首页 / 专利库 / 油气提取 / 克劳斯工艺 / Process for removing hydrogen sulfide from exhaust gas and for producing sulfur by the Claus process

Process for removing hydrogen sulfide from exhaust gas and for producing sulfur by the Claus process

阅读:900发布:2020-11-24

专利汇可以提供Process for removing hydrogen sulfide from exhaust gas and for producing sulfur by the Claus process专利检索,专利查询,专利分析的服务。并且The feed gas is partially burnt with oxygen-containing gas in a thermal Claus process plant, in which temperatures in the range of 850.degree. to 1350.degree. C. is maintained. Product gas which has been produced is passed through a catalytic Claus process plant (Claus catalysis plant), from which sulfur is withdrawn. The exhaust gas from the Claus catalysis plant is supplied to a desulfurizing plant. The sulfur compounds in the exhaust gas of the desulfurizing plant are converted to SO.sub.2 in a thermal aftertreating unit. When the rate of the H.sub.2 S-containing feed gas is below a limit, which is between 20 to 35% of the total rate of feed gas permissible for the thermal Claus process plant, then recycled exhaust gas from the desulfurizing plant (recycle gas) is admixed to the feed gas at such a rate that the rate of the mixed feed and recycle gases exceeds that limit. The recycle gas is suitably heated to 200.degree. to 400.degree. C. before it is mixed with the feed gas.,下面是Process for removing hydrogen sulfide from exhaust gas and for producing sulfur by the Claus process专利的具体信息内容。

We claim:1. In a process for removing hydrogen sulfide from an H.sub.2 S-containing feed gas by the Claus process and for producing elemental sulfur, wherein the feed gas is partially burnt with an oxygen-containing gas in a thermal Claus process plant having at least one combustion chamber in which a temperature in the range of 850.degree. to 1350.degree. C. is maintained, a process gas produced in said combustion chamber is passed through a Claus catalysis plant from which sulfur is withdrawn, exhaust gas from the Claus catalysis plant is supplied to a desulfurizing plant, and exhaust from said desulfurizing plant is at least partially subject to a thermal aftertreatment to convert sulfur compounds contained in the exhaust gas from the desulfurizing plant to SO.sub.2 to produce an SO.sub.2 -containing exhaust gas, the improvement which comprises in combination:the rate of supply of the H.sub.2 S-containing feed gas in said thermal Claus process plant is measured;a recycle gas consisting of recycled exhaust gas from the desulfurizing is admixed with said H.sub.2 S-containing feed gas when the thus-measured feed rate of the latter is below a limit in the range from 20 to 35% of a total feed gas rate which is permissible for the thermal Claus process plant;the recycle gas is thus admixed at such a rate that the rate of the mixed feed and recycle gases exceeds that limit;the recycle gas is heated to 200.degree. to 400.degree. C. before it is mixed with the feed gas; andinterrupting admixture of said exhaust gas with said feed gas and subjecting all said exhaust gas to said thermal aftertreatment as long as the rate of said feed gas exceeds said limit.2. The improvement defined in claim 1 wherein the recycle gas is heated to 250.degree. to 350.degree. C.3. The improvement defined in claim 1 wherein the recycle gas is heated by indirect heat exchange with the SO.sub.2 -containing exhaust gas from the thermal aftertreatment.4. The improvement defined in claim 1, further comprising the step of supplying gaseous fuel and water vapor to the combustion chamber.5. The improvement defined in claim 4 wherein 1 to 3 kg water vapor per kg of fuel are supplied to the combustion chamber.6. The improvement defined in claim 4 wherein an exhaust gas which contains water vapor and combustible components is supplied to the combustion chamber.

说明书全文

FIELD OF THE INVENTION

Our present invention relates to a method of removing H2 S from a gas containing a relatively high concentration of H2 S, e.g from a metallurgical plant or from an adsorber, or the like. More particularly, this invention relates to the removal of the H2 S from a gas and the recovery of the sulfur content thereof as high-grade elemental sulfur.

BACKGROUND OF THE INVENTION

Hydrogen sulfide can be removed from an H2 S-containing feed gas by the Claus process for producing elemental sulfur, wherein the feed gas is partially burnt with oxygen-containing gas in a thermal Claus process plant having at least one combustion chamber, wherein temperatures in the range of 850° to 1350° C. are maintained. The resulting process gas is passed through a catalytic Claus process plant (Claus catalysis plant), from which sulfur is withdrawn. The exhaust gas from the Claus catalysis plant is supplied to a desulfurizing plant in which the sulfur compounds contained in the exhaust gas from the desulfurizing plant are converted to SO2 by a thermal aftertreatment, and an SO2 -containing exhaust gas is produced. Small quantities of other sulfur compounds, such as COS, CS2 and methyl mercaptans, are also removed by the process.

That process and equipment for carrying out the process have been described in detail in Ullmanns Enzyklopadie der Technischen Chemie, 4th edition (1982), vol. 21, pp 8 to 26. In the thermal Claus process plant the H2 S-containing feed gas is burnt with air or oxygen-enriched air to produce a mixture of H2 S and SO2 ; a molar ratio of 2:1 of the two components is desired in that step.

In the Claus catalysis plant, the reaction is 2H2 S+SO2 =3S+2H2 O to form elemental sulfur and water. Al2 O3 catalysts having surface areas of 200 to 300 m2 /g may be used for that purpose.

The desulfurizing plant may be operated in accordance with any of a number of processes, in which the sulfur compounds are removed by adsorption and/or absorption. The thermal aftertreatment is generally an afterburning, by which all sulfur compounds are converted to sulfur dioxide.

It frequently is necessary to provide a technique which will ensure a satisfactory operation of the units of the plant even if the rate of feed gas varies greatly. It is also desirable to avoid problems which might arise as a result of a temperature drop below the dew point temperature and the solidification temperature of sulfur.

OBJECTS OF THE INVENTION

It is the principal object of the present invention to provide an improved method of removing H2 S from a gas containing same and of recovering the sulfur content thereof as elemental sulfur, in which disadvantages of the earlier systems are avoided, the process is better able to compensate for fluctuations in the feed rate of the H2 S-containing gas, and a high quality sulfur product is obtained.

Another object is to provide a process which improves upon the prior process described.

SUMMARY OF THE INVENTION

This is accomplished in accordance with the invention, in a process carried out under the conditions described, in that recycled exhaust gas from the desulfurizing plant (recycle gas) is admixed with the H2 S-containing feed gas when the rate of feed of the latter is below a limit in the range of 20 to 35% of the total feed gas rate which is permissible for the thermal Claus process plant, and recycle gas is thus admixed at such a rate that the rate of the mixed feed recycle gases exceeds that limit. The recycle gas increases the rate at which gas is supplied to the thermal Claus process plant and ensures an adequate supply of gas to and flow of gas through the various units of that plant. As a result, the overall plant can also be operated with a supply of H2 S-containing feed gas at a rate which is only 5% or even slightly less than 5% of the maximum permissible flow rate of exhaust gas.

The "total feed gas rate" as defined above is the maximum permissible gas flow rate for the H2 S containing gas in the thermal Claus plant, i.e. the rate above which there is a substantial increase in the H2 S carried over into the Claus catalysis stage.

The recycle gas must be heated to 200° to 400° C. and preferably to 250° to 350° C. before it is mixed with the feed gas in order to ensure that the mixed feed and recycle gases supplied to the thermal Claus process plant are at the ignition temperature which is required for a rapid combustion. The recycled gas contains also sulfur vapor, which could condense and solidify and could thus result in a clogging if it were at an excessively low temperature. The recycle gas may be heated by a utilization of waste heat or by means of extraneous energy.

In accordance with a further development of the process, gaseous fuel and water vapor are supplied to the combustion chamber of the thermal Claus stage simultaneously with the recycle gas. It is known to supply fuel gas to the combustion chamber of the thermal Claus process plant in order to heat the same and thus to heat also the Claus process catalysis plant which follows that combustion chamber. But the gaseous fuel which is now used serves mainly to effect a sustaining combustion if the SO2 -containing feed gas is supplied at a greatly reduced rate. That sustaining combustion is required because the recycle gas has no appreciable calorific value. But the sustaining combustion involves the risk of an entrainment of soot by the mixed H2 S and SO2 gases supplied to the Claus process catalysis plant. That soot will be found in the separated sulfur and will change the latter in color so that the sulfur is less suitable for further processing. For this reason the sustaining combustion must be carried out with an addition of water vapor, which will suppress the formation of soot. 1 to 3 kg water vapor for suppressing a formation of soot are usually added per kg of gaseous fuel.

The water vapor required for a soot-free combustion in the combustion chamber of the thermal Claus process plant may also be supplied in the form of exhaust gases which contain water vapor and which are processed in that manner. For instance in refineries, a water vapor-containing gas which becomes available in the purification of gas and consists, e.g. of acid water or sour water stripper gas, can be used for the sustaining combustion.

BRIEF DESCRIPTION OF THE DRAWING

The above and other objects, features and advantages of the present invention will become more readily apparent from the following description, reference being made to the accompanying drawing in which:

FIG. 1 is a diagrammatic representation of the process in flow-diagram form;

FIG. 2 is a diagrammatic view showing the combustion chamber of the thermal Claus process stage or plant.

SPECIFIC DESCRIPTION

The H2 S-containing feed gas to be processed is supplied to the thermal Claus process plant 3 through a line 1, which includes a flow rate analyzer 2.

FIG. 2 is a simplified representation of the burner 4, which constitutes the heart of the plant 3. A line 5 for air, a line 6 for gaseous fuel and a line 7 for water vapor lead also to the plant 3. The temperatures generated by the combustion in the thermal Claus process plant are in the range from 850° to 1350° C.

The process gas which has been produced and cooled in plant 3 flows at temperatures in the range of 260° to 300° C. in line 8 to the catalytic Claus process step of plant 9 which, for short, is called the Claus catalysis plant. The Claus catalysis stage or plant plant 9 is a multistage plant, in which elemental sulfur is produced, the sulfur being withdrawn in line 10.

The exhaust gas from the Claus catalysis plant 9 is supplied in line 11 to the fine purification stage of a desulfurizing plant 12. In dependence on the fine purification process employed, the exhaust gas from the plant 12 has a sulfur content not in excess of 100 to 1000 ppmv. As a result, the feed gas from line 1 has been desulfurized by at least 99%. All or part of the exhaust gas from plant 12 is supplied in line 13 to a thermal aftertreating unit 14, in which the sulfur compounds are completely burnt to form SO2. The SO2 -containing exhaust gas from the aftertreating unit 14 is withdrawn in line 15 and delivers part of its sensible heat in the heat exchanger 16.

As the rate of feed gas in line 1 may exhibit strong fluctuations, recycle gas from line 17 must be admixed to the feed gas in line 1 when said feed gas is being supplied at a rate which is below a certain limit, which is in the range from 20 to 35% of the maximum rate. That recycle gas is a partial stream of the exhaust gas from line 13 and the rate of recycle of said partial stream is controlled by the analyzer 2 via a control valve 18. The recycle gas in line 17 is conveyed by a blower 19 and is virtually free from oxygen and contains less than 100 ppm sulfur.

The operation of the burner 4 which is associated with the thermal Claus process plant will be explained with reference to FIG. 2.

When the rate of H2 S-containing feed gas in line 1 has dropped to such a low level that recycle gas from line 17 must be admixed, a sustaining combustion will usually be required, too.

That sustaining combustion is carried out in an inner combustion chamber 20, which is supplied by line 5 with air or oxygen-enriched air, by line 6 with the required gaseous fuel and by line 7 with water vapor. A substoichiometric combustion in the inner combustion chamber 20 is desired. The mixed feed and recycle gases are supplied to the annular space 21 surrounding the inner combustion chamber 20. The combustion products of the inner combustion chamber 20 and of the annular chamber 21 mix in the mixing chamber 22 of the burner 4. The temperatures in said mixing chamber 22 are between 850° and 1350° C.

The temperature is controlled by means of a thermocouple 23, which is used, e.g. to control the supply of fuel gas in line 6. But that control may also be effected by an operator. The combustion in the inner combustion chamber 20 ensures that the gaseous fuel used for the sustaining combustion will be burnt without the formation of soot before that fuel is contacted with sulfur-containing gas. As a result, yellow sulfur, which is virtually free of soot, can be produced in the Claus catalysis plant.

SPECIFIC EXAMPLE

A plant which corresponds to that shown on the drawing and is designed for a maximum feed gas rate of 3200 sm3 /h is supplied with feed gas at a rate of 160 sm3 /h, i.e., at 5% of the maximum rate. That feed gas has the following composition:

______________________________________  H2 S       82.73 vol. %  CH4       0.06 vol. %  C2+       0.10 vol. %  CO2       17.08 vol. %  N2       0.03 vol. %______________________________________

Recycle gas rate at a rate of 530 sm3 /h is admixed from line 17 to that feed gas so that the rate of the mixed gases amounts to 21.5% of the maximum rate.

The recycle gas has the following composition on a dry basis:

______________________________________N2        94.1612 vol. %CO2       3.2000 vol. %H2        2.5000 vol. %Trace elements 0.1388 vol. %______________________________________

The trace elements consist of:

______________________________________SO2     407    ppmv (volume parts per million)H2 S    814    ppmvCOS          24     ppmvCS2     3      ppmvelemental sulfur        140    ppmv______________________________________

The recycle gas contains about 38 vol. % water.

The thermal Claus process plant 3 is also supplied with:

______________________________________air through line 5    350    sm3 /hfuel gas through line 6                 50     sm3 /hwater vapor through   100    kg/hline 7______________________________________

The supply of air involves a substoichiometric combustion because its rate is only 72% of the stoichiometrically required air rate. The Sulfreen process, known per se, is carried out in the desulfurizing plant 12. The sulfur has a bright yellow color.

高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈