首页 / 专利库 / 光学 / 辉度 / 一种提高高压液压泵零件耐磨性的方法

一种提高高压液压零件耐磨性的方法

阅读:1061发布:2020-05-21

专利汇可以提供一种提高高压液压零件耐磨性的方法专利检索,专利查询,专利分析的服务。并且本 发明 属于 液压 泵 制造技术领域,具体涉及一种提高高压 液压泵 零件 耐磨性 的方法。通过 物理气相沉积 技术进行表面渗 碳 及涂层处理以制备抗磨高压液压泵的方法,将碳化物涂层、PVD方法、 渗碳 技术以及多层复合结构的优点相结合,在碳化物涂层与 工件 基体间通过离子溅射的方法制备一个渗碳扩散层,即对零件表面先通过离子溅射的方法进行表面渗碳处理,然后再采用离子 镀 和 磁控溅射 复合方法沉积HfMoZrTiC/Mo多层复合涂层,以减缓涂层与基体材料的物理性能差异,提高基体材料的硬度,增强涂层与基体的附着性能,从而改善液压泵零件的耐磨性等综合性能,有效提高 表面处理 效率和工件的使用寿命。,下面是一种提高高压液压零件耐磨性的方法专利的具体信息内容。

1.一种提高高压液压零件耐磨性的方法,其特征在于:液压泵零件基体经过淬火、高温回火、粗精加工后采用离子方法进行渗处理,然后再通过离子镀和磁控溅射复合方法沉积表面的HfMoZrTiC/Mo多层复合涂层,沉积时采用2个C离子镀靶,1个Hf磁控溅射靶,1个Mo磁控溅射靶,1个Zr磁控溅射靶和1个Ti磁控溅射靶;
具体包括以下步骤:
(1)零件加工:零件基体毛坯→淬火→高温回火→粗加工→半精加工→去应回火→精加工;
(2)零件表面预处理:采用金属清洗剂去除工件表面油污,漂洗烘干;
(3)零件表面处理:将零件依次放入酒精和丙中,超声清洗各40min,去除表面杂质和其它附着物,干燥充分后迅速放入PVD复合镀膜机,抽真空至7.0×10-3Pa,加热至290℃,保温40min;
(4)表面辉光清洗:通Ar气,其压力为2.2-2.5Pa,温度280℃,打开偏压电源电压640V,占空比0.2,表面辉光放电清洗25min;
(5)表面离子清洗:偏压调至550V,占空比0.2,Ar气压2.0Pa,温度270℃,开启离子源,离子清洗25min,开启电弧C靶电源,C靶电流110A,离子轰击4~5min;
(6)离子镀渗碳:C靶离子镀电源调为110A,Ar气压1.3~1.5Pa,基体偏压调至490V,温度270℃,进行离子渗碳30-35min;
(7)沉积Mo涂层:Ar气压调为1.1~1.2Pa,偏压降为160V,沉积温度240℃,关闭C靶电流,打开磁控溅射Mo靶电流55A,沉积Mo涂层1.5~2min;
(8)沉积HfMoZrTiC涂层:Ar气压调为0.8~0.9Pa,偏压160V,沉积温度240℃,打开C靶电流至60A,打开磁控溅射Hf靶电流70A,磁控溅射Mo靶电流60A,磁控溅射Zr靶电流50A,磁控溅射Ti靶电流45A,沉积HfMoZrTiC涂层1~1.5min;其它参数不变,增加C靶电流,C靶电流每次增加2A,沉积HfMoZrTiC/Mo复合层1.5~2min,直至C靶电流增至90A,再沉积HfMoZrTiC/Mo复合层1~1.5min;
(9)重复(7)、(8)、(7)……:交替沉积Mo涂层、HfMoZrTiC涂层、Mo涂层、HfMoZrTiC涂层、……、Mo涂层、HfMoZrTiC涂层共40min;
(10)后处理:关闭各靶电源、离子源及气体源,涂层结束。
2.根据权利要求1所述的提高高压液压泵零件耐磨性的方法,其特征在于:液压泵零件基体材料为20Cr、20Cr2Mo、20Mn2TiB、20Cr2Ni4、20CrMnTi、32Cr2MoV、35MnB、H13、40Cr、45中低碳及其合金钢中的一种。
3.根据权利要求1所述的提高高压液压泵零件耐磨性的方法,其特征在于:所制得的液压泵零件具有以下结构,在零件基体表面向外依次具有表面渗碳扩散层、Mo涂层、HfMoZrTiC涂层、HfMoZrTiC/Mo交替的复合涂层。

说明书全文

一种提高高压液压零件耐磨性的方法

技术领域

[0001] 本发明属于液压泵制造技术领域,具体涉及一种提高高压液压泵零件耐磨性的方法。

背景技术

[0002] 液压泵是液压传动系统的动元件,其作用是将动力机(如电机内燃机等)的机械能转换成油液的液压能,并为整个液压系统提供动力。随着工业技术的快速发展,液压泵逐渐朝着高压、高速及大流量方向发展。由于液压泵在高速运转同时还要承受高而集中的交变载荷作用,泵内的零件磨损是国产液压泵尤其是高压液压泵的主要损坏形式,因此,提高液压泵零件材料的使用性能是发展高压、高速液压泵的关键技术之一。
[0003] 化物涂层具备高硬度,高强度,化学性质稳定,耐热,耐磨损等优良特性,尤其是多元碳化物具有更加优异的综合使用性能,因此有望通过在零件表面制备碳化物涂层或通过金属表层的碳化处理来提高零件的耐磨性。
[0004] 目前制备碳化物涂层的技术主要有喷涂渗碳以及气相沉积等方法。其中,喷涂是指借助压力或离心力,将涂层材料喷射到工件的表面,该方法制备涂层虽然具有较高的喷涂效率,但是涂层与工件基体的结合力很差,而且涂层的表面非常粗糙,不适合高压高速的恶劣工况条件;渗碳是指使碳原子渗入到类工件表层的过程,从而使工件表面获得很高的表面硬度,提高其耐磨性能。但是由于渗碳温度达到800℃以上,渗碳后工件仍要进行淬火和回火,使得工件表面发生较大变形,无法保证零件的尺寸和形状精度,处理完的零件仍需修磨和再加工,而且渗碳及后续热处理时间通常达到30小时以上,效率低下;气相沉积法,尤其是物理气相沉积(PVD),制备的涂层表面具有极高的硬度、强度,以及良好的热稳定性和耐磨性,而且该制备工艺温度可控制在400℃以下,不会导致零件基体组织变化,表面尺寸和形状精度也不受影响。因此,物理气相沉积技术(PVD)在表面处理领域极具潜力。但是,直接在液压泵零件表面制备PVD碳化物涂层,会由于基体硬度、弹性模量热膨胀系数等性能与涂层材料相差较大,无法获得较高结合力的PVD涂层,使得PVD涂层过早脱落和失效。中国专利CN101058870A模具表面采用单一的PVD涂层,涂层与基体的结合力差以及PVD涂层同基体的力学匹配差是限制PVD涂层高硬度及低摩擦系数等优势发挥的重要因素。中国专利CN103727180A直接在碳钢表面制备了耐磨陶瓷涂层和金刚石涂层,由于基体较软的硬度无法支撑涂层以及基体与涂层之间明显的性能差异导致制备的涂层使用性能无法满足诸多实际使用要求,尤其是高速、重载、交变载荷工况条件下涂层很快脱落和磨损。

发明内容

[0005] 本发明目的在于提供一种提高高压液压泵零件耐磨性的方法,能提高基体材料的硬度,增强零件基体表面沉积涂层与基体的附着性能,减缓沉积涂层与基体材料的物理性能差异,从而改善液压泵零件耐磨性等综合性能,有效提高表面处理效率和工件的使用寿命。
[0006] 本发明所述的提高高压液压泵零件耐磨性的方法,液压泵零件基体经过淬火、高温回火、粗精加工后采用离子方法进行渗碳处理,然后再通过离子镀和磁控溅射复合方法沉积表面的HfMoZrTiC/Mo多层复合涂层,沉积时采用2个C离子镀靶,1个Hf磁控溅射靶,1个Mo磁控溅射靶,1个Zr磁控溅射靶和1个Ti磁控溅射靶;
[0007] 具体包括以下步骤:
[0008] (1)零件加工:零件基体毛坯→淬火→高温回火→粗加工→半精加工→去应力回火→精加工,通过淬火及高温回火处理能够保证芯部足够的韧性和抗冲击变形能力;
[0009] (2)零件表面预处理:采用金属清洗剂去除工件表面油污,漂洗烘干;
[0010] (3)零件表面处理:将零件依次放入酒精和丙中,超声清洗各40min,去除表面杂质和其它附着物,干燥充分后迅速放入PVD复合镀膜机,抽真空至7.0×10-3Pa,加热至290℃,保温40min;
[0011] (4)表面辉光清洗:通Ar气,其压力为2.2-2.5Pa,温度280℃,打开偏压电源电压640V,占空比0.2,表面辉光放电清洗25min;
[0012] (5)表面离子清洗:偏压调至550V,占空比0.2,Ar气压2.0Pa,温度270℃,开启离子源,离子清洗25min,开启电弧C靶电源,C靶电流110A,离子轰击4~5min;
[0013] (6)离子镀渗碳:C靶离子镀电源调为110A,Ar气压1.3~1.5Pa,基体偏压调至490V,温度270℃,进行离子渗碳30-35min;
[0014] (7)沉积Mo涂层:Ar气压调为1.1~1.2Pa,偏压降为160V,沉积温度240℃,关闭C靶电流,打开磁控溅射Mo靶电流55A,沉积Mo涂层1.5~2min;
[0015] (8)沉积HfMoZrTiC涂层:Ar气压调为0.8~0.9Pa,偏压160V,沉积温度240℃,打开C靶电流至60A,打开磁控溅射Hf靶电流70A,磁控溅射Mo靶电流60A,磁控溅射Zr靶电流50A,磁控溅射Ti靶电流45A,沉积HfMoZrTiC涂层1~1.5min;其它参数不变,增加C靶电流,C靶电流每次增加2A,沉积HfMoZrTiC/Mo复合层1.5~2min,直至C靶电流增至90A,再沉积HfMoZrTiC/Mo复合层1~1.5min;
[0016] (9)重复(7)、(8)、(7)……:交替沉积Mo涂层、HfMoZrTiC涂层、Mo涂层、HfMoZrTiC涂层、……、Mo涂层、HfMoZrTiC涂层共40min;
[0017] (10)后处理:关闭各靶电源、离子源及气体源,涂层结束。
[0018] 液压泵零件基体材料为20Cr、20Cr2Mo、20Mn2TiB、20Cr2Ni4、20CrMnTi、32Cr2MoV、35MnB、H13、40Cr、45中低碳钢及其合金钢中的一种。
[0019] 所制得的液压泵零件具有以下结构,在零件基体表面向外依次具有表面渗碳扩散层、Mo涂层、HfMoZrTiC涂层、HfMoZrTiC/Mo交替的复合涂层。
[0020] 本发明通过物理气相沉积技术进行表面渗碳及涂层处理以提高高压液压泵零件耐磨性,将碳化物涂层、PVD方法、渗碳技术以及多层复合结构的优点相结合,在碳化物涂层与工件基体间通过离子溅射的方法制备一个渗碳扩散层,即对零件表面先通过离子溅射的方法进行表面渗碳处理,然后再采用离子镀和磁控溅射复合方法沉积HfMoZrTiC/Mo多层复合涂层,以减缓涂层与基体材料的物理性能差异,提高基体材料的硬度,增强涂层与基体的附着性能,从而改善液压泵零件的综合性能,有效提高表面处理效率和工件的使用寿命。
[0021] 本发明与现有技术相比,具有以下有益效果。
[0022] 本发明通过表面离子渗碳处理,使碳原子渗入到零件基体内部,并随着深度的增加,碳原子的浓度逐渐减小,有利于形成高硬度和强度的碳化物梯度扩散层,从而为后续HfMoZrTiC/Mo多层复合涂层的制备提供强有力的支撑基体以及良好的结合性能;同时,该HfMoZrTiC/Mo多层复合涂层结构的层间界面可阻止涂层柱状晶的生长,阻碍裂纹和缺陷的扩展,提高涂层的硬度、韧性和耐冲击性。另外,该HfMoZrTiC/Mo多层复合涂层中的C元素可降低涂层表面的摩擦系数,降低液压泵工作过程中的噪音和摩擦磨损,Hf元素提高了涂层的耐磨损性,Mo元素提高了涂层的硬度和强度,降低了涂层的摩擦系数,Zr元素对涂层起到固溶强化作用,提高了涂层的强度和耐磨损特性,Ti元素提高了涂层的硬度和强度。
[0023] 本发明制得的高压液压泵,与基体未处理之前相比,该制备方法可增强涂层与基体的附着性能近2倍,减小工作过程中的摩擦和粘结,表面硬度提高3倍多,由于采用物理气相沉积技术进行渗碳和涂层处理,缩短工艺处理时间90%以上,延长液压泵的使用寿命一倍以上,降低液压泵的维护和保养成本75%。同时,由于该制备工艺温度可控制在300℃以下,不会导致零件基体组织性能退化,表面尺寸和形状精度不受影响,处理完后无需进行修磨和再加工,可作为零件的最终处理工艺。附图说明
[0024] 图1为本发明实施例1制得的高压液压泵零件的表面结构示意图。
[0025] 图中:1、零件基体2、表面渗碳扩散层3、Mo涂层4、HfMoZrTiC涂层5、HfMoZrTiC/Mo交替的复合涂层。

具体实施方式

[0026] 下面给出本发明的两个最佳实施例。
[0027] 本发明所述的液压泵零件为可用于生产制造液压泵的所有金属零件。
[0028] 实施例1
[0029] 本发明所述的提高高压液压泵零件耐磨性的方法,液压泵零件基体材料为32Cr2MoV,液压泵零件基体经过淬火、高温回火、粗精加工后采用离子镀方法进行渗碳处理,然后再通过离子镀和磁控溅射复合方法沉积表面的HfMoZrTiC/Mo多层复合涂层,沉积时采用2个C离子镀靶,1个Hf磁控溅射靶,1个Mo磁控溅射靶,1个Zr磁控溅射靶和1个Ti磁控溅射靶;
[0030] 具体包括以下步骤:
[0031] (1)零件加工:零件基体毛坯→淬火(845~890℃,冷)→高温回火(520~580℃,水冷)→粗加工→半精加工→去应力回火(520~560℃,空冷)→精加工(表面粗糙度Ra1.6μm,加工尺寸:公差下限);
[0032] (2)零件表面预处理:采用金属清洗剂去除工件表面油污,漂洗烘干;
[0033] (3)零件表面处理:将零件依次放入酒精和丙酮中,超声清洗各40min,去除表面杂质和其它附着物,干燥充分后迅速放入PVD复合镀膜机,抽真空至7.0×10-3Pa,加热至290℃,保温40min;
[0034] (4)表面辉光清洗:通Ar气,其压力为2.2-2.5Pa,温度280℃,打开偏压电源电压640V,占空比0.2,表面辉光放电清洗25min;
[0035] (5)表面离子清洗:偏压调至550V,占空比0.2,Ar气压2.0Pa,温度270℃,开启离子源,离子清洗25min,开启电弧C靶电源,C靶电流110A,离子轰击4~5min;
[0036] (6)离子镀渗碳:C靶离子镀电源调为110A,Ar气压1.3~1.5Pa,基体偏压调至490V,温度270℃,进行离子渗碳30-35min;
[0037] (7)沉积Mo涂层:Ar气压调为1.1~1.2Pa,偏压降为160V,沉积温度240℃,关闭C靶电流,打开磁控溅射Mo靶电流55A,沉积Mo涂层1.5~2min;
[0038] (8)沉积HfMoZrTiC涂层:Ar气压调为0.8~0.9Pa,偏压160V,沉积温度240℃,打开C靶电流至60A,打开磁控溅射Hf靶电流70A,磁控溅射Mo靶电流60A,磁控溅射Zr靶电流50A,磁控溅射Ti靶电流45A,沉积HfMoZrTiC涂层1~1.5min;其它参数不变,增加C靶电流,C靶电流每次增加2A,沉积HfMoZrTiC/Mo复合层1.5~2min,直至C靶电流增至90A,再沉积HfMoZrTiC/Mo复合层1~1.5min;
[0039] (9)重复(7)、(8)、(7)……:交替沉积Mo涂层、HfMoZrTiC涂层、Mo涂层、HfMoZrTiC涂层、……、Mo涂层、HfMoZrTiC涂层共40min;
[0040] (10)后处理:关闭各靶电源、离子源及气体源,涂层结束。
[0041] 如图1,本实施例所制得的耐磨高压液压泵零件具有以下结构,在零件基体表面向外依次具有表面渗碳扩散层、Mo涂层、HfMoZrTiC涂层、HfMoZrTiC/Mo交替的复合涂层。
[0042] 本实施例所制得的具有HfMoZrTiC/Mo耐磨涂层的零件表面显微硬度达到HV2860,相比单独传统渗碳工艺的表面硬度(HV650)提高3倍多;结合强度为83-89N,相比单纯PVD涂层的结合强度(28-34N)提高了近2倍;涂层厚度为2.11μm,涂层表面粗糙度达到Ra 81nm。在相同的摩擦实验条件下(CETR UMT球盘摩擦磨损试验机,往复直线运动,对磨球为表面硬度HRC55-60的轴承钢,加载载荷80N,滑动速度10mm/s,对磨时间30min),本发明制备的抗磨涂层的磨损率约为2.21-2.38×10-6mm3/N·m,与未渗碳和涂层处理的普通淬火试样相比,磨损率降低了约65-70%,而且整个有效渗碳及涂层时间不足1.5h,仅仅为传统渗碳工艺处理时间的5%,而且没有后续的修磨和再加工工序。
[0043] 实施例2
[0044] 本发明所述的提高高压液压泵零件耐磨性的方法,液压泵零件基体材料为20CrMnTi,液压泵零件基体经过淬火、高温回火、粗精加工后采用离子镀方法进行渗碳处理,然后再通过离子镀和磁控溅射复合方法沉积表面的HfMoZrTiC/Mo多层复合涂层,沉积时采用2个C离子镀靶,1个Hf磁控溅射靶,1个Mo磁控溅射靶,1个Zr磁控溅射靶和1个Ti磁控溅射靶;
[0045] 具体包括以下步骤:
[0046] (1)零件加工:零件基体毛坯→淬火(900~945℃,油淬)→高温回火(525~600℃,空冷)→粗加工→半精加工→去应力回火(555~595℃,油冷)→精加工(表面粗糙度Ra1.6μm,加工尺寸:公差下限);
[0047] (2)零件表面预处理:采用金属清洗剂去除工件表面油污,漂洗烘干;
[0048] (3)零件表面处理:将零件依次放入酒精和丙酮中,超声清洗各40min,去除表面杂质和其它附着物,干燥充分后迅速放入PVD复合镀膜机,抽真空至7.0×10-3Pa,加热至290℃,保温40min;
[0049] (4)表面辉光清洗:通Ar气,其压力为2.2-2.5Pa,温度280℃,打开偏压电源电压640V,占空比0.2,表面辉光放电清洗25min;
[0050] (5)表面离子清洗:偏压调至550V,占空比0.2,Ar气压2.0Pa,温度270℃,开启离子源,离子清洗25min,开启电弧C靶电源,C靶电流110A,离子轰击4~5min;
[0051] (6)离子镀渗碳:C靶离子镀电源调为110A,Ar气压1.3~1.5Pa,基体偏压调至490V,温度270℃,进行离子渗碳30-35min;
[0052] (7)沉积Mo涂层:Ar气压调为1.1~1.2Pa,偏压降为160V,沉积温度240℃,关闭C靶电流,打开磁控溅射Mo靶电流55A,沉积Mo涂层1.5~2min;
[0053] (8)沉积HfMoZrTiC涂层:Ar气压调为0.8~0.9Pa,偏压160V,沉积温度240℃,打开C靶电流至60A,打开磁控溅射Hf靶电流70A,磁控溅射Mo靶电流60A,磁控溅射Zr靶电流50A,磁控溅射Ti靶电流45A,沉积HfMoZrTiC涂层1~1.5min;其它参数不变,增加C靶电流,C靶电流每次增加2A,沉积HfMoZrTiC/Mo复合层1.5~2min,直至C靶电流增至90A,再沉积HfMoZrTiC/Mo复合层1~1.5min;
[0054] (9)重复(7)、(8)、(7)……:交替沉积Mo涂层、HfMoZrTiC涂层、Mo涂层、HfMoZrTiC涂层、……、Mo涂层、HfMoZrTiC涂层共40min;
[0055] (10)后处理:关闭各靶电源、离子源及气体源,涂层结束。
[0056] 制备的HfMoZrTiC/Mo耐磨涂层表面显微硬度达到HV2825,结合强度为75-85N,涂层厚度为2.07μm,涂层表面粗糙度达到Ra 87nm,整个有效渗碳及涂层时间不足1.5h。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈