首页 / 专利库 / 溶剂类 / 溶剂 / 一种海泡石复合催化剂及其制备方法、新型类芬顿体系及其应用

一种海泡石复合催化剂及其制备方法、新型类芬顿体系及其应用

阅读:351发布:2024-01-10

专利汇可以提供一种海泡石复合催化剂及其制备方法、新型类芬顿体系及其应用专利检索,专利查询,专利分析的服务。并且本 发明 提供了一种海泡石复合催化剂及其制备方法、新型类芬顿体系及其应用,方法包括:首先采用 水 热法,以经 盐酸 改性的海泡石为载体,乙二胺为氮源,与 钛 酸正四丁酯水热反应一定时间,制备得到N掺杂TiO2负载的海泡石 复合材料 ;再将复合材料于空气或氮气气氛中进行 煅烧 ,经 研磨 后得到N‑TiO2/海泡石光催化剂。本发明将光催化技术与芬顿技术结合,在太阳光或可见光照射下,N‑TiO2/海泡石光催化剂与过 硫酸 盐 产生强 氧 化性的活性自由基,在中性条件下,不用调节pH值,即可实现对 水体 中有机污染物的完全降解,而且该催化剂具有良好的 稳定性 与循环使用性能,实际水体中存在的常见阴离子与阳离子不影响有机物的降解。,下面是一种海泡石复合催化剂及其制备方法、新型类芬顿体系及其应用专利的具体信息内容。

1.一种N-TiO2/海泡石光催化剂的制备方法,其特征在于,包括如下步骤:
(1)用盐酸对海泡石进行酸化处理,干燥后得到酸活化海泡石;
(2)向步骤(1)所得酸活化海泡石中加入酸正四丁酯和氮源,混合后分散于有机溶剂中,经热反应、洗涤和干燥后,得到N-TiO2负载的海泡石复合材料
其中,所述氮源为乙二胺;钛酸正四丁酯与乙二胺的体积比为(0.25~1):1;N-TiO2的负载量占复合材料质量的10~32%;所述有机溶剂乙醇、乙二醇和乙醚乙二胺混合而成;所述水热反应具体为在160~200℃下加热反应22~24h;
(3)将步骤(2)所得复合材料于空气或氮气气氛中进行煅烧,经研磨后得到N-TiO2/海泡石光催化剂。
2.根据权利要求1所述制备方法,其特征在于,步骤(2)中所述洗涤为水洗或者乙醇洗涤。
3.根据权利要求1所述制备方法,其特征在于,步骤(3)中所述煅烧具体为从室温以4~
5℃/min的升温速度升温至350~500℃,保温4~5h后完成。
4.一种N-TiO2/海泡石光催化剂,其特征在于,由权利要求1~3所述任意一项方法制备得到,所述催化剂中N掺杂的TiO2包覆在海泡石表面,形成核壳结构
5.一种新型类芬顿体系,其特征在于,由N-TiO2/海泡石光催化剂与过硫酸盐加太阳光或可见光照射构成,所述N-TiO2/海泡石光催化剂为权利要求4所述的N-TiO2/海泡石光催化剂。
6.一种如权利要求5所述的新型类芬顿体系在有机污染物化降解中的应用,主要包括:
(1)向有机污染物中加入N-TiO2/海泡石光催化剂,黑暗搅拌后达到吸附平衡,其中,所述N-TiO2/海泡石光催化剂的浓度为0.1~0.5g/L;
(2)向吸附平衡后的溶液中加入过硫酸盐,所述过硫酸盐的浓度为0.05~0.1g/L;
(3)进行太阳光或可见光照射,在中性条件下,不用调节pH值,完成有机污染物氧化降解。
7.根据权利要求6所述的应用,其特征在于,所述过硫酸盐包括过一硫酸氢或过二硫酸钠。
8.根据权利要求6所述的应用,其特征在于,所述太阳光或可见光照射时间为60~
90min,即可完成有机污染物氧化降解。

说明书全文

一种海泡石复合催化剂及其制备方法、新型类芬顿体系及其

应用

技术领域

背景技术

[0002] 伴随着城市化的进程的加快和工业化进程的快速推进,人类的生活水平得到迅速提高的同时,环境问题也变得越来越严重。例如水体中有机物排放的问题已经成为制约经济发展的重要因素,其主要来源于农业、城市污水系统以及工业排放等诸多领域,因此处理水体中的有机物污染成为了环境领域的一项重要挑战。传统的水处理方法如吸附、膜分离等物理法仅仅是把污染物进行了转移,并没有对污染物进行从根本上去除;生物处理方法也受到了各种各样的限制,例如有机污染物大多具有毒害作用,对微生物具有不利的影响;化学法例如过化氢氧化法,臭氧氧化法及氯离子氧化法尽管对污染物的去除具有一定的效果,但是矿化结果不彻底。
[0003] 近年来,基于半导体材料的先进高级氧化技术受到了广泛的关注,这主要是因为通过光照半导体产生光生电子和空穴以及诱发具有强氧化能的自由基的生成,例如羟基自由基,硫酸根自由基,超氧根自由基及单线态氧等等,具有强氧化性的自由基可以直接矿化难降解的有机污染物,使其分解成无毒的二氧化与水分子,对环境不会产生危害,并且降解效果彻底,因而受到了广泛的应用。
[0004] 传统的氧化技术是利用高活性的羟基自由基实现氧化降解的过程,其主要方法包括Fenton法、类Fenton法、光化学氧化和臭氧氧化等等,然而以上方法有着各种各样的限制,例如pH范围较窄,氧化效率低等缺点,因此,利用活化过硫酸盐产生硫酸根自由基为基础的新型先进高级氧化技术受到了广泛的关注。过硫酸盐活化产生的硫酸根自由基具有更高的氧化还原电位,其适用范围更广,氧化能力更强,无二次污染以及对环境更加友好等特点,将得到广泛的应用。
[0005] 近年来,以黏土为载体的纳米复合材料在催化、吸附与生物医药方面取得了更大进展。黏土矿物的引入不仅有效地固定了功能纳米颗粒,改善反应物的团聚性,而且在吸附或催化过程中,在黏土与功能材料间产生协同作用,进一步明显地提高了反应物的综合性能。此外,黏土矿物丰富的比表面积与独特的孔道为吸附和催化提供了丰富的活性位点。然而,由于黏土矿物具有较多的杂质,在各个领域仍然具有一定的限制,因此对其进行改性是解决问题的一个有效途径。
[0006] 海泡石(Sepiolite)是一种天然的纳米黏土矿物,由于其特殊纤维形态、高比表面积、无毒性、强吸附性和低廉的价格,可用作组装功能材料的载体。对其进行酸活化能够显著地增大其比表面积与孔道尺寸,为二氧化的负载提供更多的活性位点。N的掺杂为二氧3+
化钛引入了氧空位与Ti 活性位点,这有利于活化PMS产生活性自由基。
[0007] 综上所述,现有技术存在的问题是:目前利用高级氧化技术去除水体中的染料污染存在氧化效率低、pH使用范围窄、及氧化不彻底等缺点。例如,羟基自由基在氧化大部分有机污染物方面表现出了快速高效的特点,但是其在酸性条件下才显示出稳定高效的降解能力,并且在水体环境中的寿命较短(小于1μs),除了以上的限制条件之外,当被应用于各种无机盐水体环境时,其氧化效率受到了明显的抑制。近年来,硫酸根自由基与超氧根自由基有着更高的氧化还原电位,不受各种无机阴、阳离子的制约,不依赖pH的变化等特点受到了广泛的关注,逐渐成为了一种具有应用前景的高级氧化技术。然而目前活化过硫酸盐产生硫酸根自由基与超氧根自由基的方法也存在着一定的限制。例如,常规的物理手段紫外光照、热、微波活化过硫酸盐存在着能耗高、成本高等缺点,采用化学手段,利用过渡金属离子活化过硫酸盐不需要额外的能量,可在常温常压下进行,但是存在溶于水中的过渡金属离子带来二次污染的问题。因此寻求无污染、能耗低、活化过硫酸盐的方法具有重要意义。

发明内容

[0008] 本发明提供了一种海泡石复合催化剂及其制备方法、新型类芬顿体系及其应用,其目的是将光催化技术与芬顿技术的优势结合,以酸活化后的海泡石为载体组装具有不同缺陷的N-TiO2,形成N-TiO2/海泡石光催化剂,用来活化过硫酸盐产生强氧化性的活性自由基,在中性条件下实现对水体中有机污染物的完全的降解。
[0009] 为了达到上述目的,本发明提供如下技术方案:
[0010] 本发明提供一种N-TiO2/海泡石光催化剂的制备方法,其特征在于,包括如下步骤:
[0011] (1)用盐酸对海泡石进行酸化处理,干燥后得到酸活化海泡石;
[0012] (2)向步骤(1)所得酸活化海泡石中加入钛酸正四丁酯和氮源,混合后分散于有机溶剂中,经水热反应、洗涤和干燥后,得到N-TiO2负载的海泡石复合材料;其中,所述氮源为乙二胺;钛酸正四丁酯与乙二胺的体积比为(0.25~1):1;N-TiO2的负载量占复合材料质量的10~32%;
[0013] (3)将步骤(2)所得复合材料于空气或氮气气氛中进行煅烧,再经研磨后得到N-TiO2/海泡石光催化剂。
[0014] 优选地,步骤(2)中所述有机溶剂乙醇、乙二醇和乙醚乙二胺混合而成。
[0015] 优选地,步骤(2)中所述水热反应具体为在160~200℃下加热反应22~24h。
[0016] 优选地,步骤(2)中所述洗涤为水洗或者乙醇洗涤。
[0017] 优选地,步骤(3)中所述煅烧具体为从室温以4~5℃/min的升温速度升温至350~500℃,保温4~5h后完成。
[0018] 本发明还提供一种N-TiO2/海泡石光催化剂,由上述任意一项方法制备得到,所述催化剂中N掺杂的TiO2包覆在海泡石表面,形成核壳结构
[0019] 本发明还提供一种新型类芬顿体系,所述体系由N-TiO2/海泡石光催化剂与过硫酸盐加太阳光或可见光照射制成,所述N-TiO2/海泡石光催化剂为上述N-TiO2/海泡石光催化剂。
[0020] 本发明还提供一种新型类芬顿体系在有机污染物氧化降解中的应用,主要包括:
[0021] (1)向有机污染物中加入N-TiO2/海泡石光催化剂,黑暗搅拌后达到吸附平衡,其中,所述N-TiO2/海泡石光催化剂的浓度为0.1~0.5g/L;
[0022] (2)向吸附平衡后的溶液中加入过硫酸盐,所述硫酸盐的浓度为0.05~0.1g/L;
[0023] (3)进行太阳光或可见光照射,在中性条件下,不用调节pH值,完成有机污染物氧化降解。
[0024] 优选地,所述硫酸盐包括过一硫酸氢、过二硫酸钠。
[0025] 优选地,所述太阳光或可见光照射时间为60~90min。
[0026] 本发明的上述方案有如下的有益效果:
[0027] (1)本发明以具有良好稳定性、亲水性及分散性的矿物海泡石为载体,海泡石可促进TiO2功能材料的组装及分散,同时酸活化改性的海泡石和二氧化钛间的协同效应,有利于进一步提高光催化降解能力;本发明中的TiO2利用氮元素掺杂和控制气氛煅烧后不仅可调控TiO2的缺陷,还可以保留表面碳,显著增加硫酸盐的活性物种数量,增加硫酸根的活性物种数量后能够产生更多的活性自由基,有利于对污染物的降解。
[0028] (2)本发明构建的N-TiO2/海泡石+硫酸盐+可见光类芬顿体系在中性条件下实现了对水体中有机污染物的完全的降解。N-TiO2/海泡石+硫酸盐+可见光新型类芬顿反应体系与传统芬顿试剂相比,可在pH=7的条件下60分钟后降解20mg/L的MO,表明这种新型固体类芬顿试剂在劣V类水处理中具有极大潜力,相对于传统的Fenton体系,pH使用范围较广,在酸条件下均具有一定的效果,特别明显的优势是:在中性条件下,不需要调节pH值,即可完成有机污染物氧化降解,说明所构建的N-TiO2/海泡石+硫酸盐+可见光类芬顿体系具有十分诱人的应用前景。
[0029] (3)本发明提供的N-TiO2/海泡石光催化剂活化过硫酸盐产生活性自由基降解有机污染物的方法,相对于现有的紫外光照、声波等物理手段以及过渡金属离子等化学手段,不需要高压设备及其他仪器设备,并且无金属离子的二次污染产生。且催化剂用量较少,绿色无毒无害,对环境友好,室温下可以反应,回收较为容易,无二次污染,为含有机污染物这类难降解的废水处理提供了经济合算的方法和实用技术。附图说明
[0030] 图1为本发明实施例1中N-TiO2/ASep(N2)样品的合成路线图;
[0031] 图2为本发明实施例1中不同样品的XRD图谱;
[0032] 图3为本发明实施例1中不同样品的热重谱图;
[0033] 图4为本发明实施例1中不同温度处理下样品的N2吸附-脱附曲线及相应的孔径分布图:(a)TiO2;(b)N-TiO2/ASep(N2)350℃;(c)N-TiO2/ASep(Air)400℃;(d)N-TiO2/ASep(N2)400℃;(e)N-TiO2/ASep(N2)450℃;(f)N-TiO2/ASep(N2)500℃;
[0034] 图5(a)TiO2,(b)TiO2/ASep,(c)N-TiO2/ASep(N2)的TEM图谱;(d)N-TiO2/ASep(N2)的HRTEM图谱;(e~l)N-TiO2/ASep(N2)的mapping图谱;
[0035] 图6为本发明实施例1中不同样品的不同元素的XPS图谱;
[0036] 图7为为本发明实施例2中不同样品的降解性能;
[0037] 图8为为本发明实施例2中不同条件对N-TiO2/ASep(N2)复合材料降解甲基橙的影响(a)pH;(b)离子强度;(c)无机阴离子;(d)MO浓度;(e)不同污染物;(f)稳定性能。

具体实施方式

[0038] 为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合具体实施例进行详细描述。
[0039] 实施例1
[0040] N-TiO2/海泡石光催化剂的制备(合成路线见图1):
[0041] (1)制备酸活化的海泡石(ASep)
[0042] 称取3g的海泡石放于烧杯中,然后加入6mol/L的HCl溶液,80℃下加热搅拌4h,重复三次,水洗至中性,然后在80℃的条件下干燥,得到ASep。
[0043] (2)制备空气氛围下煅烧的N-TiO2/ASep 1-4(Air)
[0044] 取1g的ASep放入高压反应釜中,往其中加入4mL的乙二胺溶液,1mL的钛酸正四丁酯溶液,混合后分散于20mL的乙二醇溶液,20mL的无水乙醚溶液以及40mL的无水乙醇溶液组成的有机溶剂中,180℃水热反应24h,随后水洗乙醇洗3次,80℃干燥,随后分别在400℃的空气氛围下煅烧4h,得到N-TiO2/ASep 1-4(Air)的复合材料。
[0045] (3)制备空气氛围下煅烧的N-TiO2/ASep 2-4(Air)复合材料
[0046] 取1g的ASep放入高压反应釜中,往其中加入4mL的乙二胺溶液,2mL的钛酸正四丁酯溶液,混合后分散于20mL的乙二醇溶液,20mL的无水乙醚溶液以及40mL的无水乙醇溶液组成的有机溶剂中,180℃水热反应24h,随后水洗乙醇洗3次,80℃干燥,随后分别在400℃的空气氛围下煅烧4h,得到N-TiO2/ASep 2-4(Air)的复合材料。
[0047] (4)制备空气氛围下煅烧的N-TiO2/ASep 4-4(Air)复合材料
[0048] 取1g的ASep放入高压反应釜中,往其中加入4mL的乙二胺溶液,3mL的钛酸正四丁酯溶液,混合后分散于20mL的乙二醇溶液,20mL的无水乙醚溶液以及40mL的无水乙醇溶液组成的有机溶剂中,180℃水热反应24h,随后水洗乙醇洗3次,80℃干燥,随后分别在400℃的空气氛围下煅烧4h,得到N-TiO2/ASep 3-4(Air)的复合材料。
[0049] (5)制备空气氛围下煅烧的N-TiO2/ASep 4-4(Air)复合材料
[0050] 取1g的ASep放入高压反应釜中,往其中加入4mL的乙二胺溶液,4mL的钛酸正四丁酯溶液,混合后分散于20mL的乙二醇溶液,20mL的无水乙醚溶液以及40mL的无水乙醇溶液组成的有机溶剂中,180℃水热反应24h,随后水洗乙醇洗3次,80℃干燥,随后分别在400℃的空气氛围下煅烧4h,得到N-TiO2/ASep 4-4(Air)的复合材料。
[0051] (6)制备N2氛围下煅烧的N-TiO2/ASep 1-4(N2)复合材料
[0052] 取1g的ASep放入高压反应釜中,往其中加入4mL的乙二胺溶液,1mL的钛酸正四丁酯溶液,混合后分散于20mL的乙二醇溶液,20mL的无水乙醚溶液以及40mL的无水乙醇溶液组成的有机溶剂中,180℃水热反应24h,随后水洗乙醇洗3次,80℃干燥,随后分别在400℃的N2氛围下煅烧4h,得到N-TiO2/ASep 4-4(N2)的复合材料。
[0053] (7)制备N2氛围下煅烧的N-TiO2/ASep 2-4(N2)复合材料
[0054] 取1g的ASep放入高压反应釜中,往其中加入4mL的乙二胺溶液,2mL的钛酸正四丁酯溶液,混合后分散于20mL的乙二醇溶液,20mL的无水乙醚溶液以及40mL的无水乙醇溶液组成的有机溶剂中,180℃水热反应24h,随后水洗乙醇洗3次,80℃干燥,随后分别在400℃的N2氛围下煅烧4h,得到N-TiO2/ASep 2-4(N2)的复合材料。
[0055] (8)制备N2氛围下煅烧的N-TiO2/ASep 3-4(N2)复合材料
[0056] 取1g的ASep放入高压反应釜中,往其中加入4mL的乙二胺溶液,3mL的钛酸正四丁酯溶液,混合后分散于20mL的乙二醇溶液,20mL的无水乙醚溶液以及40mL的无水乙醇溶液组成的有机溶剂中,180℃水热反应24h,随后水洗乙醇洗3次,80℃干燥,随后分别在400℃的N2氛围下煅烧4h,得到N-TiO2/ASep 3-4(N2)的复合材料。
[0057] (9)制备N2氛围下煅烧的N-TiO2/ASep 3-4(N2)复合材料
[0058] 取1g的ASep放入高压反应釜中,往其中加入4mL的乙二胺溶液,4mL的钛酸正四丁酯溶液,混合后分散于20mL的乙二醇溶液,20mL的无水乙醚溶液以及40mL的无水乙醇溶液组成的有机溶剂中,180℃水热反应24h,随后水洗乙醇洗3次,80℃干燥,随后分别在400℃的N2氛围下煅烧4h,得到N-TiO2/ASep 4-4(N2)的复合材料。
[0059] (10)制备N2氛围下350℃退火煅烧的N-TiO2/ASep-350℃复合材料[0060] 取1g的ASep放入高压反应釜中,往其中加入4mL的乙二胺溶液,2mL的钛酸正四丁酯溶液,混合后分散于20mL的乙二醇溶液,20mL的无水乙醚溶液以及40mL的无水乙醇溶液组成的有机溶剂中,180℃水热反应24h,随后水洗乙醇洗3次,80℃干燥,随后分别在350℃的N2氛围下煅烧4h,得到N-TiO2/ASep-350℃的复合材料。
[0061] (11)制备N2氛围下450℃退火煅烧的N-TiO2/ASep-450℃复合材料[0062] 取1g的ASep放入高压反应釜中,往其中加入4mL的乙二胺溶液,2mL的钛酸正四丁酯溶液,混合后分散于20mL的乙二醇溶液,20mL的无水乙醚溶液以及40mL的无水乙醇溶液组成的有机溶剂中,180℃水热反应24h,随后水洗乙醇洗3次,80℃干燥,随后分别在350℃的N2氛围下煅烧4h,得到N-TiO2/ASep-450℃的复合材料。
[0063] (12)制备N2氛围下500℃退火煅烧的N-TiO2/ASep-500℃复合材料[0064] 取1g的ASep放入高压反应釜中,往其中加入4mL的乙二胺溶液,2mL的钛酸正四丁酯溶液,混合后分散于20mL的乙二醇溶液,20mL的无水乙醚溶液以及40mL的无水乙醇溶液组成的有机溶剂中,180℃水热反应24h,随后水洗乙醇洗3次,80℃干燥,随后分别在500℃的N2氛围下煅烧4h,得到N-TiO2/ASep-500℃的复合材料。
[0065] 表1实施例1各样品的比表面积和孔结构参数
[0066]
[0067] 表2实施例1各样品中二氧化钛的负载量
[0068]
[0069] 通过XRD、FT-IR、TG-DTA、XPS、BET、TEM等方法对制备的复合材料进行表征。图2为实施例1中不同样品的XRD图谱,由图2(a)中可以看出经过TiO2负载之后在25.2°附近出现一个宽的衍射峰,对应于TiO2(101)晶面。N掺杂之后,TiO2的衍射峰位置没有产生变化。在图(d)中可以看出,随着温度的升高,金红石矿类型的衍射峰并没有出现,仍然保持着单纯的锐钛矿类型结构。
[0070] 图3为不同样品的热重谱图,由中可以看出ASep仅仅有吸附水与晶体水的析出,但是经过N掺杂改性在空气中煅烧发现,吸附水的含量进一步升高,这是由于二氧化钛表面也存在着部分吸附水。对于N掺杂二氧化钛改性的复合材料在不同的气氛下煅烧发现,氮气氛围下残留着较多的C元素。
[0071] 图4为不同温度处理下样品的N2吸附-脱附曲线及相应的孔径分布图,由图可以看出六种样品均属于介孔固体材料产生的IV型吸附平衡等温线,由于四种样品在较高相对压力区域没有表现出任何吸附限制,其迟滞环均为H3型;
[0072] 图5为HRTEM图谱和mapping图谱,其中(a)为单纯的TiO2纳米粒子,其平均粒径为10.62nm。图5(b)(c)分别为TiO2/ASep与N-TiO2/ASep(N2)复合材料,结果发现,使用ASep作为模板负载TiO2纳米粒子,可以阻止TiO2纳米粒子的进一步团聚,其平均粒径也有着明显的缩小,为6.92nm。图5(d)为N-TiO2/ASep(N2)复合材料的HRTEM图,结果发现晶格间隙约为
0.214~0.220nm,与TiO2的(112)晶面的0.233nm有所偏移,证明了N的成功掺杂。图5(e~l)为N-TiO2/ASep(N2)复合材料的mapping图片,结果发现,二氧化钛均匀负载的海泡石表面,也观察到了N的掺杂与C的残留。
[0073] 图6为不同样品的不同元素的XPS图谱,其中(a)在氮气氛围下煅烧易于得到Si-O-Ti键的形成,暗示着TiO2与ASep的结合主要依靠以范德华力。图6(b)中,进一步证明了C的残留,这与氮气氛围下具有较高的催化活性是密不可分的,C具有优良的导电性与电子储存能力,这为催化性能提供了有利的依据。而在空气氛围下退火煅烧,结果发现,C元素易于与空气中的O元素结合,不利于催化反应。图6(c)中进一步证明了缺陷的含量对比,可以明显的注意到氮气氛围下退火煅烧得到了丰富的Ti3+活性位点,而Ti3+活性位点是与氧空位相辅相成的,Ti3+的存在可以进一步活化PMS促进催化反应的进行。图6(d)中证明了间质N相对于取代N而言,间质N有利于催化反应。
[0074] 实施例2
[0075] N-TiO2/海泡石光催化剂的应用:
[0076] (1)N-TiO2/ASep(Air和N2)复合材料应用于甲基橙的降解。
[0077] 将10~50mg制备的不同N-TiO2/海泡石光催化剂分别放于100mL,10~50mg/L的甲基橙溶液,暗反应30min之后,向其中加入0.05~0.1g/L的过一硫酸氢钾溶液,进行可见光光照60min,取出4mL溶液经过0.45μm的水系滤膜,在λ=464nm处测得其吸光度,并根据公式计算其降解效率。制备的复合材料在60min内就可以达到几乎完全降解。
[0078] (2)N-TiO2/ASep(N2)复合材料应用于其他污染物的降解。
[0079] 取50mg的N-TiO2/ASep(N2)复合材料放于100mL,20mg/L的甲基紫、亚甲基蓝和盐酸四环素溶液,暗反应30min之后,加入0.1g过一硫酸氢钾溶液,进行可见光光照60min,发现对盐酸四环素有着70.1%的降解率,对甲基紫有着66.7%的降解率,对亚甲基蓝仅仅有着21.6%的降解效率。
[0080] 图7为不同样品的降解性能,图7(a)中揭露了不同材料催化降解甲基橙的对比实验,结果发现,单纯的N-TiO2/ASep(N2)复合材料对甲基橙几乎没有催化效果,单纯的PMS产生了20%的催化降解性能。而ASep/PMS与TiO2/PMS体系分别产生了30%与40%的降解性能,除此之外,TiO2/ASep/PMS体系产生了48.2%的降解性能,这主要是多种因素综合作用3+
的结果。除此之外,N的掺杂进一步上升了催化活性,这是因为N掺杂引入了氧空位与Ti 的活性位点,可以进一步活化PMS。氮气氛围下高效的性能主要是因为产生了更多的氧空位与Ti3+活性位点,以及残留的C元素的影响,进一步增大了催化性能。对比于图7(b)和图7(c)发现,在氮气氛围下煅烧,2-4的掺杂比表现出了最好的性能,而在空气氛围下煅烧处理,1-4
3+
的掺杂比表现出了最好的性能,这并不矛盾,因为都是Ti 活性位点其主要作用。图7(d)描述了不同退火温度对催化性能的变化,结果发现,400℃处理的样品展现了最佳的性能。
[0081] 图8展示了不同因素对甲基橙降解性能的影响;图8(a)展示了pH的改变对催化降解甲基橙的性能变化,可以看出,随着pH从3上升到7,催化降解性能逐渐增加,而随着pH的进一步增加,降解性能逐渐下降,暗示着pH是影响催化性能的一个重要因素;图8(b)展示了离子强度对催化性能的影响,随着离子强度的逐渐增加,其催化降解性能也在逐渐增加;图8(c)揭示了无机阴离子对降解性能的影响,结果发现与传统的实验有所不同,各种阴离子对甲基橙的降解没有明显的抑制作用。最佳的甲基橙降解浓度为20mg/L,这被图8(d)所展示,与此同时,图8(e和f)也展示了多种催化性能及良好的稳定性。
[0082] 以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈