金属-陶瓷-基材以及制备金属-陶瓷-基材的方法

申请号 CN201380056024.2 申请日 2013-09-16 公开(公告)号 CN104755445A 公开(公告)日 2015-07-01
申请人 罗杰斯德国有限公司; 发明人 K·施米德特; A·迈耶; A·勒加斯; M·施米勒;
摘要 本 发明 涉及金属-陶瓷-基材及其制备方法,所述金属-陶瓷-基材包括至少一个具有第一表面侧和第二表面侧(2a、2b)的陶瓷层(2),所述陶瓷层(2)在表面侧(2a、2b)的至少一者上设置有 金属化 层(3、4),其中形成陶瓷层(2)的陶瓷材料包含 氧 化 铝 、二氧化锆以及氧化钇。特别有利地,氧化铝、二氧化锆以及氧化钇各自以其总重量计的以下比例包含在陶瓷层(2)中:二氧化锆,在2和15重量%之间;氧化钇,在0.01和1重量%之间;和氧化铝,在84和97重量%之间,其中所使用的氧化铝的平均粒径在2和8微米之间,并且氧化铝晶粒的 晶界 长度与所有晶界的总长度的比例大于0.6。
权利要求

1.金属-陶瓷-基材,所述金属-陶瓷-基材包括至少一个具有第一表面侧和第二表面侧(2a、2b)的陶瓷层(2),所述陶瓷层(2)在表面侧(2a、2b)的至少一者上设置有金属化层(3、4),其中形成陶瓷层(2)的陶瓷材料包含、二氧化锆以及氧化钇,其特征在于,氧化铝、二氧化锆以及氧化钇以其总重量计的以下比例包含在陶瓷层(2)中:
-二氧化锆,在2和15重量%之间,
-氧化钇,在0.01和1重量%之间,和
-氧化铝,在84和97重量%之间,
其中所使用的氧化铝的平均粒径在2和8微米之间,并且氧化铝晶粒的晶界长度与所有晶界的总长度的比例大于0.6。
2.根据权利要求1所述的金属-陶瓷-基材,其特征在于,氧化铝、二氧化锆以及氧化钇以其总重量计的以下比例包含在陶瓷层(2)中:
-二氧化锆,在2和10重量%之间,
-氧化钇,在0.01和1重量%之间,和
-氧化铝,在89和97重量%之间。
3.根据权利要求1至2任一项所述的金属-陶瓷-基材,其特征在于,陶瓷层(2)具有大于25W/mK的热导率。
4.根据权利要求1至3任一项所述的金属-陶瓷-基材,其特征在于,陶瓷层(2)具有大于500MPa的弯曲断裂强度。
5.根据前述权利要求任一项所述的金属-陶瓷-基材,其特征在于,陶瓷层(2)具有在
0.1mm和1.0mm之间,优选在0.2mm和0.5mm之间的层厚度。
6.根据前述权利要求任一项所述的金属-陶瓷-基材,其特征在于,二氧化锆在结晶相中具有大部分四晶体结构,其中二氧化锆的所有晶体结构中的四角形晶体结构的比例大于80%。
7.根据前述权利要求任一项所述的金属-陶瓷-基材,其特征在于,金属化层(3)具有在0.05mm和1.2mm之间,优选在0.1mm和0.5mm之间的层厚度。
8.根据前述权利要求任一项所述的金属-陶瓷-基材,其特征在于,金属化层(3)被结构化用以形成接触面或结合面。
9.根据前述权利要求任一项所述的金属-陶瓷-基材,其特征在于,金属化层(3、4)通过由或铜合金组成和/或由铝或铝合金组成的箔或层形成。
10.制备金属-陶瓷-基材(2)的方法,所述金属-陶瓷-基材(2)包括至少一个具有第一表面侧和第二表面侧(2a、2b)的陶瓷层(2),其中表面侧(2a、2b)的至少一者与至少一个金属化层(4)平面结合,其中陶瓷层(2)由包含氧化铝、二氧化锆以及氧化钇的陶瓷材料制得,其特征在于,为了制备陶瓷层(2),使用以陶瓷层(2)的总重量计的以下比例的氧化铝、二氧化锆以及氧化钇:
-二氧化锆,在2和15重量%之间,
-氧化钇,在0.01和1重量%之间,和
-氧化铝,在84和97重量%之间,
其中所使用的氧化铝的平均粒径在2和8微米之间,并且选择氧化铝晶粒的晶界长度与所有晶界的总长度的比例大于0.6。
11.根据权利要求10所述的方法,其特征在于,在以由铜或铜合金组成的箔或层的形式形成至少一个金属化层(3、4)时,借助于“直接铜焊接”法或活性焊料法或者通过使用塑料粘合剂或适合作为粘合剂的聚合物,优选通过使用包含纤维,特别是碳纳米纤维的粘合剂粘合从而使金属化层(3、4)与陶瓷层(2)结合。
12.根据权利要求10或11任一项所述的方法,其特征在于,在以由铝或铝合金组成的箔或层的形式形成至少一个金属化层(3、4)时,借助于“直接铝焊接”法(“DAB-法”)或者通过使用塑料粘合剂或适合作为粘合剂的聚合物,优选通过使用包含碳纤维,特别是碳纳米纤维的粘合剂粘合从而使金属化层(3、4)与陶瓷层(2)彼此结合。
13.根据权利要求10至12任一项所述的方法,其特征在于,使用二氧化锆从而制备陶瓷层(2),二氧化锆在结晶相中具有大部分四角形晶体结构,其中在二氧化锆的所有晶体结构中的四角形晶体结构的比例大于80%。

说明书全文

金属-陶瓷-基材以及制备金属-陶瓷-基材的方法

[0001] 本发明涉及根据权利要求1的前序部分的金属-陶瓷-基材以及根据权利要求10的前序部分的制备金属-陶瓷-基材的方法。
[0002] 已知以电路板形式的不同类型的金属-陶瓷-基材,所述金属-陶瓷-基材由陶瓷绝缘层、至少一个金属化层组成,所述金属化层与陶瓷绝缘层的表面侧的一者结合并且结构化从而形成导体电路、触点、接触区域或固定区域。
[0003] 为了减小施加至陶瓷层上的金属化层的层厚度,希望提高陶瓷层的热导率。为此,例如由DE 10 2004 012 231 B4已知金属化的陶瓷基材,其中为了实现高的机械强度和高的热导率,陶瓷层由具有二化锆成分的陶瓷材料制得。陶瓷材料除了氧化(Al2O3)之外还包含二氧化锆(ZrO2)以及氧化钇(Y2O3)和/或氧化(CaO),其中Al2O3、ZrO2以及Y2O3和/或CaO以层的总重量计的以下比例包含在陶瓷层中:
[0004] -Al2O3,在91和97.96重量%之间;
[0005] -ZrO2,在2和9重量%之间;和
[0006] -Y2O3和/或CaO,在0.04和1重量%之间
[0007] 这种陶瓷层在室温下的热导率在20和23W/mK之间。然而希望进一步提高热导率,更确切地说维持或仅略微降低陶瓷层或金属化陶瓷基材的弯曲断裂强度。
[0008] 例如还已知所谓的“DCB-法”(“直接焊接”),所述方法通过使用金属板或铜板或金属箔或铜箔从而使金属层或金属板(优选铜板或铜箔)彼此结合和/或与陶瓷或陶瓷层结合,更确切地说所述金属板或铜板或金属箔或铜箔在其表面侧上具有由来自金属和反应性气体(优选氧气)的化学化合物组成的层或涂层(“熔融层”)。在例如US-PS 3744120或DE-PS 23 1 9 854中描述的方法中,所述层或涂层(“熔融层”)形成熔点低于金属(例如铜)熔点的共熔体,因此可以通过在陶瓷上铺设金属箔或铜箔并且通过加热所有层从而使其彼此结合,更确切地说通过基本上仅在熔融层或氧化物层的区域内熔融金属或铜。这种DCB-法例如具有以下方法步骤:
[0009] -氧化铜箔,从而形成均匀的氧化铜层;
[0010] -将具有均匀氧化铜层的铜箔铺设在陶瓷层上;
[0011] -将复合物加热至在约1025至1083℃之间,例如约1071℃的工艺温度
[0012] -冷却至室温。
[0013] 通过文献DE 22 13 115和EP-A-153 618还已知所谓的活性焊料法,所述活性焊料法用于使形成金属化层的金属层或金属箔,特别是铜层或铜箔,与陶瓷材料或陶瓷层结合。在所述方法(其特别还用于制备金属-陶瓷-基材)中,在约800-1000℃之间的温度下,使用硬焊料在金属箔(例如铜箔)和陶瓷基材(例如氮化铝-陶瓷)之间形成结合,所述硬焊料除了主要组分(例如铜、和/或金)之外还包含活性金属。所述活性金属(例如为选自Hf、Ti、Zr、Nb、Ce的至少一种元素)通过化学反应在硬焊料和陶瓷之间建立结合,而硬焊料和金属之间的结合为金属硬焊料结合。
[0014] 从上述现有技术出发,本发明的目的在于,提供金属-陶瓷-基材及其制备方法,所述金属-陶瓷-基材包含具有二氧化锆成分并且具有改进的热导率的陶瓷材料。通过根据权利要求1或10所述的金属-陶瓷-基材或其制备方法实现所述目的。
[0015] 根据本发明的金属-陶瓷-基材的主要方面在于,氧化铝、二氧化锆以及氧化钇以其总重量计的以下比例包含在陶瓷层中:二氧化锆在2和15重量%之间;氧化钇在0.01和1重量%之间,氧化铝在84和97重量%之间,其中所使用的氧化铝的平均粒径在2和8微米之间,并且氧化铝晶粒的晶界长度和所有晶界的总长度的比例大于0.6。由于根据本发明的陶瓷层具有在2和15重量%之间的二氧化锆比例以及使用平均粒径在2和8微米之间的氧化铝,因此可以实现高达10%的热导率的升高。特别有利地,陶瓷层具有大于25W/mK的热导率。因此有可能根据应用情况将金属化层的层厚度减小至0.05mm。
[0016] 在本发明的一个有利的实施方案的变体中,二氧化锆的比例在2和10重量%之间,氧化钇的比例在0.01和1重量%之间,并且氧化铝的比例在89和97重量%之间。通过将二氧化锆比例降低至低于10重量%并且优选同时升高烧结温度,可以进一步显著改进热导率,其中过高的烧结温度导致弯曲断裂强度的降低。
[0017] 在本发明的一个改良方案中,陶瓷层具有大于500MPa的弯曲断裂强度。
[0018] 在本发明的一个有利的实施方案中,二氧化锆在结晶相中具有大部分四晶体结构,其中二氧化锆的所有晶体结构中的四角形晶体结构的比例大于80%。结晶相的四角形晶体结构的增加和与此相关的从陶瓷中逐出玻璃相同样引起热导性的改进。
[0019] 在本发明的一个改良方案中,根据本发明的金属-陶瓷-基材例如这样形成,[0020] 陶瓷层具有在0.1mm和1.0mm之间,优选在0.2mm和0.5mm之间的层厚度,[0021] 和/或
[0022] 金属化层具有在0.05mm和1.2mm之间,优选在0.1mm和0.5mm之间的层厚度,[0023] 和/或
[0024] 金属化层被结构化从而形成接触面或结合面,
[0025] 和/或
[0026] 金属化层通过铜或铜合金和/或铝或铝合金的箔或层形成,
[0027] 其中上述特征可以各自单独使用或者以任意组合使用。
[0028] 同样地,本发明的主题在于制备金属-陶瓷-基材的方法,所述金属-陶瓷-基材包括至少一个具有第一表面侧和第二表面侧的陶瓷层,其中表面侧的至少一者与至少一个金属化层结合,其中陶瓷层由包含氧化铝、二氧化锆以及氧化钇的陶瓷材料制得。根据本发明,为了制备陶瓷层,使用氧化铝、二氧化锆以及氧化钇以陶瓷层的总重量计的以下比例:二氧化锆在2和15重量%之间;氧化钇在0.01和1重量%之间,氧化铝在84和97重量%之间,其中所使用的氧化铝的平均粒径在2和8微米之间,并且选择氧化铝晶粒的晶界长度与所有晶界的总长度的比例大于0.6。
[0029] 根据本发明的方法例如这样设计,在以由铜或铜合金组成的箔或层的形式形成至少一个金属化层时,借助于“直接铜焊接”法或活性焊料法或者通过使用塑料粘合剂或适合作为粘合剂的聚合物,优选通过使用包含纤维,特别是碳纳米纤维的粘合剂粘合从而使金属化层与陶瓷层结合
[0030] 和/或
[0031] 在以由铝或铝合金组成的箔或层的形式形成至少一个金属化层时,借助于“直接铝焊接”法(“DAB-法”)或者通过使用塑料粘合剂或适合作为粘合剂的聚合物,优选通过使用包含碳纤维,特别是碳纳米纤维的粘合剂粘合从而使金属化层与陶瓷层彼此结合,其中上述特征可以各自单独使用或者以任意组合使用。
[0032] 还有利地,使用二氧化锆从而制备陶瓷层,所述二氧化锆在结晶相中具有大部分四角形晶体结构,其中二氧化锆的所有晶体结构中的四角形晶体结构的比例大于80%。
[0033] 在本发明的范围内,表述“几乎”、“基本上”或“约”意指相比于各个精确值+/-10%,优选+/-5%的偏差和/或对于功能而言不重要的变化的形式的偏差。
[0034] 通过实施例的以下描述并且通过附图得出本发明的改良方案、优点和应用可能性。在此,所有描述的和/或以附图方式显示的特征单独地或以任意组合构成本发明的基本主题,而不论其在权利要求中的概括或其引用如何。权利要求的内容也被认为说明书的一部分。
[0035] 通过实施例的附图详细解释本发明。附图显示:
[0036] 图1显示了根据本发明的具有一个金属化层的金属-陶瓷-基材的简化截面图,和
[0037] 图2显示了根据本发明的具有两个金属化层的金属-陶瓷-基材的简化截面图[0038] 图3显示了根据图2的具有两个金属化层的金属-陶瓷-基材的替代性实施方案的简化截面图,和
[0039] 图4显示了常规陶瓷层和根据本发明的金属-陶瓷-基材中所使用的具有不同氧化锆比例的陶瓷层随温度变化的热导率的曲线图。
[0040] 图1以简化图显示了根据本发明的金属-陶瓷-基材1的截面,所述金属-陶瓷-基材1包括至少一个具有两个相对表面侧(即第一表面侧和第二表面侧2a、2b)的陶瓷层2。
[0041] 根据图1的根据本发明的金属-陶瓷-基材1设置有至少一个金属化层3。在本实施例中,第一表面侧2a具有第一金属化层3,与第一表面侧2a相对的第二表面侧2b不具有金属化层。
[0042] 图2和图3显示了根据本发明的金属-陶瓷-基材1的两个替代性实施方案变体,其中第一表面侧2a设置有第一金属化层3,与第一表面侧2a相对的第二表面侧2b设置有第二金属化层4。
[0043] 第一金属化层和/或第二金属化层3、4优选被结构化地形成,即形成多个接触区域或接触面用于连接电子构件。图1和2分别示例性显示了结构化的第一金属化层3,而图3显示了结构化的第一金属化层和第二金属化层3、4。
[0044] 这种金属-陶瓷-基材1以已知方式充当用于电路或电子电路或电路模,特别是用于电电路的电路板。在此,通过常见技术例如掩膜技术和蚀刻技术完成金属化层3、4的结构化。
[0045] 根据本发明,用于制备金属-陶瓷-基材1的陶瓷层2所使用的陶瓷材料包含氧化铝(Al2O3)、二氧化锆(ZrO2)以及氧化钇(Y2O3)。氧化铝、二氧化锆以及氧化钇以陶瓷层2的总重量计的以下比例包含在陶瓷层2中:
[0046] -二氧化锆,在2和15重量%之间;
[0047] -氧化钇,在0.01和1重量%之间;和
[0048] -氧化铝,在84和97重量%之间。
[0049] 在此,所使用的氧化铝的平均粒径在2和8微米之间。特别在具有以下比例的组合物的情况下得到更为改进的热导率:
[0050] -二氧化锆,在2和10重量%之间;
[0051] -氧化钇,在0.01和1重量%之间;和
[0052] -氧化铝,在89和97重量%之间。
[0053] 陶瓷层2具有晶体结构,即由大量彼此直接接界的晶体或晶粒组成。不同取向但是此外具有相同晶体结构的晶体或晶粒借助所谓的晶界彼此分离。当选择氧化铝晶粒的晶界长度和所有部分的晶粒的晶界总长度的比例大于0.6时,实现热导率的显著改进。因此陶瓷层2的强度也大大升高。陶瓷层2的热导率优选大于25W/mK,即相比于具有二氧化锆成分的已知陶瓷层2升高8至10%。
[0054] 优选地,所使用的二氧化锆在结晶相中具有大部分四角形晶体结构,其中二氧化锆的所有晶体结构中的四角形晶体结构的比例大于80%。
[0055] 陶瓷层2还具有在0.1mm和1.0mm之间,优选在0.2mm和0.5mm之间的层厚度,其中选择例如大于500MPa的陶瓷层2的弯曲断裂强度。
[0056] 金属化层3、4例如通过由铜或铜合金和/或铝或铝合金组成的箔或层形成,即也可设想铜或铜合金和铝或铝合金的组合。在此,金属化层3、4的层厚度在0.05mm和1.2mm之间,优选在0.1mm和0.5mm之间。
[0057] 考虑到陶瓷层2和金属化层3、4所使用的材料,不同方法适合于陶瓷层2与第一金属化层或第二金属化层3、4的平面结合。
[0058] 例如通过使用塑料粘合剂或适合作为粘合剂的聚合物,优选通过使用包含碳纤维,特别是碳纳米纤维的粘合剂进行粘合从而使以由铜或铜合金组成的箔或层的形式形成的金属化层3、4与陶瓷层2结合。替代性地,可以通过使用DCB-法或借助于活性焊料法进行陶瓷层的平面结合。
[0059] 例如通过“直接铝焊接”法(“DAB-法”)或者通过使用塑料粘合剂或适合作为粘合剂的聚合物,优选通过使用包含碳纤维,特别是碳纳米纤维的粘合剂粘合从而使由铝或铝合金制得的金属化层3、4与陶瓷层2结合。
[0060] 图4中示例性显示了根据现有技术的常规陶瓷层与根据本发明的金属-陶瓷-基材中所使用的具有不同氧化锆比例的陶瓷层2(即具有5%的ZrO2比例的陶瓷层、具有7%的ZrO2比例的陶瓷层和具有9%的ZrO2比例的陶瓷层)随以℃表示的温度变化的热导率的曲线图。其中可见,在约24℃的室温下的热导率大于25W/mK,因此造成8-10%的热导率升高。
[0061] 上文基于实施例描述了本发明。应理解,大量改变以及变型是可能的,而不偏离本发明所基于的发明理念。
[0062] 附图标记列表
[0063] 1 金属-陶瓷-基材
[0064] 2 陶瓷层
[0065] 2a 第一表面侧
[0066] 2b 第二表面侧
[0067] 3 第一金属化层
[0068] 4 第二金属化层
QQ群二维码
意见反馈