首页 / 专利库 / 摄影 / 光学透镜 / 微距镜头 / 一种量测桩-土三维位移场的测试装置

一种量测桩-土三维位移场的测试装置

阅读:1026发布:2020-05-27

专利汇可以提供一种量测桩-土三维位移场的测试装置专利检索,专利查询,专利分析的服务。并且本实用新型提供一种量测桩-土三维位移场的测试装置,包括 X射线 光源 、摆动器、单色器、模型桩试验箱、无机 闪烁体 、探测器和显示器,X射线光源发射X射线,X射线依次经过用于增高 光子 通量的摆动器、用于 切除 窄带 能量 的单色器、模型桩试验箱和无机闪烁体,无机闪烁体将X射线耦合到探测器上,探测器接收X射线生成图像数据,并将图像数据传输至显示器,显示器根据图像数据显示出桩-土三维位移图像。本实用新型的有益效果:解决了 传感器 监测 精度 低的问题,装置对环境无任何危害、可全模型进行监测、节约监测成本、监测结果精确度高、自动化程度高,具有广阔的应用前景。(ESM)同样的 发明 创造已同日 申请 发明 专利,下面是一种量测桩-土三维位移场的测试装置专利的具体信息内容。

1.一种量测桩-土三维位移场的测试装置,其特征在于:包括X射线光源、摆动器、单色器、模型桩试验箱、无机闪烁体、探测器和显示器,所述X射线光源发射X射线,所述X射线依次经过用于增高光子通量的所述摆动器、用于切除窄带能量的所述单色器、所述模型桩试验箱和所述无机闪烁体,所述无机闪烁体将所述X射线耦合到所述探测器上,所述探测器接收所述X射线生成图像数据,并将所述图像数据传输至所述显示器,所述显示器根据所述图像数据显示出桩-土三维位移图像。
2.如权利要求1所述的一种量测桩-土三维位移场的测试装置,其特征在于:所述模型桩试验箱包括箱体、位移控制板、旋转台和多根模型桩,所述箱体固定于所述旋转台上,所述箱体底部设有模型基座,所有模型桩均贯穿所述位移控制板并固定于所述模型基座上,所述箱体内填充土体,所述位移控制板上下运动模拟所有模型桩之间的土体沉降。
3.如权利要求1所述的一种量测桩-土三维位移场的测试装置,其特征在于:所述无机闪烁体为掺铽化钆屏幕,所述掺铽氧化钆屏幕设有聚光涂层,所述聚光涂层为粉涂层。
4.如权利要求1所述的一种量测桩-土三维位移场的测试装置,其特征在于:所述单色器包括入射狭缝、准直镜、棱镜、物镜和出射狭缝,所述X射线经过所述入射狭缝后射入所述准直镜转化为平行光束,所述平行光束进入所述棱镜被分解为单色光,所述单色光射入所述物镜被聚焦于所述出射狭缝,由所述出射狭缝射出的所述单色光射入所述模型桩试验箱。
5.如权利要求1所述的一种量测桩-土三维位移场的测试装置,其特征在于:所述探测器包括不透光盒体和设置于所述盒体内的传感器,所述传感器为相机系统,所述相机系统设有电机微距镜头,所述电机驱动所述相机系统竖直升降,所述微距镜头用于所述相机系统接收的所述X射线的变焦控制。
6.如权利要求1所述的一种量测桩-土三维位移场的测试装置,其特征在于:所述X射线光源包括电子发射器、同步加速器和C形磁,所述电子发射器发射出电子,所述电子被所述同步加速器加速到接近光速,且在经过所述C形磁铁时发射出所述X射线。
7.如权利要求1所述的一种量测桩-土三维位移场的测试装置,其特征在于:所述摆动器包括上下设置的两可摆动磁铁,所述X射线从所述两块可摆动磁铁之间经过。

说明书全文

一种量测桩-土三维位移场的测试装置

技术领域

[0001] 本实用新型涉及岩土工程桩基监测技术领域,尤其涉及一种量测桩-土三维位移场的测试装置。

背景技术

[0002] 随着我国经济建设和城市化进程的快速发展,以经济和技术条件为支撑的工程活动必然越来越频繁,规模也越来越大。在公路、高速路和高层建筑的建设过程中通常使用桩基础,桩基础将主体结构的传到性质较好的持力层上,来满足建筑物对承载力的要求,桩基础的沉降对上部结构的安全产生了重要的影响,常见的处理方法是对桩基础进行沉降监测,然后进行加固处理。而这种处理方法不能根本的解决桩基础沉降的问题,而且费工费时且造成一定的资源浪费。通过模型试验研究桩基础与土体的作用机理,来设计出更加经济与安全的桩基础。模型试验提供了一种通过相似条件和比例规律研究不同尺度原型的方法,按比例缩小的模型具有许多优点。如果使用传统的点测量仪器,如应变仪、线性可变差动变压器、多点位移计和激光位移传感器,测量小规模的位移精确度不高,不能准确的测量桩-土的位移。实用新型内容
[0003] 有鉴于此,针对目前国内传统模型试验位移监测精度低的问题,本实用新型的实施例提供了一种量测桩-土三维位移场的测试装置。
[0004] 本实用新型的实施例提供一种量测桩-土三维位移场的测试装置,包括X射线光源、摆动器、单色器、模型桩试验箱、无机闪烁体、探测器和显示器,所述X射线光源发射X射线,所述X射线依次经过用于增高光子通量的所述摆动器、用于切除窄带能量的所述单色器、所述模型桩试验箱和所述无机闪烁体,所述无机闪烁体将所述X射线耦合到所述探测器上,所述探测器接收所述X射线生成图像数据,并将所述图像数据传输至所述显示器,所述显示器根据所述图像数据显示出桩-土三维位移图像。
[0005] 进一步地,所述模型桩试验箱包括箱体、位移控制板、旋转台和多根模型桩,所述箱体固定于所述旋转台上,所述箱体底部设有模型基座,所有模型桩均贯穿所述位移控制板并固定于所述模型基座上,所述箱体内填充土体,所述位移控制板上下运动模拟所有模型桩之间的土体沉降。
[0006] 进一步地,所述无机闪烁体为掺铽化钆屏幕,所述掺铽氧化钆屏幕设有聚光涂层,所述聚光涂层为粉涂层。
[0007] 进一步地,所述单色器包括入射狭缝、准直镜、棱镜、物镜和出射狭缝,所述X射线经过所述入射狭缝后射入所述准直镜转化为平行光束,所述平行光束进入所述棱镜被分解为单色光,所述单色光射入所述物镜被聚焦于所述出射狭缝,由所述出射狭缝射出的所述单色光射入所述模型桩试验箱。
[0008] 进一步地,所述探测器包括不透光盒体和设置于所述盒体内的传感器,所述传感器为相机系统,所述相机系统设有电机微距镜头,所述电机驱动所述相机系统竖直升降,所述微距镜头用于所述相机系统接收的所述X射线的变焦控制。
[0009] 进一步地,所述X射线光源包括电子发射器、同步加速器和C形磁铁,所述电子发射器发射出电子,所述电子被所述同步加速器加速到接近光速,且在经过所述C形磁铁时发射出所述X射线。
[0010] 进一步地,所述摆动器包括上下设置的两可摆动磁铁,所述X射线从所述两块可摆动磁铁之间经过。
[0011] 本实用新型的实施例提供的技术方案带来的有益效果是:本实用新型的量测桩-土三维位移场的测试装置,X射线光源能发射能量更高的X射线,摆动器增X射线高光子通量,单色器切出X射线中窄带能量,消除光束硬化,X射线对模型实验箱扫描获得具有高分辨率对比度的桩-土三维位移图像,计算出桩-土三维全场的位移和应变,与传统的点测量仪器相比提高了监测精度,解决了传感器监测精度低的问题,该测试装置对环境无任何危害、可全模型进行监测、节约监测成本、监测结果精确度高、自动化程度高,具有广阔的应用前景。附图说明
[0012] 图1是本实用新型一种量测桩-土三维位移场的测试装置的示意图;
[0013] 图2是图1中单色器6的示意图。
[0014] 图中:1-电子、2-同步加速器、3-C形磁铁、4-X射线、5-摆动器、6-单色器、7-模型桩试验箱、8-无机闪烁体、9-探测器、10-显示器、11-旋转台、12-微距镜头、13-模型桩、14-位移控制板、15-加固件、16-入射狭缝、17-准直镜、18-棱镜、19-物镜、20-出射狭缝。

具体实施方式

[0015] 为使本实用新型的目的、技术方案和优点更加清楚,下面将结合附图对本实用新型实施方式作进一步地描述。
[0016] 请参考图1,本实用新型的实施例提供了一种量测桩-土三维位移场的测试装置,包括X射线光源、摆动器5、单色器6、模型桩试验箱7、无机闪烁体8、探测器9和显示器10。
[0017] 所述X射线光源包括电子发射器、同步加速器2和C形磁铁3,所述电子发射器发射出电子1,所述电子1被所述同步加速器2加速至接近光速,所述光速电子1在经过所述C形磁铁3时利用所述C形磁铁3产生的磁场保持电子环绕闭合路径的轨迹,从而发射出X射线4。
[0018] 所述摆动器5包括上下设置的两可摆动磁铁,所述X射线4从两所述可摆动磁铁之间经过时实现高光子通量。
[0019] 请参考图2,所述单色器6包括入射狭缝16、准直镜17、棱镜18、物镜19和出射狭缝20,所述X射线4经过所述入射狭缝16后射入所述准直镜17转化为平行光束,所述平行光束进入所述棱镜18被分解为单色光,所述单色光射入所述物镜19被聚焦于所述出射狭缝20,由所述出射狭缝20射出的所述单色光射入所述模型桩试验箱7,所述出射狭缝20用于限制射入所述模型桩试验箱7的所述单向光通带宽度。
[0020] 所述模型桩试验箱7包括箱体、位移控制板14、旋转台11、加固件15和多根模型桩13,所述箱体为圆柱形,外直径为150mm,高为200mm,所述箱体固定于所述旋转台11上,所述箱体底部设有模型基座,所有模型桩13均贯穿所述位移控制板14并固定于所述模型基座上,所述箱体内填充土体,所述加固件15可放置于土体之上将土体压实,所述位移控制板14上下运动,使土体和所有模型桩13发生相对位移,用于模拟所有模型桩13之间的土体沉降,所述模型桩试验箱7与所述同步加速器3的平距离为140m,所述模型桩试验箱7与探测器9的水平距离为3m。
[0021] 所述无机闪烁体8为厚度为12μm掺铽氧化钆屏幕,所述掺铽氧化钆屏幕设有聚光涂层,所述聚光涂层为铝粉涂层。
[0022] 所述探测器9包括不透光盒体和设置于所述盒体内的传感器,所述传感器为相机系统,所述相机系统设有电机和微距镜头12,所述电机驱动所述相机系统竖直升降,所述微距镜头12用于所述相机系统接收的所述X射线4的变焦控制。
[0023] 本实用新型一种量测桩-土三维位移场的测试装置的工作原理为:所述X射线光源发射X射线4,所述X射线4依次经过用于增高光子通量的所述摆动器5、用于切除窄带的所述单色器6、所述模型桩试验箱7和所述无机闪烁体8,所述无机闪烁体8将所述X射线4耦合到所述探测器9,所述探测器9接收所述X射线4生成图像数据,并将所述图像数据传输至所述显示器10,所述显示器10根据所述图像数据显示出具有高分辨率和对比度的桩-土三维位移图像。
[0024] 本实用新型的实施例还提供了一种量测桩-土三维位移场的测试方法,使用上述的量测桩-土三维位移场的测试装置,且包括以下步骤:
[0025] S1制作模型桩试验箱7,选择适当数量的所述模型桩13,将所有模型桩13贯穿所述位移控制板14后固定于所述模型基座上,并对所述箱体内填充土体,并将所述加固件15放置于土体上方将其压实,将所述箱体固定于所述旋转台11上;
[0026] S2启动电子发射器,所述模型桩试验箱7的所述位移控制板14以0.1mm/min的速率下降,每降低0.5mm暂停所述位移控制板14沉降,并旋转所述旋转台使旋转度增量为0.1°,对所述模型桩试验箱7进行X射线扫描一次,每次扫描获得1800张X射线照片,所述探测器9存储每次扫描到的图像数据;
[0027] S3将扫描到的图像数据通过三维重建软件重建桩-土的三维体积图像,所述桩-土三维体积内的精细图像纹理提供了高密度体素信息,使用图像互相关分析方法产生位移矢量,计算出桩-土三维全场的位移和应变,具体计算方法如下:
[0028] 根据桩-土的三维体积图像计算二阶位移梯度张量L,如下所示:
[0029]
[0030] 计算变形梯度F,
[0031] F=L+I
[0032] 其中I是单位矩阵;
[0033] 通过极化分解定理,将变形梯度F分解为正交张量(旋转)R和对称张量(拉伸)U的乘积,对称张量可以用来计算任意数量的应变,计算出Biot应变,EBiot=U-I,EBiot主要的应变ε1、ε2和ε3等于EBiot的特征值,计算出最大剪切应变γmax,log,如下所示:
[0034] γmax,log=loge(1+ε1)-loge(1+ε3)。
[0035] 在本文中,所涉及的前、后、上、下等方位词是以附图中零部件位于图中以及零部件相互之间的位置来定义的,只是为了表达技术方案的清楚及方便。应当理解,所述方位词的使用不应限制本申请请求保护的范围。
[0036] 在不冲突的情况下,本文中上述实施例及实施例中的特征可以相互结合。
[0037] 以上所述仅为本实用新型的较佳实施例,并不用以限制本实用新型,凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈