序号 | 专利名 | 申请号 | 申请日 | 公开(公告)号 | 公开(公告)日 | 发明人 |
---|---|---|---|---|---|---|
101 | VERFAHREN ZUM ERKENNEN EINES STÖRFALLES "ROTATING STALL" BEI EINEM UMRICHTERGESPEISTEN VERDICHTER | EP08802944.2 | 2008-07-28 | EP2171281A1 | 2010-04-07 | MERTENS, Axel; NEESER, Gerhard |
The invention relates to a method for detecting a rotating stall fault in a compressor (12) which is driven by means of a three-phase current motor (8) fed by an inverter. According to the invention, an instantaneous estimated value (^m ) which is calculated from measured power converter output currents (iS1, iS2, iS3) and a measured rotational-speed-proportional signal (ω) is compared with an instantaneous setpoint value (m*) determined from a measured rotational-speed-proportional signal (ω) and a predetermined rotational-speed-proportional signal (ω*), in such a way that in the case of inequality a signal (SRS) is generated which indicates that the rotating stall fault has occurred. In this way, it is possible for the rotating stall fault to be detected without pressure sensors and/or oscillation pickups in a compressor (12) which is driven with a three-phase current motor (8) fed by inverter. | ||||||
102 | 偵測壓縮機中旋轉失速的方法 METHOD FOR DETECTING ROTATING STALL IN A COMPRESSOR | TW097110027 | 2008-03-21 | TW200842246A | 2008-11-01 | 斯塔柏萊 羅伯特E STABLEY, ROBERT E.; 艾查柏格E 寇帝斯 EICHELBERGER, E. CURTIS |
本申請案提供一系統及方法用於偵測及控制壓縮機之擴壓器區域中旋轉失速。將一壓力轉換器配置在該葉輪之下游的氣流路徑中,較佳地位在壓縮機排放通道或該擴壓器中,用以測量音壓現象。再者,源自於該壓力轉換器的信號經使用類比或數位技術加以處理用以確定旋轉失速的存在。藉由將該經偵測能量總量與出現旋轉失速相對應的一預定臨限總量比較而偵測旋轉失速,其中該經偵測能量總量係根據該經測量音壓。最後,在感應偵測到旋轉失速後採取一適當修正動作用以改變壓縮機之運轉。 | ||||||
103 | Method and apparatus for continuous prediction, monitoring and control of compressor health via detection of precursors to rotating stall and surge | US09835826 | 2001-04-17 | US06532433B2 | 2003-03-11 | Sanjay Bharadwaj; Narayanan Venkateswaran; Chung-hei Simon Yeung; Steven Mark Schirle; Johnalagadda Venkata Rama Prasad |
An apparatus for monitoring the health of a compressor having at least one sensor operatively coupled to the compressor for monitoring at least one compressor parameter, a processor system embodying a stall precursor detection algorithm, the processor system operatively coupled to the at least one sensor, the processor system computing stall precursors. A comparator is provided to compare the stall precursors with predetermined baseline data, and a controller operatively coupled to the comparator initiates corrective actions to prevent a compressor surge and stall if the stall precursors deviate from the baseline data, the baseline data representing predetermined level of compressor operability. | ||||||
104 | Method and apparatus for continuous prediction, monitoring and control of compressor health via detection of precursors to rotating stall and surge | EP02252671.9 | 2002-04-16 | EP1256726B1 | 2005-04-06 | Bharadwaj, Sanjay, Export Promotion Industr. Park; Venkateswaran, Narayanan; Yeung, Chung-hei (Simon); Schirle, Steven Mark; Prasad, Jonnalagadda Venkata Rama |
105 | Method and apparatus for continuous prediction, monitoring and control of compressor health via detection of precursors to rotating stall and surge | EP02252671.9 | 2002-04-16 | EP1256726A1 | 2002-11-13 | Bharadwaj, Sanjay, Export Promotion Industr. Park; Venkateswaran, Narayanan; Yeung, Chung-hei (Simon); Schirle, Steven Mark; Prasad, Jonnalagadda Venkata Rama |
An apparatus for monitoring the health of a compressor (14) having at least one sensor (30) operatively coupled to the compressor for monitoring at least one compressor parameter, a processor system (36) embodying a stall precursor detection algorithm, the processor system operatively coupled to the at least one sensor, the processor system computing stall precursors. A comparator (40) is provided to compare the stall precursors with predetermined baseline data, and a controller (42) operatively coupled to the comparator initiates corrective actions to prevent a compressor surge and stall if the stall precursors deviate from the baseline data, the baseline data representing predetermined level of compressor operability. |
||||||
106 | 用以檢測離心式壓縮機內之旋轉失速的方法與系統 SYSTEM AND METHOD FOR DETECTING ROTATING STALL IN A CENTRIFUGAL COMPRESSOR | TW092123146 | 2003-08-22 | TWI233467B | 2005-06-01 | 羅伯特E. 史黛柏利 ROBERT EDWARD STABLEY; 格列高里K. 貝佛森 GREGORY KEITH BEAVERSON; 詹姆斯E. 班德 JAMES EDWIN BENDER |
一種系統與方法被提供,用於檢測與控制在離心式壓縮機之擴散器區中的旋轉失速。該過程以檢測或感應與旋轉失速之開始相關的聲響壓力開始。一壓力轉換器最置於葉輪下游的氣體流動路徑中,較佳地在壓縮機排放通路或擴散器內以測量聲音或聲響壓力現象。接著,來自壓力轉換器之信號使用類比或數位技術被處理以決定旋轉失速之出現。旋轉失速係藉由比較被檢測之能量(此被檢測之能量係以被測量的聲響壓力為基礎)與對應於旋轉失速之出現的一預設門檻量。最後,一適當的修正動作被採用以在回應於旋轉失速之檢測改變該離心式壓縮機之作業。 | ||||||
107 | 用以檢測離心式壓縮機內之旋轉失速的方法與系統 SYSTEM AND METHOD FOR DETECTING ROTATING STALL IN A CENTRIFUGAL COMPRESSOR | TW092123146 | 2003-08-22 | TW200406544A | 2004-05-01 | 羅伯特E 史黛柏利 ROBERT EDWARD STABLEY; 格列高里K 貝佛森 GREGORY KEITH BEAVERSON; 詹姆斯E 班德 JAMES EDWIN BENDER |
一種系統與方法被提供,用於檢測與控制在離心式壓縮機之擴散器區中的旋轉失速。該過程以檢測或感應與旋轉失速之開始相關的聲響壓力開始。一壓力轉換器最置於葉輪下游的氣體流動路徑中,較佳地在壓縮機排放通路或擴散器內以測量聲音或聲響壓力現象。接著,來自壓力轉換器之信號使用類比或數位技術被處理以決定旋轉失速之出現。旋轉失速係藉由比較被檢測之能量(此被檢測之能量係以被測量的聲響壓力為基礎)與對應於旋轉失速之出現的一預設門檻量。最後,一適當的修正動作被採用以在回應於旋轉失速之檢測改變該離心式壓縮機之作業。 | ||||||
108 | 涡轮制冷机及其压缩机以及它的控制方法 | CN200410102178.3 | 2004-12-15 | CN100339663C | 2007-09-26 | 上田宪治; 长谷川泰士 |
提供一种涡轮制冷机的压缩机,其在各运转状态下能稳定且高效运转。通过利用反映根据制冷机输出热量的风量的流量变数和反映根据蒸发器压力与冷凝器压力的压力头的压力变数所表示的图的基础上,具备表示旋转失速的旋转失速线的空气动力特性图,而且获得从现在运转状态的压力变数和空气动力特性图的旋转失速线而得到最小转速,把在最小转速获得部得到的最小转速以上的转速向变频器进行指示。 | ||||||
109 | 带有离心压缩机的制冷机中的阻止喘振 | CN202210722171.X | 2022-06-24 | CN115523178A | 2022-12-27 | V·西什特拉 |
一种操作制冷机系统的方法包括:接收来自与制冷机系统的压缩机相关联的至少一个传感器的输入,确定压缩机正在经历喘振或旋转失速情况,响应于确定压缩机正在经历喘振或旋转失速情况而调整与制冷机系统的排热热交换器相关联的至少一个操作参数,并且通过调整至少一个操作参数来降低冷凝器饱和温度。 | ||||||
110 | 涡轮制冷机及其压缩机以及它的控制方法 | CN200410102178.3 | 2004-12-15 | CN1629495A | 2005-06-22 | 上田宪治; 长谷川泰士 |
提供一种涡轮制冷机的压缩机,其在各运转状态下能稳定且高效运转。通过利用反映根据制冷机输出热量的风量的流量变数和反映根据蒸发器压力与冷凝器压力的压力头的压力变数所表示的图的基础上,具备表示旋转失速的旋转失速线的空气动力特性图,而且获得从现在运转状态的压力变数和空气动力特性图的旋转失速线而得到最小转速,把在最小转速获得部得到的最小转速以上的转速向变频器进行指示。 | ||||||
111 | 一种无叶扩压器气动力分析方法 | CN202211711478.6 | 2022-12-29 | CN115788936A | 2023-03-14 | 太兴宇; 李云; 杨树华; 孙玉莹; 肖忠会; 孟继纲; 王开宇; 关晓 |
本发明提供了一种无叶扩压器气动力分析方法,所属机械动力学技术领域,包括:选取信号源的压力脉动信号;处理压力脉动信号;分析压力脉动信号;计算失速频率和失速团个数;确定周向压力分布;计算径向气动力。只需较少的测点压力脉动信号,即可实现对旋转失速频率识别、失速团个数确定、周向压力分布确定以及气动力的计算。在扩压器截面的圆周方向选取压力脉动信号,再依次对压力脉动信号进行处理、分析,可以得到准确的旋转失速频率、失速团个数以及气动力等结果;再对径向气动力作用区域的周向压力分布做积分,即对扩压器人口处周向压力分布进行积分,计算出径向气动力,真实反映无叶扩压器旋转失速所产生的影响,计算量较少,适用范围广。 | ||||||
112 | 用于稳定压缩机流的方法和装置 | CN201280067262.9 | 2012-12-20 | CN104114875A | 2014-10-22 | 斯特凡·宾德尔; 马塞尔·斯托塞尔; 雷恩哈德·涅惠斯; 巴斯蒂安·穆斯 |
本发明涉及一种用于涡轮机的压缩机系统的气体辅助注入系统,其中再循环或外部馈送的初级质量流利用喷射效应促进由压缩机壳体外部区域而来的次级质量流,从而可以有效地稳定压缩机流并且抵消在压缩机叶片上的旋转失速。 | ||||||
113 | 异常检测方法及其在航空发动机部件故障预警方面的应用 | CN202310396746.8 | 2023-04-14 | CN116611310A | 2023-08-18 | 赵永平; 金会杰 |
本发明提供一种异常检测方法及其在航空发动机部件故障预警方面的应用。本发明在ESVDD的基础上引入了深度神经网络,并提出了一种新的异常检测算法DeepESVDD。该算法使用带有层的深度神经网络来学习最小体积覆盖椭球体的向量表示L。本发明还将DeepESVDD与卷积神经网络CNN结合提出了DeepESVDD‑CNN方法用于航空发动机压气机旋转失速预警,能够在更少量的历史数据、脱离大量专家分析的条件下,自动完成数据驱动模型的训练。该方法在提前预警时间、实时性、稳定性等多方面均具有良好的性能,在压气机旋转失速预警任务中具有广阔的前景。 | ||||||
114 | 一种基于航空发动机压气机部件气动失稳的主动控制方法 | CN201811169753.X | 2018-10-08 | CN109339954A | 2019-02-15 | 盛汉霖; 张杰; 李泽凡; 黄伟; 赵岩; 姜勝斌 |
本发明公开了基于航空发动机压气机部件气动失稳的主动控制方法,所述控制方法包括:(1)压气机气动稳定性动态模型;(2)压气机失稳机理分析及主动控制策略;(3)基于状态估计器的压气机稳定性输出反馈主动控制。本发明通过考虑压气机转子动态过程及旋转失速高阶谐波的影响,来提高压气机模型精度;通过分岔理论揭示压气机气动失稳的机理;利用分岔理论的结论,设计旋转失速及喘振主动控制器,抑制失稳现象的发生,扩大压气机稳定工作范围,满足实际使用要求。 | ||||||
115 | 包括具有开口的至少一个叶片的、用于流体压缩装置的扩散器 | CN201710971457.0 | 2017-10-18 | CN107965473A | 2018-04-27 | P·帕格尼尔; V·佩宁; A·布鲁恩沃尔德; I·厄克伯格; E·托伯格森 |
包括具有开口的至少一个叶片的、用于流体压缩装置的扩散器,该扩散器(2)包括安装在毂上的至少一个叶片(4)。在本发明各实施例中,至少一个开口(5)沿径向设置在扩散器叶片(4)中。藉由本发明的装置,以减少或者去除诸如旋转失速的液压不稳。 | ||||||
116 | 载热体流量推测装置、热源机、及载热体流量推测方法 | CN201280003087.7 | 2012-02-17 | CN103140729A | 2013-06-05 | 松尾实; 上田宪治; 新家利彦; 小野仁意 |
本发明的目的是不使用流量计而计算出载热体的流量。控制装置(30)具有存储空气动力特性映射的存储部(36),上述空气动力特性映射在由反映压缩机(12)的吸入风量的流量变量(θ)、和反映压缩机(12)的水头的压力变量(Ω)所表示的映射上,示出作为旋转失速的旋转失速线、及表示压缩机(12)吸入的冷媒的音速的多个机械马赫数线,通过冷水流量推算部(30b)计算压力变量(Ω),由空气动力特性映射计算出和压力变量(Ω)对应的流量变量(θ),根据和计算出的流量变量(θ)对应的压缩机(12)的吸入风量,计算出在蒸发器(24)中在冷媒和冷水之间交换的热量,根据该热量计算出冷水的流量。 | ||||||
117 | 包括具有开口的至少一个叶片的、用于流体压缩装置的扩散器 | CN201710971457.0 | 2017-10-18 | CN107965473B | 2021-07-27 | P·帕格尼尔; V·佩宁; A·布鲁恩沃尔德; I·厄克伯格; E·托伯格森 |
包括具有开口的至少一个叶片的、用于流体压缩装置的扩散器,该扩散器(2)包括安装在毂上的至少一个叶片(4)。在本发明各实施例中,至少一个开口(5)沿径向设置在扩散器叶片(4)中。藉由本发明的装置,以减少或者去除诸如旋转失速的液压不稳。 | ||||||
118 | 可变桨距风扇及其变距方法 | CN202210106088.X | 2022-01-28 | CN114435585A | 2022-05-06 | 钱煜平; 罗艺伟; 何育航; 张扬军; 李昊奇; 刘振霄 |
提供了一种可变桨距风扇及其变距方法。该可变桨距风扇包括桨毂和桨叶。桨毂具有中心轴线,桨叶与桨毂自由转动地连接并且具有转动轴线。桨叶能够绕着转动轴线相对于桨毂自由转动,转动轴线与中心轴线既不平行也不垂直。这样,通过改变桨毂的转速,桨叶能够在惯性的作用下相对于桨毂转动以改变桨叶的桨距角,从而改变桨叶的攻角,进而能够抑制旋转失速。 | ||||||
119 | 基于特征值理论的多级轴流压气机失速边界的预测方法 | CN201610440053.4 | 2016-06-17 | CN106126795B | 2019-07-05 | 孙大坤; 程凡解; 刘小华; 王晓宇; 孙晓峰 |
本发明涉及一种多级轴流压气机失速边界的预测方法,包括:根据轴流压气机旋转失速先兆的情况,采用小扰动理论,建立刻画流场的三维可压缩Euler方程;运用谐波分解和色散关系,并在每一个流域的轮毂和叶尖处都建立边界条件;将转子和静子采用三维半激盘模型进行模化,并在界面处采用模态匹配技术、守恒定律以及压气机损失特性的表征条件,得到求解线化流场的特征值问题;求解该特征值问题得到压缩系统的特征扰动频率,并且通过特征扰动频率判断系统稳定性,判断标准:扰动频率ω为复数,表示为ω=ωR+iωI;当频率的虚部ωI>0时,扰动随时间发展是衰减的,系统稳定;反之ωI<0,扰动随时间放大,系统失稳。本发明可用于多级轴流压气机旋转失速稳定性的预测。 | ||||||
120 | 载热体流量推测装置、热源机、及载热体流量推测方法 | CN201280003087.7 | 2012-02-17 | CN103140729B | 2015-05-06 | 松尾实; 上田宪治; 新家利彦; 小野仁意 |
本发明的目的是不使用流量计而计算出载热体的流量。控制装置(30)具有存储空气动力特性映射的存储部(36),上述空气动力特性映射在由反映压缩机(12)的吸入风量的流量变量(θ)、和反映压缩机(12)的水头的压力变量(Ω)所表示的映射上,示出作为旋转失速的旋转失速线、及表示压缩机(12)吸入的冷媒的音速的多个机械马赫数线,通过冷水流量推算部(30b)计算压力变量(Ω),由空气动力特性映射计算出和压力变量(Ω)对应的流量变量(θ),根据和计算出的流量变量(θ)对应的压缩机(12)的吸入风量,计算出在蒸发器(24)中在冷媒和冷水之间交换的热量,根据该热量计算出冷水的流量。 |