混合动车的控制装置

申请号 CN201480048199.3 申请日 2014-09-04 公开(公告)号 CN105492276A 公开(公告)日 2016-04-13
申请人 加特可株式会社; 日产自动车株式会社; 发明人 宫石广宣;
摘要 一种混合动 力 车的控制装置,具备低温时油压控制单元(11a),其实施在 发动机 低温时在规定的时间期间将 变速器 (7)的主压限制为比预定的主压指示压的最大值小的值,从而抑制来自油 泵 (4)的工作油的排出量的低温时油压控制。持续实施利用该低温时油压控制单元(11a)进行的油压控制,直至在发动机(1)低温时发动机起动后的 电动机 起动之后第一 离合器 (3)联接为止。由此,能够防止由于低温时油压控制的不适当的开始时期而引起油泵停止工作的情况。
权利要求

1.一种混合动车的控制装置,具备:
发动机,其可燃烧燃料而输出驱动力;
电动机,其可利用电力而输出驱动力;
变速器,其可在输出输入之间自动变速;
,其向所述变速器供给工作油;
第一离合器,其配置在所述发动机和所述电动机之间;
第二离合器,其配置在所述电动机和所述变速器之间;
控制单元,其控制所述发动机、所述电动机、所述变速器、所述第一离合器以及所述第二离合器,其中,
所述控制单元具备低温时油压控制单元,该低温时油压控制单元实施在发动机低温时在规定时间的期间将所述变速器的主压限制为比预定的主压指示压的最大值小的值,从而抑制来自油泵的工作油的排出量的低温时油压控制,并且,持续实施该低温时油压控制,直至在所述发动机低温时起动该发动机之后起动所述电动机且所述第一离合器联接为止。
2.如权利要求1所述的混合动力车的控制装置,其中,
在所述发动机的转速与所述电动机的转速之差为规定值以内的情况下,判断为所述第一离合器已联接。
3.如权利要求1所述的混合动力车的控制装置,其中,
在所述第一离合器的扭矩容量为规定值以上的情况下,判断为所述第一离合器已联接。

说明书全文

混合动车的控制装置

技术领域

[0001] 本发明涉及一种可通过发动机电动机驱动车辆的混合动力车的控制装置。

背景技术

[0002] 混合动力车搭载有燃烧燃料而输出驱动力的发动机、和被供电而输出驱动力的电动机。这样构成的混合动力车中,在使车辆起步时,当发动机的温高于规定温度(例如-10℃~-20℃)时,需要选择不使发动机工作而仅利用电动机驱动车辆的电动车(EV)模式、以及通过发动机及电动机驱动车辆的混合动力车(HEV)模式中的任意一种,而在规定温度以下的低温时选择在起动发动机之后起动电动机的发动机起步模式。另外,在EV模式以及HEV模式中,根据状况而将电动机作为发电机发挥功能而进行发电。
[0003] 另一方面,由本申请人提出的专利申请的专利文献1中,公开了如上所述的在低温时的发动机起动中,将使自动变速器动作的主压维持在某一较小值(也可以同时使发动机转速降低)之后,将指示压瞬间上升至最大值,从而减轻由低温起动时的变速器工作油的低粘性引起的油的驱动负担的低温时油压控制技术。
[0004] 但是,当将上述专利文献1记载的低温时油压控制技术适用于混合动力车时,则会产生如下的问题。
[0005] 即,上述低温时油压控制,是当检测到发动机水温为规定温度以下的低温时的发动机起动时开始,并在规定的时间期间将变速器的主压限制在较小值之后,瞬间上升到指令值的最大压。
[0006] 但是,混合动力车的情况下,相对于发动机水温比规定温度高时,发动机的起动是在电动机的起动之后由电动机的驱动力进行,并且发动机起动所需的时间较短即可完成的情况,发动机水温比规定温度低时,发动机最初通过起动机起动,而且该发动机起动所需的时间变长,因此,如果将上述低温时油压控制如现有技术那样设定为从低温时的发动机起动开始经过规定时间之后结束时,则即使在前一情况中适合,但是在后一情况中会产生由于低温时油压控制的结束过早,造成弱于由电动机驱动的油泵的扭矩而使得油泵停止的问题。
[0007] 现有技术文献
[0008] 专利文献
[0009] 专利文献1:(日本)特开2006-105179号公报

发明内容

[0010] 本发明是鉴于上述情况而创立的,其目的在于,提供一种混合动力车的控制装置,其能够在低温时将上述低温时油压控制适用于混合动力车时,即使在低温时起动发动机之后起动电动机的模式下,也不会发生弱于其扭矩而油泵停止的情况。
[0011] 为实现所述目的,根据本发明的混合动力车的控制装置,具备低温时油压控制单元,该低温时油压控制单元实施在发动机低温时在规定时间的期间将变速器的主压限制为比预定的主压指示压的最大值小的值,从而抑制来自油泵的工作油的排出量的低温时油压控制,并且,持续实施低温时油压控制,直至在发动机低温时发动机起动之后电动机起动且配置在发动机和电动机之间的第一离合器联接为止。
[0012] 根据本发明的混合动力车的控制装置中,持续实施低温时油压控制,直至发动机的温度在规定温度以下,发动机起动之后电动机起动且第一离合器联接为止,因此,能够防止低温时油压控制过早结束,使得油泵必须排出的所需油压变大,驱动油泵的电动机弱于其扭矩从而停止的情况。附图说明
[0013] 图1是表示搭载有本发明的实施例1的控制装置的混合动力车的动力传动系的示意图;
[0014] 图2是表示实施例1的控制装置所执行的发动机的起动以及电动机的起动的方法的说明图;
[0015] 图3是表示图2的方法中,发动机水温以及电池温度为高温时的控制内容的说明图;
[0016] 图4是表示图2的方法中,发动机水温以及蓄电池温度为中温时的控制内容的说明图;
[0017] 图5是表示图2的方法中,发动机水温以及蓄电池温度为低温时的控制内容的说明图。

具体实施方式

[0018] 以下,基于附图所示的实施例对本发明的实施方式进行详细地说明。
[0019] 实施例1
[0020] 首先,对实施例1的整体构成进行说明。
[0021] 搭载有该实施例1的控制装置的混合动力车,依次具备:发动机1、飞轮2、第一离合器3、油泵4、电动机5、第二离合器6、无级变速器(CVT)7、以及最终减速器8。
[0022] 而且,该混合动力车为串联式混合动力车,可以选择仅通过电动机5的运转而驱动车辆的电动车(EV)模式、或者通过发动机1和电动机5双方的运转而驱动车辆的混合动力车(HEV)模式进行行驶。
[0023] 并且,作为HEV模式,具有:发动机1驱动电动机5,并将该电动机5作为发电机进行发电,向未图示的锂离子蓄电池(LB)充电的同时进行行驶的模式;以及将发动机E的输出和利用来自蓄电池的供电的电动机5的输出的合力来驱动车辆的模式,并根据行驶状态以及蓄电池的充电率等来选择模式。其中,作为上述模式的示例,列举有本申请人提出的专利申请日本特开2013-151175号公报中记载的内容。
[0024] 发动机1为燃烧汽油发动机等的燃料而输出驱动力的汽油发动机内燃机。在发动机1安装有起动机1a,由此,能够进行发动机1的起动。
[0025] 另外,发动机的曲柄轴1b上一体地设置有飞轮2。
[0026] 第一离合器(附图中表示为CL1)3在本实施例中为多片式离合器,配置在飞轮2和电动机5之间并在它们之间连结、滑动、分离,由此,能使它们之间的扭矩传递容量可变。
[0027] 油泵4在本实施例中为叶片式油泵是可以向CVT供给工作油的装置。在设置于油泵4的输入轴链轮和设置于电动机5的输入轴的链轮之间挂装有链条4a,利用电动机5可驱动油泵4。油泵4将CVT7的油盘内的油吸入并将其排出油送入CVT7的油压控制装置。油压控制装置中,在此将分别经过调压的工作油供给到CVT7的初级带轮的油室等进行变速,或者作为润滑油供给到机械部件的可活动部位进行润滑以及冷却。
[0028] 电动机5例如为三相交流电动机,当未图示的锂离子蓄电池(LB)的电力从同样未图示的逆变器供电时,则利用其输出可以驱动油泵以及CVT7。另一方面,在车辆制动时可以作为发电机发挥功能,其制动能量的一部分转换为电能,通过逆变器将其三相交流电流转换为直流电流并向蓄电池充电。另外,如上所述,也可以通过使发动机1运转驱动电动机5,来作为发电机发挥功能进行发电,从而向蓄电池充电。
[0029] 第二离合器6在本实施例中为多片式离合器,配置在电动机5和CVT7之间并在它们之间连结、滑动、分离,由此,能使它们之间的扭矩传递容量可变。该第二离合器6在EV模式以及HEV模式下的车辆起步时联接,将电动机5以及发动机1的输出传递到CVT7从而使车辆行驶。
[0030] CVT7是公知的在与输入轴连结的初级带轮和与输出轴连结的次级带轮之间架设有金属制带,通过利用来自油压控制装置的油压改变两个带轮的沟槽宽度,从而可以沿着由发动机转速和车速确定的变速线进行无级变速的装置。因此,在此省略对其详细构造的说明。
[0031] 最终减速器8具备:由小齿轮以及双曲面齿轮构成的减速齿轮组和调整左右驱动轮的旋转差的动作齿轮组构成,是将从CVT7输出的驱动力减速并分配到左右的驱动轮的装置。
[0032] 上述发动机1由发动机控制器9控制,电动机5由电动机控制器10控制,CVT7由变速器控制器11控制,另外这些控制器9~11以及第一离合器3、第二离合器6由综合控制器12控制。各个连线如图1中的虚线所示,但第一离合器3、第二离合器6与综合控制器12之间的连线为了便于观察而省略。另外,变速器控制器11具有低温时油压控制部11a,该低温时油压控制部11a进行如下的控制,即在发动机水温为规定温度以下时将主压限制为比预定指示压的最大值小的值,并在规定时间后瞬间将其上升至最大值。上述各控制器9~12相当于本发明的控制单元,低温时油压控制部11a相当于本发明的低温时油压控制单元。
[0033] 接着,对上述混合动力车中的发动机1的起动控制进行如下说明。
[0034] 该发动机的起动方法,在蓄电池以及发动机的温度高于规定温度的情况下和规定温度以下的情况下有所不同。即,在前者的情况下,电动机的起动在发动机的起动之前进行(EV模式下,由于电动机起动之后接着需要对蓄电池进行充电或者需要切换到HEV模式等,仅在判断为需要起动发动机的情况下才在该判断时刻起动发动机,在HEV模式下,在发动机起动之后紧接着起动发动机),与此相对,在后者的情况下,为了防止由于蓄电池的温度较低而无法充分放电,在最开始就执行发动机的起动,之后起动电动机。
[0035] 图2是按照起动条件将发动机的起动方法整理为图示的说明图,横轴表示经过时间,纵轴沿着向上的方向表示发动机1的温度(本实施例中为发动机水温)以及锂离子蓄电池的温度变高的方向,另外沿着向下的方向表示发动机1的水温以及锂离子蓄电池的温度变低的方向。
[0036] 发动机起动在该图中纵向主要分为3部分进行表示,上侧的两部分表示温度高于规定温度的情况下,选择其中最上部分所示的EV模式下的起步和中间部分所示的HEV模式下的起步中的任意一个。另外,最下部分表示温度在规定温度以下的情况下的起步。
[0037] 利用图3~图5,按照上述起动条件对发动机1的起动以及电动机5的起动方法以以下顺序进行说明。
[0038] 其中,上述附图中,在图的右侧位置同时表示了控制的流程,其中的相当于图1的动力传动系的附图中,发动机1、起动机1a、油泵4、电动机5中的标有网格线的设备表示他们起动或者被起动而运转,没有标注网格线的设备表示处于非运转状态。
[0039] 首先,当按压车辆的点火开关(图2~图5中以按压(Push)表示其时刻,图3~图5中按压时刻t1)时,利用综合控制器12进行本系统的是否起动判断和起动方法的选择。
[0040] 即,当从未图示的发动机水温传感器以及蓄电池温度传感器向综合控制器12输入有关发动机1的水温以及锂离子蓄电池的温度的信号时,根据上述水温和蓄电池温度的高低,选择上述3个起动方法中的1个起动方法并执行。
[0041] 根据点火开关的“接通”来实施起动判断(时刻t1~t2),但当发动机1的水温以及锂离子蓄电池的温度均高于各自的规定温度时,根据上述判断结果,执行EV模式或者HEV模式下的起步。
[0042] 首先,当选择了EV模式下的起步时,实施图2的最上部分以及图3所示的电动机5的起动。此时,第一离合器3以及第二离合器6均处于释放状态。
[0043] 该状态下,在时刻t2将向电动机5供电的供电回路设为“接通(ON)”从而开始强电连接。通过该强电连接,在时刻t3电动机5起动并开始旋转,且维持在规定的转速(图3中的上部分)。该电动机5的规定转速是从由电动机5旋转驱动的油泵4排出的工作油能够确保CVT7所需的油压的转速。其中,在图3的上部分中用实线表示电动机5的转速随时间的变化。
[0044] 由该电动机5的旋转产生的扭矩,由于上述电动机5的起动,初始起动引起的急剧的扭矩上升在短时间发生(时刻t3),但很快就下降到能够确保CVT7的油压的扭矩,并维持该值(图3中间部分的实线所示)。
[0045] 通过电动机5的起动到达上述规定的转速之后,在准备时间(图2、图3中以准备开始(Ready On)表示,时刻t4~t5之间)期间,进行是否产生CVT7运转所需的油压的调压判断。
[0046] 当判断为是(YES)时,则开始向第二离合器6供给工作油,使第二离合器6经过滑动联接状态变为完全联接。由此,将电动机5的驱动力传递到CVT7等,从而使车辆起步(时刻t5之后)。
[0047] 在该EV模式下起步之后,为了获得更大的驱动力而判断为需要切换到HEV模式时,或者蓄电池的充电率(SOC)下降到规定值以下而判断为需要充电时,则需要发动机1的起动和运转。
[0048] 在此,对于起动发动机1,必须确保在准备时间之后,从上述判断的时刻开始必要的发动机起动时间。
[0049] 该发动机起动目标时间如图2中的粗线所示,较高温侧时作为最低限必要的时间为一定值,但随着发动机水温变为较低侧时则该时间渐渐地变长,但是与极低温时的情况相比则该时间要短很多。另外,该发动机起动目标时间,在图2中为了便于理解期间的长度,而为了方便在准备期间之后随即标示,但在实际中,是在车辆起步之后,由于上述理由而判断为需要发动机1的起动的时刻(本实施例中为时刻t5)才开始。
[0050] 为了起动发动机1,如图3的最下部分所示,通过利用油压指令(该图中虚线所示)向第一离合器3供给压力油使其联接,由此,第一离合器3的扭矩(该图中实线所示)从时刻t6开始上升并将第一离合器3维持为半离合状态,使发动机1的转速(该图的最上部分中以点划线所示,其转速比电动机5的转速低第一离合器3的滑动量)上升,将电动机5的输出扭矩的一部分经由第一离合器3传递给发动机1的曲柄轴1b,从而使其旋转驱动。
[0051] 另外,此时,由于自时刻t6延迟的时刻在发动机1会发生由发动机摩擦引起的负扭矩(参照该图中间部分的点划线),因此从稍早的时刻开始,电动机5在确保CVT7的油压的同时为了超过(战胜)发动机1的摩擦扭矩而旋转驱动发动机1,因此,不改变转速将扭矩增大到能够超过(战胜)上述负扭矩而旋转驱动发动机1的大小。
[0052] 在时刻t6达到发动机1的起动所需的规定转速的状态下,通过燃料喷射而向发动机1供给燃料,火花塞点火,在时刻t7附近开始发动机1的起动。
[0053] 当在时刻t7的时间点输出用于完全联接的油压指令时,则第一离合器3的油压从比该时间点延迟的时刻t8开始逐渐上升并在时刻t10达到等于其指令压的大小,第一离合器3成为完全联接状态。该时间点发动机1和电动机5的转速变为相同。
[0054] 另外,图3中,在时刻t6~t7的期间的发动机1的转速和电动机5的转速标示为相同,但是如上所述,发动机1的转速比电动机5的转速低第一离合器3的滑动量。
[0055] 在时刻t8和t10之间的时刻t9,发动机1起动且其输出扭矩如该图中间部分的点划线所示由于起动而跳跃上升,然后稍微降低并在第一离合器3完全联接的时刻t10之后平稳。在此期间,电动机5的扭矩是使扭矩降低,并从时刻t10开始维持为零扭矩。
[0056] 在时刻t10至时刻t11之间,如上所述电动机扭矩为零并进行发动机1是否是完全爆炸的判断。如果该判断结果为是时,则认为发动机1为正常运转从而继续维持发动机1的运转控制,如果判断结果为否,则试图进行发动机1的重新起动。另外,即使这样仍然没有起动时,则放弃发动机1的起动而进行利用电动机5的行驶,也可以同时点亮表示发动机1无法起动的报警指示灯。
[0057] 在此,当在时刻t11之后判断出蓄电池的充电率低于规定值时,则必须进行锂离子蓄电池的充电,因此需要增加发动机1的扭矩。该扭矩的增加在没有踏下加速踏板的状态下,无需改变发动机1的怠速转速而进行。由此,电动机5由发动机1驱动而起动并作为发电机发挥功能,在此,将怠速发电所获得的电力经由逆变器充入到锂离子蓄电池。此时,如图3中间部分的实线所示,由于电动机5被驱动,电动机扭矩变为负。另外,该情况下,第二离合器6根据必要的驱动力而使其滑动,将发动机1的输出分配给电动机5的发电和经由CVT7的车辆驱动。
[0058] 接着,与上述情况同样地当在发动机水温以及蓄电池温度高于各自的规定温度的情况下,判断为以HEV模式进行起步的情况时,如图2的中间部分以及图4所示,实施发动机1的起动和电动机5的驱动。
[0059] 即,此时如图4所示,从将点火开关设为接通的时刻t1开始,按照起动判断、强电连接、电动机起动的顺序,直至时刻t3为止进行与上述EV模式的情况同样的控制。因此,电动机5的转速(图4的上部分中实线所示)以及扭矩从时刻t3开始上升,并在将第一离合器3的油压输出为发动机起动所需的扭矩的油压指令的时刻t12,成为利用电动机3的驱动使得油泵4被驱动从而可充分确保CVT7的油压的状态。
[0060] 当第一离合器3滑动的同时联接时,则经由第一离合器3将电动机5的驱动力的一部分传递给发动机1,使得发动机1被驱动旋转,产生负的发动机扭矩。在该状态下通过进行燃料喷射和点火从而进行发动机1的起动。其中,在发动机1起动前的时刻t13的时间点,输出将第一离合器3完全联接的油压指令。
[0061] 在时刻t14发动机1起动,发动机扭矩以及转速急剧上升且在没有踏下加速器踏板的状态下达到怠速转速。该情况下也与EV模式下的发动的情况同样,在成为第一离合器3的完全联接状态的时刻t15进行发动机1的完全爆炸判断。
[0062] 从上述判断结束后的时刻t16开始利用发动机1旋转驱动电动机5并作为发电机起动进行发电。
[0063] 通过控制第二离合器6的滑动率可以分配用于发电的电动机5的驱动和对CVT7的驱动扭矩从而使车辆行驶。
[0064] 上述通常温度下的利用EV模式、HEV模式的起步可以如上所述地执行,但是CVT7的低温时油压控制不执行。
[0065] 接着,在蓄电池温度低于规定温度而发动机水温低于规定温度的极低温时的情况下,进行在起动发动机1之后再起动电动机5的起步(图2的最下部分)。
[0066] 即,如图5所示,在时刻t1进行起动判断,当判断为进行上述极低温时的起步的情况下,使起动机1a起动而旋转驱动发动机1的曲柄轴1b。其结果,发动机1以对应起动机1a的转速的转速(图5上部分中点划线所示)进行旋转,而产生负的摩擦扭矩(该图的中间部分中点划线所示)。在此期间通过进行燃料供应和点火来起动发动机1。
[0067] 在时刻t17,当发动机1起动、运转后,发动机1的转速以及输出扭矩急速上升并维持在一定的值。另外,此时,发动机转速通常高于怠速转速。在该状态下在时刻t18进行发动机1的完全爆炸的判断。如果判断结果为是,则在时刻t19进行强电连接。
[0068] 这样,电动机5在时刻t20开始旋转,其结果,也产生电动机扭矩。通过该电动机5的旋转使得油泵4被旋转驱动,并维持在能够确保向CVT7的供给油压的扭矩。
[0069] 通过该电动机5的起动而能够确保向CVT7的供给油压的同时,开始低温时油压控制。在该低温时油压控制中,在检测出发动机水温在规定温度以下,并进一步检测到电动机5的起动的阶段开始进行,首先将CVT7的主压限制为比指示值小的值。低温时油压控制中,从检测出的次级压超过规定值(可判断产生了峰值压的油压)开始,在经过了规定时间之后结束并返回指示压。该规定时间预先通过实验等确定。如上所述由于通过低温时油压控制将CVT7的主压限制为比指示压小的值,因此,能够抑制利用电动机5的驱动而使油泵4驱动为起因而产生的峰值压,从而能够抑制第一离合器3、第二离合器6以及CVT7的被供给油压的部分的过载。
[0070] 另外,在能够确保向CVT7的供给油压的状态的时刻t21,综合控制器12输出可使第一离合器3成为半离合状态的扭矩容量指令。其结果,第一离合器3的扭矩容量上升成为半离合状态,但是在稍早的时刻t22输出变为完全联接状态的油压指令,增大扭矩容量而将第一离合器3完全联接时,发动机转速下降,电动机转速上升最终使得发动机1和电动机5以同一转速旋转。
[0071] 在时刻t23,将电动机5作为发电机发挥功能,进行利用怠速发电的再生。因此,电动机扭矩变为负扭矩,发动机扭矩则不改变发动机转速而增大。
[0072] 该情况下也通过控制第二离合器6的滑动状态,将发动机输出分配给利用电动机5的发电和经由CVT7的车辆驱动。即使检测出的次级压超过规定值(可判断发生了峰值压的油压)并且经过了规定时间,低温时油压控制也继续实施直至在时刻t23第一离合器3的扭矩容量成为完全联接容量为止。
[0073] 通过上述说明可知,在实施例1的混合动力车的控制装置中,能够获得以下的效果。
[0074] 即,实施例1的控制装置中,使低温时油压控制的开始持续实施至发动机水温在规定温度以下起动发动机1之后再起动电动机5直至第一离合器3的扭矩容量变为完全联接状态为止,因此,直到发动机1和电动机5成为稳定运转状态为止能够持续进行低温时油压控制。其结果,即使将现有的低温时油压控制用于混合动力车的发动机水温低温时的发动机起动时在起动发动机1之后再起动电动机5的起步模式下,也不会发生油泵4的负载变高从而使得电动机5弱于油泵4的扭矩的不良情况。
[0075] 以上基于上述实施例对本发明进行了说明,但本发明并不局限于上述实施例,在不脱离本发明宗旨的范围内即使进行了设计变更等也均包含于本发明。
[0076] 上述实施例中,直到第一离合器3的扭矩容量成为完全联接状态为止持续实施低温时油压控制,但也可以是直到发动机1的转速和电动机5的转速一致(时刻t22)为止持续实施低温时油压控制,还可以是直到发动机1的转速与电动机5的转速之差达到规定值以下(时刻t21~t22之间)为止持续实施低温时油压控制。发动机1的转速和电动机5的转速一致、或者其差值变小时,即使判断为第一离合器已经联接从而结束低温时油压控制,发动机1的驱动力也能够经由第一离合器3传递到电动机5,从而驱动油泵4。因此,即使油泵4的负载变高也不会发生电动机5弱于油泵4的扭矩的不良情况。
[0077] 例如,本发明的变速器并不局限于无级变速器7,也可以是多级自动变速器
[0078] 本发明的控制单元并不局限于实施例的各种控制器。即,实施例中的各种控制器9~12的功能分配也可以与实施例的结构不同,另外,也可以将多个控制器进一步汇集而减少个数。
[0079] 另外,发动机1的温度也并不局限于实施例的发动机水温,也可以是发动机本体的温度。
QQ群二维码
意见反馈