通过发射光信号(例如,激光脉冲),检测从物体反射回来的光信号并基于光速和传输及检测间经过的时间确定到物体的距离来测量设备和物体间的距离。激光距离测量仪提供一维距离数据,而LIDAR设备可通过在多个不同角度发射光信号来提供周围环境的三维数据。虽然本文中的某些示例性实施例是根据LIDAR设备来描述的,但这仅仅是为了说明的目的,并且本技术还可应用于其它类型的基于光的距离测量设备,例如激光距离测量仪。另外,虽然本文中的某些技术特别适用于LIDAR系统中由激光二极管产生的激光束,但是在其他实施例中可以使用其他类型的光源(例如,其他类型的激光器,或发光二极管(LED))。
[0040] 图1B是根据本技术的实施例的示例性LIDAR传感器系统100的示意图。LIDAR系统100通过测量光在LIDAR系统100和物体104之间传播的时间,例如,飞行时间(TOF)来检测到物体104的距离。系统100包括可产生光信号(例如激光束)的光发射器101。激光束可以是单个激光脉冲或一系列激光脉冲。可使用透镜102来准直由光发射器101产生的激光束。准直光可以被导向分束设备103。分束设备103可允许来自光源101的准直光通过。或者,当采用不同的方案时(例如,当光发射器位于检测器的前面时),分束设备103可能不是必需的。
[0041] 系统100还可包括光束引导设备110,其可以包括诸如棱镜、反射镜、光栅、光学相位阵列(例如,液晶控制光栅)或其组合的各种光学元件。这些不同的光学元件可绕公共轴109旋转,以使光转向不同的方向,诸如方向111和111’。当出射光束111照到物体104时,发射或散射的光可以散布在大角度120上,并且只有一小部分能量可被反射回系统100。返回光束112可被分束设备103朝向接收透镜106反射,该接收透镜106可将返回的光束聚集并聚焦到检测器105上。
[0042] 检测器105接收返回的光并将光转换为电信号。包括诸如TOF单元107的测量电路的控制器,可用于测量TOF以确定到物体104的距离。因此,系统100可基于光源101产生光脉冲111和检测器105接收返回光束112之间的时间差来测量到物体104的距离。
[0043] 为了获得具有厘米级精度的距离测量,LIAR设备接收的光脉冲需要以数百皮秒或甚至小于数百皮秒的时间分辨率进行采样。高分辨率采样同样需要成功地捕获非常短的脉冲信号(例如,脉冲持续时间仅为几十纳秒至几纳秒)。许多LIDAR系统依赖于高速模数转换器(ADC)(例如,采样速率超过每秒千兆次采样(GSPS))来执行光脉冲信号的数字化。然而,高速ADC通常成本较高并且功耗较高。此外,高速ADC采样基于以相同时间间隔对具有不同电压的模拟信号进行采样(例如,相对于时间轴的采样)。因此,采样的时间与脉冲信号无关并且没有任何时间相关性。需要提取算法来提取模拟信号的定时信息。
[0044] 本技术提供了不依赖于高速ADC的使用而实现高精度距离测量的方法。在一些实施例中,本文的系统和设备被配置为采用基于比较器的采样来数字化模拟脉冲信号。可以使用单个比较器来确定模拟脉冲信号超过某个阈值(本文中也称为“参考阈值”或“触发阈值”)时的定时,使用多个比较器来确定多个阈值的定时。
[0045] 图2A是根据本技术的实施例的基于比较器的采样配置的示意图。比较器240可以是配置为比较其非反向输入端(PIN3)与其反向输入端(PIN4)之间的电压,并基于该比较输出逻辑高电压或低电压运算放大器。例如,当非反向输入端PIN3接收到模拟脉冲信号202(例如,表示从目标物体反射回来的光脉冲)时,比较器240将信号202的电压电平与反向输入端PIN4处的参考阈值206进行比较。信号202具有二个部分:幅度增加的前沿部分和幅度减小的后沿部分。当信号202的前沿部分的幅度超过参考阈值206时,比较器202的输出变高(例如,VDD)。类似地,当信号的后沿部分的幅度下降到参考阈值206以下时,比较器202的输出变低(例如,GND)。结果是数字化(例如,二进制)的方波脉冲信号204。
[0046] 图2B是图2A的比较器240输入和输出波形的图示。当方波脉冲信号204被输出到时间数字转换器(TDC)250时,信号204的相关定时信息(例如,时间t1和时间t2)可被提取。由于采样点与时间之间存在相关性(与基于ADC的方法相反),高速比较器方法可以以更直接的方式有效地捕获脉冲定时信息。
[0047] 图3是根据本技术的实施例的多比较器采样配置的示意图。所述多比较器配置300包括二个或更多个比较器(例如,比较器340a-340d)。比较器的每一个都耦合到相同的输入端以对相同的光脉冲执行定时测量,但是比较器的每一个具有不同的触发阈值。在这个例子中,比较器配置300包括总共四个比较器,340a-340d。每个比较器连接到其各自的时间数字转换器(TDC),350a-350d。另外,每个比较器接收不同的触发阈值。如图所示,比较器340a接收其各自的触发阈值Vf01,比较器340b接收Vf02,比较器340c接收Vf03,以及比较器340d接收Vf04。因此,定时信息能够以四个不同的阈值级别获得,例如Vf01-Vf04。
[0048] 在一些实施例中,这里描述的系统和设备配置为使用诸如FPFA或复杂可编程逻辑器件(CPLD)的现场可编程设备来提供高精度的距离测量。虽然本文某些实施例参考FPGA描述,本技术也可使用其他类型的现场可编程设备,诸如CPLD来实现。
[0049] FPGA是包括多个逻辑的集成电路,在FPGA制造后,可由用户编程以提供各种不同的功能。在一些实施例中,FPGA包括可编程逻辑块(例如,可配置逻辑块(CLB)或逻辑阵列块(LAB))和输入/输出(I/O)块的阵列。逻辑块和I/O块可通过可编程路由彼此耦合。每个逻辑块可包括多个逻辑单元或片。逻辑单元或片可包括可由用户配置以实现逻辑功能的多个组件,包括但不限于一个或更多个LUT(例如,3输入或4输入LUT)、触发器、复用器,和/或进位逻辑。例如,本技术可以用Altera公司(San Jose,California)制造的FPGA,诸如EP4CE22U256或EP4CE30F324,或者Xilinx公司(San Jose,California)制造的FPGA,诸如XC7Z030-1SBG485C或XC7Z007S-1CLG400C。
[0050] 例如,FPGA可被配置为执行光学距离测量中涉及的一些操作,诸如将模拟脉冲信号数字化为多个数字信号值(脉冲数字化),确定对应于多个数字信号值的多个时间测量(时间-数字转换),并且使用数字信号值和时间测量计算物体距离。本文描述的基于FPGA的系统和方法可被用于以相对较低的成本和功耗提供厘米级精度的距离测量。
[0051] 图4是根据本技术的实施例的使用FPGA距离测量的系统400的示意图。系统400包括配置为发射出射光脉冲(例如,激光脉冲)的光发射器402,类似于图1B中的光发射器101。系统400还包括配置为接收物体(例如,系统400周围环境中的物体)反射的返回光脉冲的光传感器404,类似于图1B中的光检测器105。光传感器404被配置为输出表示返回光脉冲的模拟脉冲信号,例如,使用光电探测器将光能转换为电信号。
[0052] 系统400包括FPGA 408。FPGA 408耦合到光传感器404,并被配置为接收光传感器404产生的模拟脉冲信号。FPGA 408可被配置为处理所述模拟脉冲信号以将其转换为数字信号并提取定时信息。在一些实施例中,FPGA 408包括被配置为将模拟脉冲信号数字化为多个数字信号值的数字转换器410以及被配置为确定对应于多个数字信号值的多个时间测量的TDC 412。每个数字信号值可表示模拟脉冲信号的电压电平,并且相应的时间测量可表示当模拟脉冲信号处于该电压电平时的时间点。数字转换器410和TDC 412可通过各种类型的FPGA组件来实现。数字转换器410和TDC 412的示例性配置将在本文进一步的细节中描述。
[0053] 系统400可包括控制器406。在一些实施例中,控制器406耦合到光发射器402,例如,以控制出射光脉冲的发射并且记录发射出射光脉冲的时间测量。控制器406还可耦合到FPGA 408以接收由FPGA 408产生的数字信号值和时间测量,并基于所述数字信号值和时间测量计算到物体的距离。例如,控制器406可被配置为通过将数字信号值和时间测量输入到函数中,并通过函数导出返回光脉冲的估计时间值来计算物体距离。然后可以在TOF计算中使用估计时间值来确定到物体的距离。
[0054] 控制器406可使用许多不同类型的函数来计算估计时间值。在一些实施例中,所述函数是脉冲信号模型,诸如多项式或三角形模型。控制器406可将数字信号值和时间测量拟合到脉冲信号模型,并且基于模型的形状导出估计时间值。例如,控制器406可基于信号幅度何时到达其最大值来确定估计时间值。在一些实施例中,控制器406可使用其他准则,诸如方形信号模型中的信号宽度,来导出与脉冲信号相关联的估计时间值。
[0055] 在一些实施例中,控制器406使用搜索功能来导出估计时间值。控制器406可在数据库或查找表(LUT)中搜索以找到最接近数字信号值和时间测量的一组值。该组值可以具有(ti,Vfi)的形式,其中Vfi是电压电平并且ti是对应于该电压电平的时间测量。该组值可映射到存储在数据库或查找表中的(T,V)形式的输出时间值或输出数组。如本文中进一步描述的,V可以对应于用于数字化模拟脉冲信号的阈值之一。在一些实施例中,V可以是与阈值不同的预定信号幅度。控制器之后可以从映射的输出数组中选择映射的输出时间值或者T,以便于TOF的计算从而确定相应物体距系统的距离。
[0056] 系统400的一些或者全部组件可由可移动物体,诸如无人载运工具(例如,UAV)、自主载运工具(例如,自动驾驶汽车)或机器人来携带。因此,当可移动物体在环境中操作时,可使用系统400来测量可移动物体和周围物体之间的距离。在一些实施例中,系统400特别适用于复杂且动态的环境,例如,系统400周围围绕许多物体的环境、障碍物相对于系统400快速移动的环境、具有波动条件例如温度的环境,等等。系统400还特别适用于与能够相对于多个自由度快速移动的可移动物体结合使用。
[0057] 虽然图4使出了使用FPGA距离测量的系统的示例性实施例,但是系统400的替代配置也可被使用。例如,虽然图4示出了单个数字转换器410和单个TDC,FPGA 408也可包括多个数字转换器和/或多个TDC。可以使用数字转换器和TDC的各种组合,例如,每个数字转换器可被耦合到相应的TDC、单个数字转换器可被耦合到多个TDC,或者单个TDC可被耦合到多个数字转换器。
[0058] 作为另一个例子,在一些实施例中,数字转换器410或TDC 412可以是可选的,使得脉冲数字化步骤或时间数字转换步骤可由FPGA 408以外的设备执行。例如,脉冲数字化可由一个或多个比较器(例如,图2A或图3所示)执行,而时间数字转换由FPGA 408的TDC 412执行。或者,脉冲数字化可由FPGA 408的数字转换器410执行,而由FPGA以外的设备(例如,单独的TDC)执行时间数字转换。
[0059] 在又一个例子中,尽管图4描绘了控制器406是独立于FPGA 408的设备,在其他实施例中,控制器406可以是FPGA 408的一部分。在这样的实施例中,FPGA 408被配置为执行控制器406的一些或全部功能。例如,FPGA 408可被配置为使用数字转换器410生成的数字信号值和TDC 412生成的时间测量执行距离计算。
[0060] 如上所述,本文描述的系统和设备可包括具有一个或多个配置为将模拟脉冲信号转换为多个数字信号值的数字转换器(例如,FPGA 408的数字转换器410)的FPGA。数字转换器可通过各种方式使用FPGA来实现。例如,数字转换器可使用FPGA的一个或更多个差分输入端口来实现。可以使用任何合适类型的差分输入端口,诸如低压差分信令(LVDS)接口或发射极耦合逻辑(ECL)接口。所述差分输入端口被配置为比较第一电压和第二电压,并输出基于比较的不同的数字信号值,例如,第一电压是大于、小于还是等于第二电压。
[0061] 图5A是根据本技术的实施例的配置用于脉冲数字化的FPGA 500的示意图。FPGA 500被配置为经由多个差分输入端口504a-504d接收模拟脉冲信号502。每个差分输入端口包括第一引脚(P)和第二引脚(N)。每个差分输入端口的第一引脚可被配置为接收模拟脉冲信号502。每个差分输入端口的第二引脚可被配置为接收阈值。例如,在所描绘的实施例中,差分输入端口504a接收阈值Vf01,差分输入端口504b接收阈值Vf02,差分输入端口504c接收阈值Vf03,并且差分输入端口504d接收阈值Vf04。阈值Vf01-Vf04可以是不同的电压,使得每个差分输入端口接收不同的阈值。
[0062] 每个差分输入端口可被配置为将接收到的阈值与模拟脉冲信号比较,并基于该比较生成数字信号值。数字信号值可指示在特定时间点该模拟脉冲信号大于还是小于阈值。例如,如果第一引脚处接收的电压(例如,模拟脉冲信号)大于第二引脚的电压(例如,阈值),差分输入端口可以输出“1”,如果第一引脚的电压小于第二引脚的电压,差分输入端口可以输出“0”。因此,由差分输入端口504a-504d生成的数字信号值可被共同用来确定在特定时间点模拟脉冲信号502的电压电平。例如,端口504a-504d上的输出“1000”可对应于信号502处于电压Vf01,输出“1100”可对应于信号502处于电压Vf02,输出“1110”可对应于信号502处于电压Vf03,输出“1111”可对应于信号502处于电压Vf04。
[0063] 由于模拟脉冲信号502的电压电平随时间变化,由差分输入端口504a-504d产生的数字信号值也随时间变化,通过方波信号506a-506d表示。数字信号值从“0”到“1”的变化,对应于方波信号的上升沿,其指示模拟脉冲信号502已经转变到该差分输入端口的阈值以上。数字信号值从“1”到“0”的变化,对应于方波信号的下降沿,其指示信号502已经转变到阈值以下。因此,可以通过检测由差分输入端口504a-504d输出的方波信号506a-506d的边缘来确定模拟脉冲信号502的电压电平。
[0064] 数字信号值和/或由差分输入端口504a-504d生成的方波信号506a-506d可由多个TDC 508a-508d接收,以确定相应的时间测量,如本文中进一步详细讨论的。因此,FPGA 500可确定模拟脉冲信号502到达、超过或低于每个阈值的时间点,并且由此生成提供模拟脉冲信号的数字化表示的一组数据样本。
[0065] 图5B示出使用根据本技术的实施例的模拟脉冲信号502的数字化。在该示例中,使用FPGA 500的差分输入端口504a-504d将模拟脉冲信号502与四个不同的阈值Vf01-Vf04进行比较,并且TDC508a-508d用于生成对应于何时模拟脉冲信号502超过或低于每个阈值的时间测量t1-t8。因此,模拟脉冲信号502可被数字化为一组8个数据样本:(t1,Vf01),(t2,Vf02),(t3,Vf03),(t4,Vf04),(t5,Vf04),(t6,Vf03),(t7,Vf02)和(t8,Vf01)。
[0066] 尽管图5A和图5B示出使用四个差分输入端口和四个阈值的脉冲数字化,也可以使用其他数量的差分输入端口和阈值。例如,在一些实施例中,脉冲数字化可通过使用单个差分输入端口和单个阈值,至少2个差分输入端口和至少2个阈值,至少4个差分输入端口和至少4个阈值,至少8个差分输入端口和至少8个阈值,或至少12个差分输入端口和至少12个阈值来执行。差分输入端口的数量和阈值的数量可取决于所需采样精度的程度而改变。
[0067] 在一些实施例中,一些或全部差分输入端口可能在第一引脚和第二引脚间具有偏移电压,这可能会影响脉冲数字化的准确性。偏移电压是指第一引脚和第二引脚之间的电压差,其导致差分输入端口的输出信号发生变化。校准FPGA以补偿这些偏移电压,从而提高测量的准确性可能是有益的。
[0068] 在一些实施例中,校准过程包括测量每个差分输入端口的偏移电压。可使用任何适用于测量差分输入端口的偏移电压的方法。例如,可以通过向第一引脚施加可变电压信号(例如,增大或减小的电压信号)并向第二引脚施加固定电压信号来测量偏移电压。施加到第一引脚的电压可被改变,直到在差分输入端口的输出信号中检测到变化,由此指示施加到第一引脚的电压已经超过或低于施加到第二引脚的固定电压。此时,可以确定第一引脚和第二引脚之间的电压差(例如,通过直接测量),并将其作为差分输入端口的偏移电压。
[0069] 作为另一个例子,可以通过向第一引脚施加具有已知波形(例如,三角波或梯形波信号)的可变电压信号并向第二引脚施加固定电压信号来测量偏移电压。施加到第一引脚的电压可被改变,直到在差分输入端口的输出信号中检测到变化,由此指示施加到第一引脚的电压已经超过或低于施加到第二引脚的固定电压。在此过程中,可以确定检测到差分输入端口的输出信号的变化的时间点。可基于所述时间点和可变电压信号的已知波形计算与差分输入端口的偏移电压相对应的第一引脚和第二引脚之间的电压差。
[0070] 图6示出根据本技术的实施例的用于执行偏移校准的梯形波信号600。信号600的波形(例如,前沿和后沿部分的斜率)是已知的并且可被用于确定差分输入端口的偏移电压。例如,梯形波信号600可被施加到差分输入端口的第一引脚,并且具有电压Vf的固定电压信号可被施加到差分输入端口的第二引脚。电压Vf_c表示当差分输入端口的输出改变时施加到第一引脚的电压。因此,电压Vf_c和Vf之间的差值表示差分输入端口的偏移电压。
[0071] 电压Vf_c和Vf之间的差值可以多种方式确定。例如,可以通过将信号600施加到差分输入端口,并测量端口的输出改变(例如,从“0”变为“1”)的时间t1,和/或测量端口的输出改变(例如,从“1”变为“0”)的时间t2,来确定所述差值。可以基于信号600的已知波形确定t1和t2之间的时间间隔。可以基于t1,t2和信号600的已知波形确定电压Vf_c。由于电压Vf也是已知的,可通过计算Vf_c和Vf之间的差值来确定偏移电压。
[0072] 一旦测量了差分输入端口的偏移电压,FPGA可被校准以补偿所述偏移电压。可使用多种方法来基于测量的偏移电压校准FPGA。例如,可以通过向配置为补偿测量的偏移电压的差分输入端口(例如,差分输入端口的第一引脚或第二引脚)施加调整电压来校准FPGA。调整电压的幅度可以等于或近似等于测量的偏移电压的幅度。所述调整电压可以通过可调整电压源,诸如数字模拟转换器(DAC),来施加。
[0073] 作为另一个例子,测量的偏移电压可以用作用于计算返回光脉冲的估计时间值的函数的输入参数。如前所述,FGPA和/或单独的控制器可使用函数基于数字信号值和数字转换器以及TDC分别生成的时间测量计算返回光脉冲的估计时间值。测量的偏移电压可用作函数的附加输入。将估计时间值与数字信号值、时间测量和测量的偏移电压相关联的函数可通过任何适合的技术导出。例如,由于偏移电压与距离测量无关,可通过在多个已知距离上执行多个距离测量并且确定将距离和/或对应于那些距离的期望TOF与函数的输入参数(例如,数字信号值、时间测量和测量的偏移电压)相关联的模型来导出函数。
[0074] 备选地,可以不需要测量偏移电压而校准FPGA以补偿差分输入端口的偏移电压。在这样的实施例中,偏移电压可被共同表示为一个或多个偏移调整参数,并且可使用将估计时间值关联于数字信号值、时间测量和偏移调整参数的函数确定估计时间值。由于一个或多个偏移调整参数独立于距离测量,可通过在多个已知距离上执行多个距离测量,并确定将距离和/或对应于那些距离的期望TOF关联于函数的输入参数(例如,数字信号值、时间测量和偏移调整参数)的模型来导出所述函数。
[0075] 在一些实施例中,FPGA的差分输入端口可呈现接收模拟脉冲信号和输出相应的数字信号值之间的延迟时间,使得数字信号值的定时相对于模拟脉冲信号的定时延迟。为了提高测量精度,校准FPGA以补偿这些端口延迟可能是有益的。在一些实施例中,通过测量与每个差分输入端口相关联的延迟时间,并且在计算返回光脉冲的估计时间值时补偿这些测量延迟时间(例如从FPGA生成的时间测量中减去延迟时间),来校准FPGA。
[0076] 图7是根据本技术的实施例的用于测量端口延迟的方法的示意图。FPGA 700包括多个差分输入端口704a-704d和多个TDC 708a-708d,分别类似于图5A中的差分输入端口504a-504d和TDC 508a-508d。每个差分输入端口比较具有已知定时的方波信号702与阈值Vf01-Vf04中的一个。在一些实施例中,由于差分输入端口704a-704d呈现的延迟时间,方波信号702的定时与差分输入端口704a-704d输出的数字信号值的定时不同,在这里示意性地由端口延迟706a-706d表示。延迟时间的幅度可通过比较方波信号702的已知定时与TDC 
708a-708d生成的时间测量来确定。
[0077] 如上所述,本文描述的系统和设备可包括具有一个或多个配置为生成时间测量的TDC(例如,FPGA 408的TDC 412)的FPGA。TDC可通过使用FPGA以各种方式实现。例如,TDC可通过配置FPGA来接收表示数字化的模拟脉冲信号(例如,由数字转换器410生成)的多个数字信号值,并且对每个数字信号值进行采样以生成相应的时间测量来实现。在一些实施例中,FPGA随时间接收并采样表示数字信号值的值的变化的方波信号,来确定信号上升沿和下降沿的时间测量。如前所述,方波信号的上升沿和下降沿的时间测量可表示模拟脉冲信号达到、超过或低于特定阈值的时间点。
[0078] 在一些实施例中,以高时间分辨率执行采样,例如,数百皮秒或小于数百皮秒的时间分辨率。例如,采样的时间分辨率可以在从大约5皮秒到大约2000皮秒,从大约10皮秒到大约1000皮秒,从1皮秒到大约500皮秒,或从大约1皮秒到大约100皮秒的范围内。在一些实施例中,采样的时间分辨率(例如,在皮秒级别上)比FPGA时钟的时钟周期(例如,在纳秒级别上)短。例如,时间分辨率至少可以比FPGA的时钟周期短2倍,5倍,10倍,20倍或100倍。
[0079] 数字信号的高时间分辨率采样可以各种方式使用FPGA实现。在一些实施例中,FPGA被配置为使用多个延迟单元执行高分辨率采样。延迟单元可以彼此顺序地耦合,使得数字信号值被顺序地传播通过延迟单元,其中每个连续延迟单元从前一个延迟单元接收数字信号值的时间延迟版本。因此,数字信号值的时间测量可通过对已知时间间隔内接收到数字信号值的延迟单元的数量进行计数来确定。
[0080] 图8A是根据本技术的实施例被配置用于以高时间分辨率进行时间-数字转换的FPGA 800的示意图。FPGA 800包括彼此顺序地耦合的多个延迟单元802a-802n。可以使用任何合适数量的延迟单元,例如至少10个,至少25个,至少50个,或至少200个延迟单元。每个延迟单元可在信号传输td中产生皮秒级别的延迟。例如,每个延迟单元可被配置为产生范围在从大约5皮秒到大约2000皮秒,从大约10皮秒到大约1000皮秒,从大约1皮秒到大约500皮秒,或从大约1皮秒到大约100皮秒的延迟。在一些实施例中,每个延迟单元产生的延迟是相同的。在其他实施例中,延迟单元中的一些或全部产生不同的延迟时间,使得td表示经过所有单元的平均延迟时间。延迟单元802a-802n可使用FPGA中的逻辑组件以各种方式来配置。例如,多个延迟单元802a-802n可包括进位链或LUT。
[0081] 延迟单元802a-802n可被配置为接收对应于模拟脉冲信号的数字化的数字信号值。数字信号值可以作为表示数字信号值随时间变化的方波信号808而被接收。信号808可顺序地通过延迟单元802a-802n的每一个而发送,使得每个连续的延迟单元接收的信号与前一个延迟单元接收的信号延迟了延迟时间td。每个延迟单元可被配置为当其接收到信号808的边沿时产生输出信号。例如,当由信号808的上升沿触发时,延迟单元可以输出“1”,当由信号808的下降沿触发时,延迟单元可以输出“0”。
[0082] 延迟单元802a-802n耦合到存单元804。锁存单元804可被配置为当延迟单元802a-802n被信号808触发时锁存延迟单元802a-802n的输出。在一些实施例中,锁存单元
804包括多个锁存器,每一个耦合到相应的延迟单元并且被配置为当延迟单元被信号808的上升沿或下降沿触发时锁存该延迟单元的输出。
[0083] FPGA 800还可包括被配置为产生时钟信号810的时钟。时钟信号810可具有数百MHz至GHz数量级的速率,使得信号810具有纳秒级别的时钟周期Tck。时钟信号810可被锁存单元804和计数器806接收。计数器806可以对从测量开始Cr的时钟周期的数量进行计数,使得由FPGA时钟提供的粗略时间测量是CrTck。
[0084] 每个时钟周期,FPGA 800可确定由信号808触发的延迟单元的数量从而提供对应于信号808的上升沿或下降沿的高分辨率时间测量。时间测量方法的细节参照下面的图8B和图8C进行讨论。
[0085] 图8B示出根据本技术的实施例的上升沿信号的时间数字转换。在所描绘的实施例中,上升沿信号通过四个延迟单元的序列来发送,使得第一延迟单元接收信号820a,第二延迟单元接收信号820b,第三延迟单元接收信号820c,第四延迟单元接收820d。每个连续的信号与前一个信号延迟了延迟时间td。在时间Tck,每个延迟单元的锁存输出被采样。在所描绘的实施例中,第一和第二延迟单元已经分别被信号820a和820b的上升沿触发,使得这些延迟单元的输出都是“1”。第三和第四延迟单元尚未分别被信号820c和820d的上升沿触发,使得这些延迟单元的输出都是“0”。因此,锁存单元804在时间Tck锁存的序列是“1100”。上升沿信号的时间测量Trising可基于锁存在“1”的延迟单元的数量Cr1,使用关系式Trising=CrTck-Cr1td来计算。
[0086] 图8C示出根据本技术的实施例的下降沿信号的时间数字转换。在所描绘的实施例中,下降沿信号通过四个延迟单元的序列来发送,使得第一延迟单元接收信号830a,第二延迟单元接收信号830b,第三延迟单元接收信号830c,第四延迟单元接收830d。每个连续的信号从前一个信号延迟延迟时间td。在时间Tck,每个延迟单元的锁存输出被采样。在所描绘的实施例中,第一和第二延迟单元已经分别被信号830a和830b的下降沿触发,使得这些延迟单元的输出都是“0”。第三和第四延迟单元尚未分别被信号830c和830d的下降沿触发,使得这些延迟单元的输出都是“1”。因此,锁存单元804在时间Tck锁存的序列是“0011”。下降沿信号的时间测量Tfalling可基于锁存在“0”的延迟单元的数量Cf1,使用关系式Tfalling=CrTck-Cf1td来计算。
[0087] 在一些实施例中,FPGA的延迟单元产生的延迟时间基于FPGA的温度而变化。例如,温度的升高可能导致延迟时间的减少。为了确保在一系列操作温度范围内进行准确测量,FPGA可以进行校准,以补偿延迟时间的温度变化。在一些实施例中,校准方法包括测量温度范围内(例如,在大约-20℃至大约80℃的范围)的延迟时间,并且使用测量数据来确定延迟时间和温度之间的关系。FPGA的温度可通过置于FPGA上、内部或附近的温度传感器来测量。可以根据关系式td=Tck/maxbin来确定每个温度下的延迟时间,其中maxbin表示信号在FPGA的时钟周期Tck内可以传输的延迟单元的最大个数。每个温度的值maxbin可通过例如对在该温度下以单个时钟周期由信号触发的延迟单元的数量进行计数来测量。
[0088] 测量的温度-延迟时间关系可用来校准FPGA。例如,当执行距离测量时,FPGA可接收到来自置于FPGA上、内部或附近的温度传感器的温度值,并且基于该温度值计算时间测量。时间测量计算可以被调整以补偿不同的温度,例如,通过测量的温度-延迟时间关系确定与接收的温度值相关的延迟时间,并且使用该延迟时间计算时间测量。
[0089] 在一些实施例中,校准中使用的温度-延迟时间关系是针对每个系统的每个FPGA单独测量的。或者,在芯片到芯片的温度依赖性变化不大的实施例中,温度-延迟时间关系可从单个FPGA测量并且用于所有系统的校准。
[0090] 在一些实施例中,FPGA被配置为使用多个锁相环(PLL)时钟来执行高时间分辨率采样。可以使用任何合适数量的PLL时钟,诸如至少2,至少4或至少10个PLL时钟。每个PLL时钟可被配置为以相同的时钟速率产生时钟信号,但具有不同的相位。例如,时钟信号可以彼此相移π/8,、π/4、π/2或π。FPGA可接收表示数字化的模拟脉冲信号(例如,FPGA 400的数字转换器410的输出)的多个数字信号值并且通过将每个数字信号值与PLL时钟的时钟信号进行比较生成多个相应的时间测量。在一些实施例中,FPGA接收表示数字信号值的值随时间变化的方波信号,并且使用多个PLL时钟生成所述方波信号的上升沿或下降沿的时间测量。FPGA可使用多个PLL时钟来执行具有比单个PLL时钟的时钟周期高的分辨率的时间测量。例如,每个PLL时钟可具有纳秒级别的时钟速率,而采样的时间分辨率可以在皮秒级别。
[0091] 图9示出根据本技术的实施例的用于时间-数字转换的多个PLL时钟信号900a-900d。每个时钟信号具有时钟周期Tck。如图9中的附图标记902所示,多个PLL时钟信号900a-
900d均被连续相移量Δ。对于每个PLL时钟信号,使用计数器来计数自测量开始以来信号产生的时钟周期数C。当接收到采样信号(例如,方波信号)的上升沿或下降沿时,计数器停止。
因此,由第一PLL时钟信号900a产生的时间测量是CTck,由第二信号900b产生的时间测量是CTck+Δ,由第三信号900c产生的时间测量是CTck+2Δ,由第四信号900d产生的时间测量是CTck+3Δ,以此类推。采样信号的最终时间测量是PLL时钟信号900a-900d产生的最大时间测量。
[0092] 图10示出根据本技术的实施例的用于测量到物体的距离的方法1000。方法1000的一些或全部步骤可以由本文描述的任何系统和设备(例如,系统400)来执行。在一些实施例中,方法1000的一些或全部步骤可以使用承载在可移动物体(例如,无人载运工具(例如UAV)或机器人)上的组件来执行。
[0093] 在步骤1010,发射出射光脉冲。光脉冲可由LIDAR设备的光发射器发射,例如,图1B中的光发射器101或图4中的光发射器402。
[0094] 在步骤1020,接收从物体发射的返回光脉冲。返回光脉冲可以是来自物体的出射光脉冲的反射。返回光脉冲可被LIDAR设备的光传感器接收,例如,图1B中的光检测器105或图4中的光传感器404。
[0095] 在步骤1030,输出表示返回光脉冲的模拟脉冲信号。例如,可使用LIDAR设备的光传感器(例如,图1B中的光检测器105或图4中的光传感器404)来将返回光脉冲的光能转换为电信号。
[0096] 在步骤1040,模拟脉冲信号被转换为多个数字信号值。步骤1040可使用本文描述的FPGA(例如,FPGA 408的数字转换器410)来执行。或者,步骤1040可参照图2A、图2B、图3讨论的,使用一个或多个比较器来执行。在一些实施例中,该转换涉及将模拟脉冲信号与多个阈值比较并且基于所述比较生成多个数字信号值。参照图5A和图5B所讨论的,可通过使用FPGA的多个差分输入端口来执行所述转换。可选地,步骤1040可涉及补偿差分输入端口的偏移电压,诸如将调整电压施加到每个差分输入端口,该差分输入端口被配置为补偿该端口的测量偏移电压。
[0097] 在步骤1050,生成对应于多个数字信号值的多个时间测量。步骤1050可使用本文描述的FPGA(例如,FPGA 408的TDC 412)来执行。所述FPGA可以是与执行步骤1040的FPGA相同的FPGA,或者可以是不同的FPGA。可以通过以比FPGA的时钟周期短的时间分辨率采样每个数字信号值来生成多个时间测量。参照图8A至图8C所讨论的,较短的时间分辨率可通过例如使用多个延迟单元以将连续的延迟时间引入到数字信号值中来实现。可选地或组合地,参照图9所讨论的,较短的时间分辨率可通过使用多个相移PLL时钟信号对数字信号值进行采样来实现。
[0098] 在步骤1060,使用多个数字信号值和多个时间测量来计算到物体的距离。在一些实施例中,步骤1060通过使用控制器(例如,系统400的控制器406)来执行。所述控制器可被包括作为FPGA的一部分,也可以是独立于FPGA的设备。所述距离计算可以涉及例如将多个数字信号值和多个时间测量输入到函数中,并且使用所述函数来导出返回光脉冲的估计时间值。可选地,所述函数还可使用其他输入参数,诸如差分输入端口的测量偏移电压,或者被配置为补偿偏移电压的偏移调整参数。这样,该函数生成的估计时间值可以被用在TOF计算中以确定物体距离。
[0099] 图11示出根据本技术的实施例的用于校准距离测量设备的方法1100。方法1100可用于校准本文描述的任何系统和设备(例如,系统400)。在一些实施例中,方法1100在操作距离测量设备之前执行。例如,方法1100可以由制造工厂执行,或由用户执行(例如,第一次操作距离测量设备之前和/或每次距离测量设备通电之后)。
[0100] 在步骤1110,提供FPGA。参照前述图5A和图5B所讨论的,FPGA可具有多个用于执行脉冲数字化的差分输入端口。每个差分输入端口可与偏移电压相关联。
[0101] 在步骤1120,FPGA被校准以补偿与每个差分输入端口相关联的偏移电压。在一些实施例中,如前面讨论的,步骤1120涉及测量差分输入端口的偏移电压。所述测量偏移电压之后可被用于校准FPGA,例如,通过向差分输入端口施加调整电压,或者通过在估计时间值计算中使用测量偏移作为输入参数。在其他实施例中,可通过确定被配置为补偿偏移电压的偏移调整参数并且使用所述偏移调整电压作为估计时间值计算的输入参数,来校准FPGA。
[0102] 这里描述的一些实施例在方法或过程的一般上下文中描述,这些方法或过程可以在一个实施例中由计算机程序产品实现,该计算机程序产品体现在计算机可读介质中,包括诸如程序代码的计算机可执行指令,通过网络环境中的计算机执行。计算机可读介质可以包括可移除和不可移除存储设备,包括但不限于只读存储器(ROM),随机存取存储器(RAM),光盘(CD),数字多功能光盘(DVD)等。因此,计算机可读介质可以包括非暂态存储介质。通常,程序模块可以包括执行特定任务或实现特定抽象数据类型的例程,程序,对象,组件,数据结构等。计算机或处理器可执行指令,相关联的数据结构和程序模块表示用于执行本文公开的方法的步骤的程序代码的示例。这种可执行指令或相关联的数据结构的特定序列表示用于实现在这样的步骤或过程中描述的功能的对应动作的示例。
[0103] 所公开的实施例中的一些可以使用硬件电路,软件或其组合来实现为设备或模块。例如,硬件电路实现可以包括例如集成为印刷电路板的一部分的分立的模拟和/或数字组件。可选地或附加地,所公开的组件或模块可以被实施为专用集成电路(ASIC)和/或现场可编程阵列(FPGA)设备。一些实现可以附加地或可选地包括数字信号处理器(DSP),该数字信号处理器是专用微处理器,具有针对与本申请的公开功能相关联的数字信号处理的操作需求而优化的架构。类似地,每个模块内的各种组件或子组件可以用软件,硬件或固件来实现。模块和/或模块内的组件之间的连接可以使用本领域中已知的连接方法和媒介中的任何一种来提供,包括但不限于通过互联网,有线或无线网络使用适当的协议通信。
[0104] 虽然本专利文件包含许多细节,但这些细节不应被解释为对任何发明或可能要求保护的范围的限制,而应被解释为可能特定于特定发明的特定实施例的特征的描述。本专利文件中在单独实施例的上下文中描述的某些特征也可以在单个实施例中组合实施。相反地,在单个实施例的上下文中描述的各种特征也可以在多个实施例中单独地或以任何合适的子组合来实现。此外,尽管上文可以将特征描述为以某些组合起作用并且甚至最初如此要求,但是来自要求保护的组合的一个或多个特征可以在某些情况下从该组合中删除,并且所要求保护的组合可以针对子组合或子组合的变化。
[0105] 类似地,尽管在附图中以特定顺序描述了操作,但是这不应该被理解为要求以所示出的特定顺序或顺序执行这样的操作,或者要执行所有示出的操作以实现期望的结果。此外,在本专利文件中描述的实施例中的各种系统组件的分离不应被理解为在所有实施例中都需要这种分离。
[0106] 仅描述了一些实现方式和示例,并且可以基于本专利文件中所描述和示出的内容来做出其他实现、增强和改变。
[0107] 从上文中可以理解,为了说明的目的,本文已经描述了本发明的特定实施例,但是可以在不偏离本发明的范围的情况下进行各种修改。因此,本发明不受所附权利要求之外的限制。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈