首页 / 专利库 / 化学反应,工艺和试剂 / 脱脂 / 金属の保護皮膜形成方法及び保護皮膜形成処理剤

金属の保護皮膜形成方法及び保護皮膜形成処理剤

阅读:976发布:2024-02-18

专利汇可以提供金属の保護皮膜形成方法及び保護皮膜形成処理剤专利检索,专利查询,专利分析的服务。并且【課題】被処理金属表面に、有害な六価クロムを含有せず、且つ、均一で良好な外観と耐食性と塗装密着性とを兼ね備えた皮膜を形成する。 【解決手段】(A)三価クロム、(B)ジルコニウムイオン、(C)塩素イオン、 硫酸 イオン及び 硝酸 イオンからなる群のうちの1種以上、(D)芳香族スルホン酸、及び、(E)フッ素イオンを含有する液体組成物を含み、且つ、アルミニウムを含まないpH1.9〜5の処理液に、亜鉛、アルミニウム、銅、ニッケル、クロム、鉄、錫及びこれらの 合金 からなる群のうちの1種以上の金属を浸漬させることで、金属に保護皮膜を形成する金属の保護皮膜形成方法。 【選択図】なし,下面是金属の保護皮膜形成方法及び保護皮膜形成処理剤专利的具体信息内容。

(A)三価クロム、 (B)ジルコニウムイオン、 (C)塩素イオン、硫酸イオン及び硝酸イオンからなる群のうちの1種以上、 (D)芳香族スルホン酸、及び、 (E)フッ素イオン を含有する液体組成物を含み、且つ、アルミニウムを含まないpH1.9〜5の処理液に、亜鉛、アルミニウム、銅、ニッケル、クロム、鉄、錫及びこれらの合金からなる群のうちの1種以上の金属を浸漬させることで、前記金属に保護皮膜を形成する金属の保護皮膜形成方法。前記液体組成物が、更に(F)珪酸化合物、芳香族スルホン酸以外の有機酸、亜鉛、マグネシウム、コバルト、ニッケル、バナジウム及びタングステンからなる群のうちの1種以上を含む請求項1に記載の金属の保護皮膜形成方法。前記保護皮膜の形成後に、更にケイ素、樹脂及びワックスからなる群のうちの一種以上を含有するコーティング剤にて後処理を行う請求項1又は2に記載の金属の保護皮膜形成方法。前記保護皮膜の形成前に、被処理金属に、脱脂、活性化又は表面調整のための前処理を行う請求項1〜3のいずれかに記載の金属の保護皮膜形成方法。(A)三価クロム、 (B)ジルコニウムイオン、 (C)塩素イオン、硫酸イオン及び硝酸イオンからなる群のうちの1種以上、 (D)芳香族スルホン酸、及び、 (E)フッ素イオン を含有し、且つ、アルミニウムを含まない、亜鉛、アルミニウム、銅、ニッケル、クロム、鉄、錫及びこれらの合金からなる群のうちの1種以上の金属を浸漬させて前記金属に保護皮膜を形成するためのpH1.9〜5である保護皮膜形成処理剤。更に(F)珪酸化合物、芳香族スルホン酸以外の有機酸、亜鉛、マグネシウム、コバルト、ニッケル、バナジウム及びタングステンからなる群のうちの1種以上を含む請求項5に記載の保護皮膜形成処理剤。

说明书全文

本発明は、種々の金属の保護皮膜形成方法及び保護皮膜形成処理剤に関する。

一般的に、亜鉛、アルミニウム及びマグネシウム等は多くの工業材料として使用されており、様々な分野で利用されている。しかしながら、これらの材料はそのまま使用すると錆と呼ばれる酸化物を形成し、強度や外観が大きく低下する。そのため通常は、その表面に保護皮膜を形成させることが一般的である。このような保護皮膜形成としては、クロメート皮膜処理が一般的に知られている。クロメート皮膜処理は更に電解クロメート処理、塗布型クロメート処理、及び、反応型クロメート処理の3種類に分類される。これらのクロメート処理は、保護皮膜としての効果の他に、良好な外観や良好な塗装密着性が得られるため、多くの工業分野で利用されている。

しかしながら、クロメート処理は、いずれも有害な六価クロムを使用するため、処理液のみならず処理品からも溶出する六価クロムが人体や環境へ悪影響があるとして、近年大きな問題となっている。これは、クロメート皮膜が皮膜中の六価クロムにより耐食性を発揮する皮膜である以上、如何ともしがたい問題である。

そこで、この六価クロメートに代わる化成皮膜の開発が行われ、以下に示すように多くの発明が出願されている。現行の六価クロメート代替皮膜は三価クロム皮膜と完全クロムフリー皮膜に大別されるが、六価クロメートに比較すると外観、耐食性、塗装密着性で劣る傾向があり、多くの企業が三価クロム皮膜と完全クロムフリー皮膜の更なる性能向上に向け、研究を重ねているのが現状である。

特許第4493930号公報

特開2010−31332号公報

特開2002−47578号公報

特開2007−204847号公報

特開2005−171296号公報

特開2006−161115号公報

特開平11−131255号公報

特開平8−176842号公報

特開2009−256697号公報

六価クロムフリー金属保護皮膜において、外観、耐食性及び塗装密着性の全てに優れた保護形成は存在せず、耐食性が優れていても外観や塗装密着性に問題が確認される等、改善が必要な状況である。このような背景下、本発明は、金属表面、特に、亜鉛または亜鉛合金表面、アルミニウムまたはアルミニウム合金表面、マグネシウムまたはマグネシウム合金表面上に、外観、耐食性及び塗装密着性全てに優れた六価クロムフリー金属保護皮膜を形成する方法及び保護被膜形成処理剤を提供するものである。

本発明者らは上記課題を解決するために鋭意検討した結果、(A)三価クロム、(B)ジルコニウムイオン、(C)塩素イオン、硫酸イオン及び硝酸イオンからなる群のうちの1種以上、(D)芳香族スルホン酸、及び、(E)フッ素イオンを含有する液体組成物により処理を行うことで、被処理金属上に外観、耐食性及び塗装密着性に優れた保護皮膜が形成されることを見出した。また上記構成組成液に更に(F)珪酸化合物、芳香族スルホン酸以外の有機酸、亜鉛、マグネシウム、アルミニウム、コバルト、ニッケル、バナジウム及びタングステンからなる群のうちの1種以上を添加することで、更に耐食性が良好な保護皮膜が形成されることを見出した。

以上の知見を基礎として完成した本発明は一側面において、(A)三価クロム、(B)ジルコニウムイオン、(C)塩素イオン、硫酸イオン及び硝酸イオンからなる群のうちの1種以上、(D)芳香族スルホン酸、及び、(E)フッ素イオンを含有する液体組成物を含み、且つ、アルミニウムを含まないpH1.9〜5の処理液に、亜鉛、アルミニウム、銅、ニッケル、クロム、鉄、錫及びこれらの合金からなる群のうちの1種以上の金属を浸漬させることで、前記金属に保護皮膜を形成する金属の保護皮膜形成方法である。

本発明に係る金属の保護皮膜形成方法の一実施形態においては、前記液体組成物が、更に(F)珪酸化合物、芳香族スルホン酸以外の有機酸、亜鉛、マグネシウム、アルミニウム、コバルト、ニッケル、バナジウム及びタングステンからなる群のうちの1種以上を含む。

本発明に係る金属の保護皮膜形成方法の更に別の一実施形態においては、前記保護皮膜の形成後に、更にケイ素、樹脂及びワックスからなる群のうちの一種以上を含有するコーティング剤にて後処理を行う。

本発明に係る金属の保護皮膜形成方法の更に別の一実施形態においては、前記保護皮膜の形成前に、被処理金属に、脱脂、活性化又は表面調整のための前処理を行う。

本発明は他の側面において、(A)三価クロム、(B)ジルコニウムイオン、(C)塩素イオン、硫酸イオン及び硝酸イオンからなる群のうちの1種以上、(D)芳香族スルホン酸、及び、(E)フッ素イオンを含有し、且つ、アルミニウムを含まない、亜鉛、アルミニウム、銅、ニッケル、クロム、鉄、錫及びこれらの合金からなる群のうちの1種以上の金属を浸漬させて前記金属に保護皮膜を形成するためのpH1.9〜5である保護皮膜形成処理剤である。

本発明に係る保護皮膜形成処理剤の一実施形態においては、更に(F)珪酸化合物、芳香族スルホン酸以外の有機酸、亜鉛、マグネシウム、アルミニウム、コバルト、ニッケル、バナジウム及びタングステンからなる群のうちの1種以上を含む。

本発明によれば、被処理金属表面に、有害な六価クロムを含有せず、且つ、均一で良好な外観と耐食性と塗装密着性とを兼ね備えた皮膜を形成することができる。

(被処理金属) 本発明の保護皮膜を形成する被処理金属としては、亜鉛、アルミニウム、マグネシウム、銅、ニッケル、クロム、鉄、錫及びこれらの合金が挙げられる。本発明の保護皮膜は、特に亜鉛めっき、亜鉛合金めっき、亜鉛ダイキャスト、アルミニウム、ダイキャストを含むアルミニウム合金、マグネシウム、ダイキャストを含むマグネシウム合金に対し効果的に作用する。

反応の詳細な機構については、三価クロムとジルコニウムとが強固な皮膜骨格を形成し、各種アニオンと芳香族スルホン酸とフッ素イオンが皮膜形成速度を促進するものと考えられ、この5成分が同時に存在することにより、相乗的に皮膜形成が促進され、強固な皮膜が形成されるものと考えられる。また、珪酸化合物、芳香族スルホン酸以外の有機酸または有機酸塩、亜鉛、マグネシウム、アルミニウム、コバルト、ニッケル、バナジウム、タングステンといった物質を添加することにより更に耐食性が良好となる。金属カチオンについては皮膜骨格形成成分として作用し、また珪酸化合物や有機酸については皮膜形成の更なる促進の他に、皮膜成分としても作用することで耐食性の向上に寄与しているものと推測される。

(三価クロム源) 保護皮膜の構成成分である三価クロム源としては、硝酸クロム、硫酸クロム、塩化クロム、リン酸クロム、酢酸クロム等の三価クロム塩、及び、クロム酸や重クロム酸等の六価クロムを還元剤により三価に還元した三価クロム等の三価クロム化合物が利用できる。三価クロムの化合物であれば、上記以外の物質でも三価クロムの供給源として利用できる。これら三価クロム化合物は一種または二種以上を使用することができる。三価クロムの濃度としてはクロム濃度として0.001〜100g/Lが好ましく、0.01〜50g/Lであるのがより好ましい。三価クロムの濃度が上記範囲内で良好な化成皮膜が形成でき、安定な外観、耐食性、塗装密着性が得られる。三価クロム濃度が0.001g/Lより低下すると耐食性の低下を招き、100g/Lを超えるとコストメリットの観点から好ましくない。

(ジルコニウム源) ジルコニウム源としては、オキシ塩化ジルコニウム、硫酸ジルコニウム、硝酸ジルコニウム、酸化ジルコニウム、ジルコンフッ化アンモニウム、ジルコンフッ化水素酸、ジルコニウムゾル等のジルコニウム化合物が利用できる。ジルコニウムの化合物であれば、上記以外の物質でもジルコニウムの供給源として利用できる。これらジルコニウム化合物は、一種又は二種以上を使用することができる。当該化合物のジルコニウム濃度としては、0.001〜50g/Lが好ましく、0.01〜20g/Lであるのがより好ましい。ジルコニウム濃度が上記範囲内で良好な化成皮膜が形成でき、安定な外観、耐食性及び塗装密着性が得られる。ジルコニウム濃度が0.001g/Lより低下すると耐食性と塗装密着性の低下を招き、50g/Lを超えるとコストメリットの低下と共に、処理液中に沈殿が発生しやすくなり好ましくない。

(塩素イオン、硫酸イオン及び硝酸イオンの供給源) 塩素イオン、硫酸イオン及び硝酸イオンの供給源としては、塩酸、硫酸、硝酸や塩化ナトリウム、硫酸ナトリウム、硝酸ナトリウム等の各無機酸塩が利用できる。硫酸クロム、塩化クロム、硝酸クロム、硫酸ジルコニウム、塩化ジルコニウム、硝酸ジルコニウム等のクロム化合物やジルコニウム化合物に含有される各種アニオンも供給源として利用できる。塩素イオン、硫酸イオン及び硝酸イオンの化合物であれば、上記以外の物質も塩素イオン、硫酸イオン及び硝酸イオンの供給源として利用できる。塩素イオン、硫酸イオン及び硝酸イオンは、一種または二種以上を使用することができる。塩素イオン、硫酸イオン及び硝酸イオンの濃度は、0.001〜200g/Lが好ましく、0.01〜100g/Lであるのがより好ましい。塩素イオン、硫酸イオン及び硝酸イオンの濃度が上記範囲内であれば、良好な化成皮膜が形成でき、安定な外観、耐食性、塗装密着性が得られる。塩素イオン、硫酸イオン及び硝酸イオンの濃度が0.001g/Lより低下すると耐食性と塗装密着性の低下を招き、200g/Lを超えるとコストメリットの低下と共に、処理外観でムラが発生しやすくなり好ましくない。

(芳香族スルホン酸源) 芳香族スルホン酸源としては、ベンゼンスルホン酸、トルエンスルホン酸、ニトロベンゼンスルホン酸やこれら芳香族スルホン酸の塩等が利用できる。芳香族スルホン酸の化合物であれば、上記以外の物質でも芳香族スルホン酸の供給源として利用できる。これら芳香族スルホン酸は一種または二種以上を使用することができる。芳香族スルホン酸の濃度は、0.001〜100g/Lが好ましく、0.01〜50g/Lであるのがより好ましい。芳香族スルホン酸濃度が上記範囲内であれば、良好な化成皮膜が形成でき、安定な外観、耐食性、塗装密着性が得られる。芳香族スルホン酸が0.001g/Lより低下すると耐食性の低下を招き、100g/Lを超えるとコストメリットの低下と共に、沈殿が発生しやすくなり好ましくない。

(フッ素イオン源) フッ素イオン源としては、フッ化水素、フッ化ナトリウム、酸性フッ化ナトリウム、フッ化アンモニウム、酸性フッ化アンモニウム、フッ化カリウム、ケイフッ化物、ジルコンフッ化アンモニウム、ホウフッ化物等のフッ素化合物が使用できる。フッ素イオンの化合物であれば、上記以外の物質でもフッ素イオンの供給源として利用できる。これらフッ素化合物は一種または二種以上を使用することができる。フッ素イオンの濃度は、0.001〜80g/Lが好ましく、0.01〜40g/Lであるのがより好ましい。フッ素イオン濃度が上記範囲内で良好な化成皮膜が形成でき、安定な外観、耐食性、塗装密着性が得られる。フッ素イオンが0.001g/Lより低下すると耐食性と塗装密着性の低下を招き、80g/Lを超えるとコストメリットの低下と共に、沈殿が発生しやすくなり好ましくない。

(珪酸化合物源) 珪酸化合物源としては珪酸ナトリウム、珪酸カリウム、オルソ珪酸塩、メタ珪酸塩、コロイダルシリカ等の珪酸化合物が使用できる。珪酸の化合物であれば、上記以外の物質でも珪酸化合物の供給源として利用できる。これら珪酸化合物は一種または二種以上を使用することができる。珪酸化合物の濃度は、0.001〜20g/Lが好ましく、0.01〜10g/Lであるのがより好ましい。珪酸濃度が上記範囲内で良好な化成皮膜が形成でき、安定な外観、耐食性、塗装密着性が得られる。珪酸化合物が0.001g/Lより低下すると耐食性の向上効果が得られにくく、20g/Lを超えるとコストメリットの低下と共に、沈殿が発生しやすくなり好ましくない。

(芳香族スルホン酸以外の有機酸) 芳香族スルホン酸以外の有機酸としては、ギ酸、酢酸、プロピオン酸、グルコン酸、酪酸、シュウ酸、マロン酸、琥珀酸、グルタル酸、アジピン酸、マレイン酸、フマル酸、安息香酸、フタル酸、酒石酸、グリコール酸、ジグリコール酸、乳酸、グリシン、クエン酸、リンゴ酸、エチレンジアミン四酢酸、ニトリロ三酢酸やこれらの有機酸塩等が利用できる。有機酸の化合物であれば、上記以外の物質でも有機酸の供給源として利用できる。これら有機酸は一種または二種以上を使用することができる。有機酸の濃度は、0.001〜200g/Lが好ましく、0.01〜100g/Lの範囲であるのがより好ましい。有機酸濃度が上記範囲内で良好な化成皮膜が形成でき、安定な外観、耐食性、塗装密着性が得られる。有機酸濃度が0.001g/Lより低下すると耐食性の向上効果が得られにくく、100g/Lを超えるとコストメリットの低下と共に、廃水処理性低下するため好ましくない。

(亜鉛源) 亜鉛源としては、酸化亜鉛、硝酸亜鉛、硫酸亜鉛、塩化亜鉛、酢酸亜鉛、炭酸亜鉛等の亜鉛化合物が利用できる。亜鉛の化合物であれば、上記以外の物質でも亜鉛の供給源として利用できる。これら亜鉛化合物は一種または二種以上を使用することができる。亜鉛濃度は、0.001〜50g/Lが好ましく、0.01〜30g/Lであるのがより好ましい。亜鉛濃度が上記範囲内で良好な化成皮膜が形成でき、安定な外観、耐食性、塗装密着性が得られる。亜鉛濃度が0.001g/Lより低下すると耐食性の向上効果が得られにくく、50g/Lを超えるとコストメリットの低下と共に、沈殿が発生しやすくなり好ましくない。

(マグネシウム源) マグネシウム源としては、硝酸マグネシウム、硫酸マグネシウム、塩化マグネシウム、酢酸マグネシウム、炭酸マグネシウム等のマグネシウム化合物が利用できる。マグネシウムの化合物であれば、上記以外の物質でもマグネシウムの供給源として利用できる。これらマグネシウム化合物は一種または二種以上を使用することができる。マグネシウム濃度は、0.001〜50g/Lが好ましく、0.01〜30g/Lの範囲であるのがより好ましい。マグネシウム濃度が上記範囲内で良好な化成皮膜が形成でき、安定な外観、耐食性、塗装密着性が得られる。マグネシウム濃度が0.001g/Lより低下すると耐食性の向上効果が得られにくく、50g/Lを超えるとコストメリットの低下と共に、沈殿が発生しやすくなり好ましくない。

(アルミニウム源) アルミニウム源としては、硝酸アルミニウム、硫酸アルミニウム、塩化アルミニウム、酢酸アルミニウム、炭酸アルミニウム、コロイダルアルミナ等のアルミニウム化合物が利用できる。アルミニウムの化合物であれば、上記以外の物質でもアルミニウムの供給源として利用できる。これらアルミニウム化合物は一種または二種以上を使用することができる。アルミニウム濃度として0.001〜50g/Lが好ましく、0.01〜30g/Lであるのがより好ましい。アルミニウム濃度が上記範囲内で良好な化成皮膜が形成でき、安定な外観、耐食性、塗装密着性が得られる。アルミニウム濃度が0.001g/Lより低下すると耐食性の向上効果が得られにくく、50g/Lを超えるとコストメリットの低下と共に、沈殿が発生しやすくなり好ましくない。

(コバルト源) コバルト源としては、硝酸コバルト、硫酸コバルト、塩化コバルト、酢酸コバルト、炭酸コバルト等のコバルト化合物が利用できる。これらコバルト化合物は一種または二種以上を使用することができる。コバルトの化合物であれば、上記以外の物質でもコバルトの供給源として利用できる。コバルト濃度は、0.001〜50g/Lが好ましく、0.01〜30g/Lであるのがより好ましい。コバルト濃度が上記範囲内で良好な化成皮膜が形成でき、安定な外観、耐食性、塗装密着性が得られる。コバルト濃度が0.001g/Lより低下すると耐食性の向上効果が得られにくく、50g/Lを超えるとコストメリットの低下と共に、沈殿が発生しやすくなり好ましくない。

(ニッケル源) ニッケル源としては、硝酸ニッケル、硫酸ニッケル、塩化ニッケル、酢酸ニッケル、炭酸ニッケル、スルファミン酸ニッケル等のニッケル化合物が利用できる。ニッケルの化合物であれば、上記以外の物質でもニッケルの供給源として利用できる。これらニッケル化合物は一種または二種以上を使用することができる。ニッケル濃度は、0.001〜50g/Lが好ましく、0.01〜30g/Lであるのがより好ましい。ニッケル濃度が上記範囲内で良好な化成皮膜が形成でき、安定な外観、耐食性、塗装密着性が得られる。ニッケル濃度が0.001g/Lより低下すると耐食性の向上効果が得られにくく、50g/Lを超えるとコストメリットの低下と共に、沈殿が発生しやすくなり好ましくない。

(バナジウム源) バナジウム源としては、硝酸バナジウム、硫酸バナジウム、塩化バナジウム、バナジン酸、メタバナジン酸カリウム、メタバナジン酸アンモニウム等のバナジウム化合物が利用できる。バナジウムの化合物であれば、上記以外の物質でもバナジウムの供給源として利用できる。これらバナジウム化合物は一種または二種以上を使用することができる。バナジウム濃度は、0.001〜50g/Lが好ましく、0.01〜30g/Lであるのがより好ましい。バナジウム濃度が上記範囲内で良好な化成皮膜が形成でき、安定な外観、耐食性、塗装密着性が得られる。バナジウム濃度が0.001g/Lより低下すると耐食性の向上効果が得られにくく、50g/Lを超えるとコストメリットの低下と共に、沈殿が発生しやすくなり好ましくない。

(タングステン源) タングステン源としては、タングステン酸ナトリウム、タングステン酸アンモニウム、タングステン酸カリウム、タングステン酸マグネシウム等のタングステン化合物が利用できる。タングステンの化合物であれば、上記以外の物質でもタングステンの供給源として利用できる。これらタングステン化合物は一種または二種以上を使用することができる。タングステン濃度として0.001〜50g/Lが好ましく、0.01〜30g/Lであるのがより好ましい。タングステン濃度が上記範囲内で良好な化成皮膜が形成でき、安定な外観、耐食性、塗装密着性が得られる。タングステン濃度が0.001g/Lより低下すると耐食性の向上効果が得られにくく、50g/Lを超えるとコストメリットの低下と共に、沈殿が発生しやすくなり好ましくない。

皮膜形成に用いる処理液のpHは、pH0.5〜6.0の範囲が好ましく、より好ましくは1.5〜4.5である。pHが0.5より低い場合は被処理金属の表面が粗面化しやすく、6.0より高い場合は皮膜化成速度が低下するとともに処理液に沈殿が生じやすくなるため好ましくない。なお、処理液のpH調整剤としては、塩酸、硫酸、硝酸の無機酸や、苛性ソーダ、苛性カリ、アンモニア水のアルカリを用いることができる。

保護皮膜の厚さは約0.02〜2μmであり、より好ましくは0.04〜0.5μmである。膜厚が0.02μm未満では十分な耐食性が得られず、0.5μm超では塗装密着性が低下する場合がある。

(保護皮膜形成方法) 本発明の保護皮膜の形成は、被処理金属を上記処理剤に浸漬させることにより行う。更に保護皮膜形成後に必要に応じて水洗と乾燥等の処理を行ってもよい。また、塗布や吹き付け工程による皮膜形成も可能である。保護膜形成の前に、被処理金属の表面に、必要に応じて脱脂、活性化又は表面調整のための前処理を行ってもよい。処理液での処理温度は10〜80℃の範囲が好ましく、より好ましくは20〜50℃である。処理温度が10℃より低い場合は化成皮膜の反応速度が低下し、80℃より高い場合は蒸発による処理液面の低下が生じるため好ましくない。処理液での処理時間は5〜600秒の範囲が好ましく、より好ましくは10〜120秒である。処理時間が5秒より短い場合は皮膜化成が不十分となり、600秒より長い場合は表面が白くボケるといった外観不良が発生しやすくなるため好ましくない。

保護皮膜形成処理を行う際、あらかじめ被処理金属の脱脂、活性化、表面調整を行うことで、本発明の処理外観、耐食性及び塗装密着性を向上させることが可能である。脱脂に関しては被処理金属により適した工程があるが、亜鉛めっきや亜鉛合金めっきに関してはめっき後に硝酸活性を行い、その後、保護皮膜形成処理を行うことが適している。亜鉛ダイキャストやアルミニウム、アルミニウム合金に関しては脱脂や必要に応じて活性処理を行い、その後に保護皮膜形成処理を行うことが適している。マグネシウムやマグネシウム合金に関しては、脱脂、活性化又は表面調整の後に保護皮膜形成処理を行うことが適している。これらの前処理に関しては、各被処理金属に応じて適宜行うことで本発明に係る保護皮膜形成処理の性能を引き出すことが可能である。

保護皮膜形成処理を実施後に、ケイ素、樹脂及びワックスからなる群のうちの一種以上を含有するコーティング剤にて後処理を行っても良い。これらコーティング剤に特に限定はなくアクリル樹脂、オレフィン樹脂アルキド樹脂、尿素樹脂、エポキシ樹脂、メラミン樹脂、フッ素樹脂、ポリエチレン、ポリ塩化ビニル、ポリスチレン、ポリプロピレン、メタクリル樹脂、フェノール樹脂、ポリエステル樹脂、ポリウレタン、ポリアミド、ポリカーボネート等の樹脂類やケイ酸塩、コロイダルシリカ等を成分とするコーティング剤を用いても良い。これらの樹脂濃度は、0.01〜800g/Lが好ましいが、適切な濃度は樹脂の種類により異なる。コーティング剤としては、具体的には、コスマーコート(商品名、関西ペイント(株))、ハイシール272(商品名、日本表面化学(株))、ストロンJコート(商品名、日本表面化学(株))、トライナーTR−170(商品名、日本表面化学(株))、フィニガード(商品名、Coventya社)等が挙げられる。アクリル樹脂としては、具体的には、ヒロタイト(商品名、日立化成(株))、アロセット(商品名、(株)日本触媒)等があり、オレフィン樹脂については、フローセン(商品名、住友精化(株))、PES(商品名、日本ユニカー(株))、ケミパール(商品名、三井化学(株))、サンファイン(商品名、旭化成(株))等が挙げられる。

以下、本発明の実施例を示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。

試験片として、鋼板に電気亜鉛めっき、鋼板に電気亜鉛鉄合金めっき(鉄共析率0.3wt%)、亜鉛ダイキャストZDC2、アルミニウム板A1100、アルミニウムダイキャストADC2、アルミニウム鋳物AC4C、アルミニウム合金板A6063、マグネシウム展伸材AZ31、マグネシウム展伸材AZ61、マグネシウムダイキャストAZ91Dといった各種の標準被処理金属試験片を用いた。亜鉛めっきと亜鉛鉄合金めっきとは、めっき後に水洗、硝酸活性(67.5%硝酸5mL/L、室温5秒)、水洗を行い、各実施例条件で処理、水洗後に乾燥した。亜鉛ダイキャスト、アルミニウム板、アルミニウム鋳物、アルミニウム合金板、アルミニウムダイキャストにつては、脱脂(日本表面化学(株)製ケイクリン6を30mL/L、50℃、5分)を行い、水洗、各実施例条件で処理、水洗後に乾燥した。マグネシウム展伸材、マグネシウムダイキャストについては脱脂(日本表面化学(株)製S−0717を30g/L、55℃、5分)、水洗、活性化(日本表面化学(株)製ME−410を50mL/L、45℃、2分)、水洗、表面調整(日本表面化学(株)製MD−420を100mL/L、55℃、2分)、水洗の工程後、各実施例条件で処理、水洗後に乾燥した。各処理液のpH調整は硝酸とアンモニア水を使用した。実施例43〜48に関しては保護皮膜形成処理後に水洗を行い、その後コーティング処理を行い、乾燥した。コーティング処理にはハイシール272(日本表面化学(株)製、ポリアクリル樹脂型コーティング剤)とストロンJコート(日本表面化学(株)製、水分散型シリカ型コーティング剤)、ケミパールW410(三井化学(株)製、オレフィン樹脂)を使用した。耐食性の評価はJIS Z 2731に従う塩水噴霧試験を行った。塗装密着性試験は、試験片表面にエポキシ系塗料を塗布し、焼き付け乾燥した後碁盤目状にクロスカットを入れ、沸騰水に30分浸漬後、セロハンテープを圧着させ、これを垂直方向に剥離し評価した。 試験条件及び評価結果を表1〜10に示す。

上記碁盤目試験評価は、以下の基準による。 A:はく離無し B:はく離5%未満 C:はく離10%未満 D:はく離50%未満 E:はく離50%以上 また、上記塩水噴霧試験評価は、以下の基準による。 A:360時間白錆発生無し B:240時間白錆発生無し C:168時間白錆発生無し D:72時間白錆発生無し E:48時間白錆発生 F:24時間白錆発生

(評価) 実施例の結果から、(A)三価クロム、(B)ジルコニウムイオン、(C)塩素イオン、硫酸イオン及び硝酸イオンからなる群のうちの1種以上、(D)芳香族スルホン酸、及び、(E)フッ素イオンを含有する液体組成物により保護皮膜を形成することにより、優れた外観・耐食性・塗装密着性が得られることが確認された。更に(F)珪酸化合物、芳香族スルホン酸以外の有機酸、亜鉛、マグネシウム、コバルト、ニッケル、バナジウム及びタングステンからなる群のうちの1種以上を液体組成物に添加することで耐食性がより良好となることが確認された。一方、比較例の結果からは、上記成分(A)〜(E)のうちどれか一つが不足しても優れた耐食性が得られないことが確認された。また、上記成分(A)〜(E)のうちどれか一つが不足している液体組成物に上記成分(F)を添加しても、実施例に匹敵する耐食性を得るには至らないことが確認された。

高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈